Site Loader

Расчет параметрического стабилизатора напряжений на стабилитроне

Любой электронной схеме требуется стабилизированное напряжение, необходимое для питания входящих в её состав активных элементов (транзисторов, микросхем и т. п.). Несмотря на большое разнообразие видов линейных источников в основе всех их лежит классический параметрический стабилизатор напряжения (смотрите рис. ниже).

Упрощённая схема

Упрощённая схема

При построении большинства таких устройств используется нелинейный полупроводниковый элемент – диод, называемый в этом случае стабилитроном.

Порядок включения

Классический стабилизатор на стабилитроне относится к простейшему виду устройств данного класса и является самым дешёвым и лёгким в исполнении. Своеобразная «расплата» за эту простоту – невысокий стабилизирующий эффект, сильно зависящий от величины нагрузки и наблюдаемый в очень узком диапазоне.

Входящий в состав стабилизатора напряжения полупроводниковый элемент (стабилитрон) представляет собой выпрямительный диод, включенный в обратном направлении. Благодаря этому, рабочая точка элемента может быть установлена на нелинейном участке вольтамперной характеристики (ВАХ) с резко уходящей вниз ветвью.

Дополнительная информация. Её точное положение задаётся величиной балластного резистора Rо (смотрите схему выше).

С примером типовой вольтамперной характеристики стабилитрона можно ознакомиться на приводимом ниже рисунке.

ВАХ стабилитрона

ВАХ стабилитрона

Принцип работы параметрического стабилизатора на стабилитроне (ПСН) неразрывно связан с видом обратной ветви характеристики стабилитрона, имеющей следующие особенности:

  • При значительных изменениях тока через прибор напряжение на этом участке колеблется совсем в небольших пределах;
  • Путём выставления величины токовой составляющей можно установить рабочую точку по центру обратной ветви;
  • За счёт выбора напряжения стабилизации в фиксированной зоне ВАХ удаётся расширить динамический диапазон изменения тока стабилитрона (или его дифференциального сопротивления).

Обратите внимание! Именно из-за возможности выставления фиксированных параметров в этой схеме она получила своё название – параметрическая.

Принцип работы

Суть работы стабилизатора напряжения удобнее всего пояснить на примере диода, включённого в цепь постоянного тока. Когда напряжение на нём имеет прямую полярность (плюс подключён к аноду, а минус – к катоду), полупроводниковый переход смещён в проводящем направлении и пропускает ток.

При обратном порядке подачи полярности n-p переход закрыт и поэтому тока практически не проводит. Но если продолжать увеличивать обратное напряжение между электродами, то в соответствии с его ВАХ можно достичь точки, в которой диод вновь начинает пропускать поток электронов (но уже в другую сторону за счёт пробоя перехода).

Важно! Полупроводниковый элемент в этом случае работает в режиме обратных напряжений, значительно превышающих по величине прямое падение на нём (0,5-0,7 Вольта).

Обратный ток в данной ситуации может считаться рабочим параметром, изменяющимся в пределах регулировки напряжения, а сам диод, работающий в режиме обратного включения, носит название стабилитрона.

Основные параметры

При изучении функционирования параметрического стабилизатора напряжения особое значение придаётся техническим характеристикам самого регулирующего прибора. К ним следует отнести:

  • Напряжение стабилизации, определяемое как падение потенциала на нём при протекании тока средней величины;
  • Максимальное и минимальное значения тока, пропускаемого через обратно смещенный переход;
  • Допустимая рассеиваемая мощность на приборе Pmax.;
  • Проводимость перехода в динамическом режиме (или дифференциальное сопротивление стабилитрона).

Последний параметр определяется как отношение приращения напряжения ΔUCT к вызвавшему его изменению стабилизирующего тока ΔICT.

Относительно первых двух параметров следует заметить, что для разных образцов полупроводниковых диодов они могут сильно различаться по своей величине (в зависимости от мощности прибора). Напряжение стабилизации для большинства современных стабилитронов варьируется в диапазоне от 0,7 до 200 Вольт.

Допустимая мощность рассеяния определяется уже перечисленными ранее параметрами и также сильно зависит от типа элемента. Это же можно сказать и о дифференциальном сопротивлении, в определённой мере влияющем на эффективность процесса стабилизации.

Схема параметрического стабилизатора

Особенности схемы

Полное схемное представление стабилизатора параметрического типа, в котором стабилитрон выполняет функцию опорного элемента, приводится на размещённом ниже рисунке.

Рабочая схема стабилизатора

Рабочая схема стабилизатора

Эту схему можно рассматривать как делитель напряжения, состоящий из резистора R1 и стабилитрона VD с подключённой в параллель нагрузкой RН.

При изменениях входного потенциала соответственно будет меняться и ток через стабилитрон; при этом величина напряжения на нём (а значит и на нагрузке) останется практически неизменной. Её значение будет соответствовать напряжению стабилизации при колебаниях входного тока в некоторых пределах, определяемых характеристиками диода и величиной нагрузки.

Расчёт рабочих параметров

Исходными данными, согласно которым осуществляется расчет стабилизатора параметрического типа, являются:

  • Подаваемое на вход питание Uп;
  • Напряжение на выходе Uн;
  • Выходной номинальный ток IH=Iст.

С учётом этой информации рассчитаем искомую величину, воспользовавшись функцией онлайн-калькулятора, например.

В качестве примера положим:

Uп=12 Вольт, Uн=5 Вольт, IH=10 мА.

Исходя из этих данных, вводимых предварительно в онлайн-калькулятор или вручную, выбираем стабилитрон типа BZX85C5V1RL с напряжением стабилизации 5,1 Вольт и дифференциальным сопротивлением порядка 10 Ом. С учётом этого вычисляем величину балластного сопротивления R1, определяемую следующим образом:

R1= Uо–Uн/Iн+Iст =12-5/0,01+0,01= 350 Ом.

Таким образом, весь расчет параметрического стабилизатора сводится к определению номинала балластного резистора R1 и выбору типа стабилитрона (исходя из того, на какое рабочее напряжение он рассчитан).

Возможности по увеличение мощности

Выходная мощность стабилизатора параметрического типа определяется максимальным током стабилитрона и его допустимой мощностью Pmax, которую при желании можно увеличить. Для этого следует дополнить схему транзисторным элементом, включаемым параллельно или последовательно с нагрузкой. Соответственно этому различают стабилизаторы параллельного и последовательного типа, в которых транзистор выполняет функцию усилителя постоянного тока.

Рассмотрим каждую их этих схем более подробно.

Параллельный стабилизатор

В схеме стабилизатора параллельного типа транзистор используется как эмиттерный повторитель, включённый параллельно нагрузке (смотрите рисунок ниже).

Схема стабилизатора параллельного типа

Схема стабилизатора параллельного типа

Дополнительная информация. В этой схеме резистор R1 может располагаться как со стороны коллектора, так и в эмиттере транзистора.

Напряжение на нагрузочном резисторе Rн составляет:

Uн=Uст+Uбэ (транзистора).

Схема работает по принципу отвода излишков тока через открытый переход К-Э транзистора, на базе которого постоянно присутствует напряжение (Uст). В этой схеме IСТ является одновременно базовым током транзистора, вследствие чего его величина в нагрузке может в h31e раз превышать исходное значение, то есть транзистор в данном случае работает как усилитель по току.

Последовательный стабилизатор

ПСН, собранный по последовательной схеме, представляет собой тот же эмиттерный повторитель на транзисторе VT, но с сопротивлением нагрузки Rн, включённым последовательно с переходом К-Э (смотрите рисунок).

Схема последовательного ПСН

Схема последовательного ПСН

Выходное напряжение устройства в данной ситуации равно:

Uн=Uст-Uбэ.

В этой схеме любые колебания тока в нагрузке приводят к противоположным по знаку изменениям напряжения на базе транзистора. Подобная зависимость вызывает открывание или закрывание перехода Э-К, что означает автоматическую стабилизацию выходного напряжения.

В заключение описания отметим, что как в последовательной, так и в параллельной схеме ПСН стабилитрон используется в качестве источника опорного напряжения, а транзистор – как усилитель тока.

Видео

Оцените статью:

Простейший компенсационный стабилизатор напряжения — radiohlam.ru

Итак, схема простейшего компенсационного стабилизатора напряжения изображена на рисунке справа.

Обозначения:

  1. IR — ток через балластный резистор (R0)
  2. Iст — ток через стабилитрон
  3. Iн — ток нагрузки
  4. Iвх — входной ток операционного усилителя
  5. Iд — ток через резистор R2
  6. Uвх — входное напряжение
  7. Uвых — выходное напряжение (падение напряжения на нагрузке)
  8. Uст — падение напряжения на стабилитроне
  9. Uд — напряжение, снимаемое с резистивного делителя (R1, R2)
  10. UОУ — выходное напряжение операционного усилителя
  11. Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора

Почему такой стабилизатор называется компенсационным и в чём его преимущества? На самом деле такой стабилизатор — это система управления с отрицательной обратной связью по напряжению, но для тех, кто не в курсе, что это такое, мы начнём издалека.

Как вы помните, операционный усилитель усиливает разность напряжений между своими входами. Напряжение на неинвертирующем входе у нас равно напряжению стабилизации стабилитрона (Uст). На инвертирующий вход мы подаём часть выходного напряжения, снятую с делителя (Uд), то есть там у нас выходное напряжение, делённое на некоторый коэффициент, определяемый резисторами R1, R2. Разность этих напряжений (Uст-Uд) — это сигнал ошибки, он показывает, на сколько напряжение с делителя отличается от напряжения на стабилитроне (обозначим эту разность буквой E).

Далее, выходное напряжение ОУ получается равным E*Kоу, где Коу — коэффициент усиления операционного усилителя с разомкнутой петлёй обратной связи (в англоязычной литературе Gopenloop). Напряжение на нагрузке равно разности напряжения на выходе ОУ и падения напряжения на p-n переходе база-эмиттер транзистора.

Математически всё то, о чём мы говорили выше, выглядит так:

Uвых=Uоу-Uбэ=E*Kоу-Uбэ (1)

E=Uст-Uд (2)

Рассмотрим более внимательно первое уравнение и преобразуем его к такому виду:

E=Uвых / Kоу + Uбэ / Kоу

Теперь давайте вспомним — в чём же главная особенность операционных усилителей и почему их все так любят? Правильно, — их главная особенность — в огромном коэффициенте усиления, порядка 106 и более (у идеального ОУ он вообще равен бесконечности). Что нам это даёт? Как видите, в правой части последнего уравнения оба слагаемых имеют в делителе Коу, а поскольку Коу очень очень большой, следовательно оба этих слагаемых очень очень маленькие (при идеальном ОУ они стремятся к нулю). То есть наша схема при работе стремится к такому состоянию, когда сигнал ошибки равен нулю. Можно сказать, что операционный усилитель сравнивает напряжения на своих входах и если они отличаются (если есть ошибка), то напряжение на выходе ОУ меняется таким образом, чтобы разность напряжений на его входах стала равна нулю. Другими словами он стремится скомпенсировать ошибку. Отсюда и название стабилизатора — компенсационный.

Далее, у нас осталось ещё одно уравнение. С учётом того, что мы сделали с первым уравнением, второе уравнение будет выглядеть так:

0=Uст-Uд (2*)

Uд, как мы помним, — это часть выходного напряжения, снимаемая с делителя на резисторах R1, R2. Если рассчитать наш делитель, не забывая про входной ток ОУ, то получим:

и после подстановки этого выражения в уравнение (2*) сможем записать для выходного напряжения следующую формулу (3):

Входной ток операционного усилителя обычно очень мал (микро, нано и даже пикоамперы), поэтому при достаточно большом токе Iд можно считать, что ток в обоих плечах делителя одинаков и равен Iд, самое правое слагаемое формулы (3) при этом можно считать равным нулю, а саму формулу (3) переписать в следующем виде:

Uвых=Uст(R1+R2)/R2 (3*)

При расчёте резисторов R1, R2 необходимо помнить о том, что формула (3*) справедлива только в том случае, когда ток через резисторы делителя много больше входного тока операционного усилителя. Оценить величину I

д можно по формулам:

Iд=Uст/R2 или Iд=Uвых/(R1+R2).

Теперь давайте оценим область нормальной работы нашего стабилизатора, рассчитаем R0 и подумаем, что будет влиять на стабильность выходного напряжения.

Как видно из последней формулы, существенное влияние на стабильность Uвых может оказывать только стабильность опорного напряжения. Опорное напряжение — это то, с которым мы сравниваем часть выходного напряжения, то есть это напряжение на стабилитроне. Сопротивления резисторов будем считать не зависящими от протекающего через них тока (температурную нестабильность мы не рассматриваем). Зависимость выходного напряжения от падения напряжения на p-n переходе транзистора (которое слабо, но зависит от тока), как в случае с параметрическим стабилизатором на транзисторе, тоже пропадает (помните мы когда ошибку из первой формулы считали — поделили падение на переходе БЭ транзистора на К

оу и посчитали это выражение равным нулю из-за очень большого коэффициента усиления операционника).

Из сказанного выше следует, что главный путь повышения стабильности тут один — увеличивать стабильность источника опорного напряжения. Для этого можно либо сузить диапазон нормальной работы (уменьшить диапазон входного напряжения схемы, что приведёт к меньшему изменению тока через стабилитрон), либо взять вместо стабилитрона интегральный стабилизатор. Кроме этого, можно вспомнить про наши упрощения, тогда вырисовываются ещё несколько путей: взять операционник с бОльшим коэффициентом усиления и меньшим входным током (это даст возможность ещё и резисторы делителя побольше номиналом взять, — КПД повысится).

Ну ладно, вернёмся к области нормальной работы и расчёту R0. Для нормальной работы схемы ток стабилитрона должен быть в пределах от Iст min до Iст max. Минимальный ток стабилитрона будет при минимальном входном напряжении, то есть:

Uвх min=IR*R0+Uст, где IR=Iст min+Iвх

Здесь аналогично, — если ток стабилитрона много больше входного тока операционного усилителя, то можно считать IR=Iст min. Тогда наша формула запишется в виде Uвх min=Iст min*R0+Uст (4) и из неё можно выразить R0:

R0=(Uвх min-Uст)/Iст min

Исходя из того, что максимальный ток через стабилитрон будет течь при максимальном входном напряжении запишем ещё одну формулу: Uвх max=Iст max

*R0+Uст (5) и объединив её с формулой (4) найдём область нормальной работы:

Ну и, как я уже говорил, если получившийся диапазон входного напряжения шире, чем вам нужно, — можно его сузить, при этом возрастёт стабильность выходного напряжения (за счёт повышения стабильности опорного напряжения).

39) Параметрические стабилизаторы напряжения: схемы, принцип действия.

Параметрические стабилизаторы напряжения изготавливаются, как правило, с применением транзисторов, стабисторов и стабилитронов.Параметрические стабилизаторы имеют простую конструкцию и высокую надежность, но имеют низкий КПД.

Схема параметрического стабилизатора напряжений состоит из балластного резистора Rо (для ограничения тока через стабилитрон), и стабилитрона, подключенного параллельно нагрузке, выполняющий основную функцию стабилизации.

Iст — ток через стабилитрон; Iн — ток нагрузки; Uвых=Uст – стабилизированное напряжение на выходе; Rо – балансный резистор.

Основным свойством стабилитрона, на базе которого функционирует параметрический стабилизатор напряжения, является то, что U на нем в рабочем диапазоне (от Iст min до Iст max) остается практически прежним. При этом изменения происходят от Uст min до Uст max, однако при этом принято подразумевать, что Uст min = Uст max = Uст.

Коррекция тока нагрузки либо входного U не происходит (он сохраняет те же значения, что и на стабилитроне). Но при этом происходят изменения тока, проходящего через стабилитрон, а при изменении напряжения на входе выполняется корректировка тока, двигающегося по балластному резистору. В результате в балластном резисторе происходит гашение излишков напряжения на входе. Значение этого падения зависят от проходящего через него тока, который, в свою очередь, взаимосвязан с электротоком через стабилитрон. В силу этого любая коррекция электротока через стабилитрон напрямую отражается на величине падения U, отмечаемой в балластном резисторе.

Для описания принципа данной схемы используется уравнение:

Uвх=Uст+IRо, где с учетом I=Iст+Iн, получается, что Uвх=Uст+(Iн+Iст)Rо

Для безукоризненного функционирования параметрического стабилизатора напряжения, которое определяется U на нагрузке в пределах от Uст min до Uст max, требуется следить за тем, чтобы через стабилитрон ток всегда оставался в границах от Iст min до Iст max. В частности, минимальные параметры тока через стабилитрон взаимосвязаны с минимальным U на входе и максимальной величиной электротока нагрузки.

Сопротивление балластного резистора устанавливается следующим образом:

Rо=(Uвх min-Uст min)/(Iн max+Iст min)

Максимальные параметры тока через стабилитрон взаимосвязаны с максимальным напряжением на входе и минимальной величиной электротока нагрузки.

ВАХ:

40) Компенсационные стабилизаторы напряжения: схемы, принцип действия.

Компенсационный стабилизатор напряжения является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.

Компенсационные стабилизаторы бывают двух типов: параллельными и последовательными.

Компенсационный стабилизатор напряжения последовательного типа:

Компенсационный стабилизатор напряжения параллельного типа:

Р – регулирующий элемент; И – источник опорного напряжения; ЭС – элемент сравнения; У – усилитель постоянного тока.

Компенсационные стабилизаторы последовательного типа

В стабилизаторах последовательного типа регулирующий элемент включён последовательно с источником входного напряжения Uо и нагрузкой Rн. Если по некоторым причинам напряжение на выходе U1 отклонилось от своего номинального значения, то разность опорного и выходного напряжений изменяется. Это напряжение усиливается и воздействует на регулирующий элемент. При этом сопротивление регулирующего элемента автоматически меняется и напряжение Uо распределится между Р и Rн таким образом, чтобы компенсировать произошедшие изменения напряжения на нагрузке.Регулирующий элемент в компенсационных стабилизаторах напряжения выполняется, как правило, на транзисторах.

В этой схеме транзистор VT1 выполняет функции регулирующего элемента, транзистор VT2 является одновременно сравнивающим и усилительным элементом, а стабилитрон VD1 используется в качестве источника опорного напряжения. Напряжение между базой и эмиттером транзистора VT2 равно разности напряжений Uоп и Uрег. Если по какой-либо причине напряжение на нагрузке возрастает, то увеличивается напряжение Uрег, которое приложено в прямом направлении к эмиттерному переходу транзистора VT2. Вследствие этого возрастут эмиттерный и коллекторный токи данного транзистора. Проходя по сопротивлению R1, коллекторный ток транзистора VT2 создаст на нем падение напряжения, которое по своей полярности является обратным для эмиттерного перехода транзистора VT1. Эмиттерный и коллекторные токи этого транзистора уменьшатся, что приведёт к восстановлению номинального напряжения на нагрузке. Точно так же можно проследить изменения токов при уменьшении напряжения на нагрузке.

Ступенчатую регулировку выходного напряжения можно осуществить, используя опорное напряжение, снимаемое с цепочки последовательно включённых стабилитронов. Плавная регулировка обычно производится с помощью делителя напряжения R3, R4, R5, включённого в выходную цепь стабилизатора.

Компенсационные стабилизаторы параллельного типа

В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений. Далее он усиливается и воздействуя на регулирующий элемент, включённый параллельно нагрузке. Ток регулирующего элемента Iр изменяется, на сопротивлении резистора R1 изменяется падение напряжения, а на напряжение на выходе U1 = Uо – IвхR1 = const остаётся стабильным.

Стабилизаторы параллельного типа имеют невысокий КПД и применяются сравнительно редко, в случае стабилизации повышенных напряжений и токов, а также при переменных нагрузках в отличие от стабилизаторов последовательного типа. Их недостатком является то, что при возможном резком увеличении тока нагрузки (например, при коротком замыкании на выходе) к регулирующему элементу будет прикладываться повышенное напряжение, величина которого может превысить допустимое значение.

1. Основные параметры стабилизатора

СОДЕРЖАНИЕ

1.1. Энергетические параметры стабилизатора

1.2. Параметры стабилизации

2. Параметрический стабилизатор напряжения

2.1. Силовой расчет параметрического стабилизатора

2.2. Параметры стабилизации

3. Компенсационные стабилизаторы напряжения (4.КСН)

3.1. Функциональные схемы КСН

3.2. Компенсационный стабилизатор последовательного типа на транзисторах одинаковой проводимости

3.2.1. Принципиальная схема КСН

3.2.2. Реакция схемы КСН на отклонение выходного напряжения

3.2.3. Силовой расчет КСН

3.2.4. Расчет параметров стабилизации

3.2.5. Модификация схемы КСН последовательного типа на транзисторах одинаковой проводимости

3.3. Компенсационный стабилизатор последовательного типа на транзисторах разной проводимости

3.4. Компенсационный стабилизатор параллельного типа

3.5. Компенсационный стабилизатор напряжения последовательного типа на операционном усилителе

3.6. Импульсный стабилизатор напряжения последовательного типа на операционном усилителе

3.7. Стабилизатор напряжения последовательного типа на микросхеме КР142ЕН1

СТАБИЛИЗАТОРЫ ПОСТОЯННОГО НАПРЯЖЕНИЯ

  1. Основные параметры стабилизатора

Стабилизатором постоянного напряжения называется устройство, которое на своем выходе поддерживает неизменное по величине постоянное напряжение при изменении входного напряжения и нагрузки в заданных пределах.

На рис. 4.1 условно изображен стабилизатор постоянного напряжения в виде функционального блока.

Рис. 1. Представление стабилизатора в виде функционального блока

На вход стабилизатора поступает напряжение U1 и потребляется ток I1. На выходе стабилизатора поддерживается напряжение U2 при токе нагрузки I2. На стабилизатор действует дополнительное возмущение в виде температуры окружающей среды То.

    1. Энергетические параметры стабилизатора:

U1ном – номинальное входное напряжение;

–относительное отклонение входного напряжения;

— абсолютное максимально отклонение входного напряжения;

q1 – коэффициент пульсаций входного напряжения;

I1ном – номинальный входной ток;

U2ном – номинальное выходное напряжение;

I2ном – номинальный выходной ток;

I2мин – минимальный выходной ток;

q2 – коэффициент пульсаций выходного напряжения;

Р2ном – номинальная выходная мощность;

Р1ном – номинальная входная мощность;

–номинальный коэффициент полезного действия.

    1. Параметры стабилизации:

Коэффициент стабилизации стабилизатора

, при I2 = const и То = const; (4.1)

Выходное сопротивление стабилизатора

, приU1 = const и То = const; (4.2)

Коэффициент фильтрации (4.сглаживания)

, при I2 = const и То = const; (4.3)

«Содержание» 1

Температурный коэффициент напряжения (4.ТКН)

, при U1 = const и I2 = const. (4.4)

Зная отклонения возмущающих факторов ,,можно найти отклонение выходного напряжения

. (4.5)

  1. Параметрический стабилизатор напряжения

В параметрическом стабилизаторе напряжения стабилизация осуществляется за счет нелинейной зависимости такого параметра элемента как напряжение от тока. В качестве нелинейного элемента обычно используются стабилитроны, но могут использоваться p-n переходы выпрямительных диодов и транзисторов.

Принципиальная схема параметрического стабилизатора напряжения на стабилитроне приведена на рис. 4.2, а, схема замещения приведена на рис. 4.2,б.

а) б)

Рис. 4. 2. Принципиальная схема а) и схема замещения б) параметрического стабилизатора постоянного напряжения

Рабочий участок вольтамперной характеристики стабилитрона приведен на рис. 4. 3. Рабочий участок лежит в диапазоне от минимального тока стабилизации Icmmin, который определяется окончанием линейного участка ВАХ, до допустимого тока стабилизации Icmдоп, который определяется допустимой рассеиваемой мощностью стабилитрона . Схема замещения стабилитрона для рабочего участка состоит из последовательно включенных источника Э.Д.С. Ест и дифференциального сопротивления rст, соответственно

. (4.6)

Если ток стабилитрона не выходит за пределы рабочего участка, то напряжение стабилитрона Uст и, соответственно, напряжение на нагрузке Uн остаются примерно постоянными. Входной ток стабилизатора связан с током нагрузки и током стабилитрона следующим уравнением

. (4.7)

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *