Site Loader

принцип работы, схемы и т.д.

Стабилизатор напряжения — прибор, который обеспечивает стабильный уровень напряжения, автоматически компенсируя изменения напряжения источника и сопротивления нагрузки. Существует два основных типа стабилизаторов напряжения: параллельные стабилизаторы и последовательные стабилизаторы.

Стабилизация — термин, применяемый для выражения того, насколько хорошо источник электропитания поддерживает постоянное напряжение, подаваемое к нагрузке, независимо от изменений напряжения на входе источника и сопротивления нагрузки. Многие типы электронного оборудования для нормальной работы требуют стабильного уровня напряжения.

Стабилизатор напряженияСтабилизатор напряжения
Обратите внимание на основы электричества и на приборы электроники.

Параллельный стабилизатор напряжения

Стабилизатор, установленный параллельно нагрузке. Параллельный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1) и сопротивления нагрузки (RL). Сопротивление нагрузки установлено параллельно стабилитрону.

Схема параллельного стабилизатора, соединённого с мостовым выпрямителемСхема параллельного стабилизатора, соединённого с мостовым выпрямителем

Стабилитрон предназначен для работы с конкретным напряжением, известным как напряжение туннельного пробоя p-n-перехода. Поскольку стабилитрон — активный элемент, он может менять своё внутреннее сопротивление. Изменения в прохождении тока через стабилитрон не изменяют падение напряжения в нём. Ограничивающее ток сопротивление, установленное в последовательности со стабилитроном, ограничивает величину тока, которое протекает через стабилитрон, и предохраняет его от повреждений. Падение напряжения в стабилитроне фиксируется посредством самой конструкции стабилитрона и остаётся относительно постоянным. Часть напряжения от источника, которая не снижается стабилитроном, снижается ограничивающим сопротивлением. Поскольку стабилитрон установлен параллельно сопротивлению нагрузки, напряжение через RL будет равно падению напряжения на стабилитроне.

Последовательный стабилизатор

Это стабилизатор, установленный последовательно по отношению к нагрузке. Последовательный стабилизатор состоит из стабилитрона (VR1), ограничивающего ток сопротивления (R1), и сопротивления нагрузки (RL).

Стабилитрон и ограничивающее ток сопротивление соединены последовательно, чтобы образовался делитель напряжения. База транзистора подсоединена к делителю напряжения. Контур транзистора «эмиттер-коллектор» соединён последовательно с сопротивлением нагрузки.

Схема последовательного стабилизатора, соединённого с мостовым выпрямителемСхема последовательного стабилизатора, соединённого с мостовым выпрямителем

Поскольку транзистор в последовательном стабилизаторе напряжение, воздействующее на базу транзистора, равно падению напряжения в стабилитроне. Этот потенциал положителен относительно эмиттера транзистора. Так как стабилитрон поддерживает падение напряжения на постоянном уровне, потенциал, воздействующий на базу транзистора, будет оставаться постоянным.

Последовательный стабилизатор поддерживает постоянный уровень напряжения, подаваемого на нагрузку, изменяя величину падения напряжения в транзисторе. Возрастание тока через нагрузку может быть вызвано либо повышением напряжения источника питания, либо снижением сопротивления нагрузки. Когда ток возрастает, возрастает также и падение напряжения на нагрузке. В результате, напряжение, приложенное к эмиттеру транзистора, возрастает, делая его более положительным. Это означает, что разность электрических потенциалов между эмиттером и базой становится меньше, поэтому возрастает внутреннее сопротивление транзистора.

Простой мощный параллельный стабилизатор на транзисторах — Меандр — занимательная электроника

В предлагаемой статье описываются принципы работы параллельного стабилизатора, и рассматривается возможность его применения для стабилизации питания мощных высококачественных усилителей НЧ. Приведена также схема полного источника питания с параллельным стабилизатором.
Среди радиолюбителей, а также в промышленных аудиоустройствах высокого качества широко используются параллельные стабилизаторы. В этих устройствах стабилизирующий элемент подключается параллельно нагрузке, что хорошо отражается на таком параметре стабилизатора, как его быстродействие. Фактически быстродействие стабилизатора определяется быстродействием стабилизирующего элемента. Также к достоинствам параллельных стабилизаторов стоит отнести тот факт, что независимо от тока, потребляемого от стабилизатора, ток, потребляемый им самим от источника питания, остается неизменным. Этот факт положительно отражается на уровне излучаемых БП в целом помех (за счет того, что девиации тока потребления не протекают через трансформатор и выпрямительный мост), хотя и служит причиной их низкого КПД.
Рассмотрим вышеизложенное на примере простейшего параллельного стабилизатора – параметрическом стабилизаторе на стабилитроне (рис.1.)

Рис.1. Параметрический стабилизатор

Резистор R0 задает суммарный ток, который будет течь через стабилитрон и подключенную, параллельно ему нагрузку. Легко видеть, что при изменении тока нагрузки, ток через резистор R0 останется постоянным, изменится лишь ток, текущий через стабилитрон D1. Так будет происходить, пока будет выполняться условие (1):
IН<IR0-Iст.мин. (1)
где IН — ток нагрузки,
IR0 — ток через R0,
Iст.мин. – минимальный ток стабилизации стабилитрона D1

 Быстродействие данного стабилизатора будет определяться в основном скоростью изменением величины барьерной емкости стабилитрона [1], а также временем заряда-разряда конденсатора  С1.
Однако у подобных стабилизаторов есть и недостатки – в частности для получения более-менее приличного коэффициента стабилизации (>100), через стабилитрон должен течь ток, соизмеримый с током нагрузки. Это обстоятельство, с учетом того, что подавляющее количество стабилитронов рассчитано на ток до 100 мА, затрудняет использование параметрических стабилизаторов в мощных устройствах.
Чтобы обойти это препятствие, параллельно стабилизатору ставят мощный активный элемент, например MOSFET транзистор, как показано на рисунке 2.


Рис.2. Мощный параллельный стабилизатор.

В этой схеме стабилитрон лишь задает стабильное напряжение на затворе транзистора Q1, через цепь сток-исток которого и течет основной ток. Стабилитрон VD3 предохраняет  Q1 от пробоя ввиду высоковольтности данной реализации. Подробнее о работе этой схемы можно прочитать в [2].
Схема, приведенная на рисунке один способна работать с большими токами (ограничивается предельными характеристиками примененного мосфета), но выделяет большую мощность и имеет низкий КПД(менее 30% – если падение на резисторе R1 сравнительно велико, ток через мосфет сравним с током через нагрузку, величины входного и выходного напряжений не превышают 100 В), что в мощных приложениях является серьезным недостатком.
Но ток текущий через мосфет, можно заметно снизить без ущерба для коэффициента стабилизации, если устранить  источник нестабильности в данной схеме. Остановимся на нем подробнее.
При изменении напряжения на входе стабилизатора изменяется ток, текущий через резистор R1, это изменение можно снизить увеличением номинала этого резистора, но это, в свою очередь потребует увеличение падения напряжения на этом резисторе, а следовательно снизит КПД. Оптимальным решением, на мой взгляд является замена этого резистора на источник тока, на котором падение напряжение можно будет установить равное сумме девиации входного напряжения+2-3 вольта для нормально работы активного элемента источника тока.
С учетом этих дополнений была разработана схема источника питания с параллельным стабилизатором, представленная на рисунке 3.


Рис.3. Принципиальная схема БП с параллельным стабилизатором

Функцию токозадающего резистора здесь выполняет источник тока на транзисторе Q1. Для снижения нестабильности выдаваемого им тока, он запитан от другого источника тока меньшей мощности, который в свою очередь запитан через RCR фильтр для снижения пульсаций. Резистором R7 можно грубо регулировать рабочий ток стабилизатора, резистором R4 плавно. Резистором R8 можно подстроить выходное напряжение стабилизатора в небольших пределах. R6 представляет собой нагрузку БП, потребляющую около 600 мА.(без нагрузки БП не подключать!). Транзисторы Q1 и M1 можно установить на общем радиаторе площадью не менее 500 кв.см.

Основные технические характеристики стабилизатора (с входным и выходным RC-фильтрами):

  1. Выходное напряжение = 12В.
  2. Входное напряжение > 18В.
  3. Ток нагрузки – 600 мА
  4. Потребляемый ток – 750 мА (при номиналах, указанных на схеме, изменяется подбором резистора R2,R7,R4 – в порядке величины влияния)
  5. Уровень пульсаций на выходе — -112дБ
  6. КПД=57%

Легко видеть, что представленная схема обладает достаточно высокими параметрами в части КПД и Кст, сравнимыми с характеристиками компенсационных последовательных стабилизаторов, при этом практически полностью сохраняя достоинства параллельных стабилизаторов.
При этом схема достаточно проста, не требует дефицитных деталей, и может быть сконструирована даже начинающими радиолюбителями.
При входном напряжении до 50В в схеме можно применить – Q1-BD244C, Q2-BC546А, M1-IRF630. В качестве стабилитрона D7 можно применить любой на напряжение 8,2 В, диоды D1-D4 например SF54, диоды D5,D6,D8,D9 – например 1N4148.

Автор: Баушев Олег

Компенсационные стабилизаторы напряжения. | HomeElectronics

Доброго всем времени суток! Сегодняшний мой пост продолжает рассказ о линейных стабилизаторах напряжения. Расскажу вам о компенсационных стабилизаторах напряжения (или сокращённо КСН).

Компенсационный стабилизатор напряжения, по сути, является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Компенсационные стабилизаторы бывают двух типов: параллельными и последовательными. Структурные схемы компенсационных стабилизаторов показаны ниже.


Последовательный КСН.Функциональная схемаПоследовательный КСН.Функциональная схема
Компенсационный стабилизатор напряжения последовательного типа 
Параллельный КСН.Функциональная схемаПараллельный КСН.Функциональная схема
Компенсационный стабилизатор напряжения параллельного типа

Основными элементами всех компенсационных стабилизаторов напряжения являются регулирующий элемент Р; источник опорного (эталонного) напряжения И; элемент сравнения ЭС; усилитель постоянного тока У.

Компенсационный стабилизатор последовательного типа

В стабилизаторах последовательного типа регулирующий элемент включён последовательно с источником входного напряжения U0 и нагрузкой RH. Если по некоторым причинам напряжение на выходе U1 отклонилось от своего номинального значения, то разность опорного и выходного напряжений изменяется. Это напряжение усиливается и воздействует на регулирующий элемент. При этом сопротивление регулирующего элемента автоматически меняется и напряжение U0 распределится между Р и RH таким образом, чтобы компенсировать произошедшие изменения напряжения на нагрузке.

Регулирующий элемент в компенсационных стабилизаторах напряжения выполняется, как правило, на транзисторах. Выбирая которые исходят из значений коэффициента передачи тока h21e, напряжения насыщения между коллектором и эмиттером UКЭнас.

Схемы элементов сравнения и усилители постоянного тока очень часто совмещают и выполняются на обычных усилителях, дифференциальных усилителях или операционных усилителях.

Рассмотрим схему компенсационного стабилизатора напряжения последовательного типа.


Компенсационный стабилизатор напряжения с последовательно включенным транзисторомКомпенсационный стабилизатор напряжения с последовательно включенным транзистором
Схема простого компенсационного стабилизатора напряжения последовательного типа

В этой схеме транзистор VT1 выполняет функции регулирующего элемента, транзистор VT2 является одновременно сравнивающим и усилительным элементом, а стабилитрон VD1 используется в качестве источника опорного напряжения. Напряжение между базой и эмиттером транзистора VT2 равно разности напряжений UОП и UРЕГ. Если по какой-либо причине напряжение на нагрузке возрастает, то увеличивается напряжение UРЕГ, которое приложено в прямом направлении к эмиттерному переходу транзистора VT2. Вследствие этого возрастут эмиттерный и коллекторный токи данного транзистора. Проходя по сопротивлению R1, коллекторный ток транзистора VT2 создаст на нем падение напряжения, которое по своей полярности является обратным для эмиттерного перехода транзистора VT1. Эмиттерный и коллекторные токи этого транзистора уменьшатся, что приведёт к восстановлению номинального напряжения на нагрузке. Точно так же можно проследить изменения токов при уменьшении напряжения на нагрузке.

Ступенчатую регулировку выходного напряжения можно осуществить, используя опорное напряжение, снимаемое с цепочки последовательно включённых стабилитронов. Плавная регулировка обычно производится с помощью делителя напряжения R3, R4, R5, включённого в выходную цепь стабилизатора.

Если пренебречь падением напряжения на эмиттерном переходе транзистора VT2, то выходное напряжение стабилизатора


Компенсационный стабилизатор напряжения с последовательно включенным транзисторомКомпенсационный стабилизатор напряжения с последовательно включенным транзистором

где R4’ и R4’’ соответственно верхняя и нижняя по схеме часть резистора R4.

Улучшение параметров стабилизатора

Схему простого компенсационного стабилизатора напряжения можно улучшить, заменив резистор R1, который осуществляет питание транзистора VT2, на схему стабилизатора тока. Такой способ питания позволяет существенно повысить стабильность работы усилителя постоянного тока.

В тех случаях, когда требуется высокая температурная стабильность Компенсационного стабилизатора напряжения и малый временной дрейф (особенно при низких выходных напряжениях), применяют схемы дифференциальных усилителей. Для повышения качества выходного напряжения в усилителях постоянного тока стабилизатора применяются операционные усилители, которые обладают большим коэффициентом усиления и малым температурным уходом. Питание операционного усилителя может осуществляться непосредственно от выходного напряжения стабилизатора.


Стабилизатор токаСтабилизатор тока
Схема стабилизатора тока. Подключение выводов: 1 – к коллектору VT1, вывод 2 – к коллектору VT. 
Дифференциальный усилительДифференциальный усилитель
Схема дифференциального усилителя. Подключение выводов: 1 – к эмиттеру VT1, 2 – к базе VT1, 3 – к катоду стабилитрона VD1, 4 – к аноду стабилитрона VD1, 5 – к делителю напряжения.

Расчёт последовательного стабилизатора

Пример расчёта простого компенсационного стабилизатора напряжения последовательного типа

Начальные условия: входное напряжение U0 = 24 В, нестабильность входного напряжения ΔU0 = ± 2 В, максимальный ток нагрузки IНmax = 1,5 А, коэффициент стабилизации КСТ ≥ 103. Предусмотреть плавную регулировку выходного напряжения в пределах от UНmin = 12 В до UНmax = 16 В.

1. Определим максимальное напряжение коллектор – эмиттер регулирующего транзистора VT1:

Дифференциальный усилительДифференциальный усилитель

2. Определим максимальную мощность, рассеиваемую на транзисторе VT1:

Дифференциальный усилительДифференциальный усилитель

3. По данным расчёта выбираем транзистор VT1, который удовлетворяет условиям:

Дифференциальный усилительДифференциальный усилитель

Этим условиям удовлетворяет транзистор типа П216В с параметрами: UCEmax = 35 В, IC max = 7,5 А, PC max = 24 Вт, h21e = 30.

4. Для создания опорного напряжения UОП выберем стабилитрон типа Д814А с параметрами UСТ = 8 В, IСТ = 20 мА, rDIF = 6 Ом.

5. Определим максимальное напряжение коллектор – эмиттер усилительного транзистора VT2:

Дифференциальный усилительДифференциальный усилитель

6. Исходя из условия UCE2max < UCE max выбираем в качестве усилительного элемента транзистор типа П416 с h21e = 90 … 250.

7. Полагая, что IK2 ≈ IЕ2 = 10 мА < IC max, найдём сопротивление резистора R2:


Дифференциальный усилительДифференциальный усилитель

8. Учитывая, что IR1 = IC(VT2) + IB(VT1), IB(VT1) = IHmax / (1 + h21e(VT1)) = 1,5/(1 + 30) ≈ 48 mA, определим сопротивление R1:

Дифференциальный усилительДифференциальный усилитель

9. Определим сопротивления резисторов R3, R4, R5. Условимся считать, что если движок потенциометра R4 стоит в крайнем верхнем положении, то выходное напряжение стабилизатора имеет заданное по условию минимальное значение UНmin. В крайнем нижнем положении движка выходное напряжение максимально. Тогда можно записать уравнения

Дифференциальный усилительДифференциальный усилитель

Полагая

Дифференциальный усилительДифференциальный усилитель

получим

Дифференциальный усилительДифференциальный усилитель

Компенсационный стабилизатор параллельного типа

В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений. Далее он усиливается и воздействуя на регулирующий элемент, включённый параллельно нагрузке. Ток регулирующего элемента IP изменяется, на сопротивлении резистора R1 изменяется падение напряжения, а на напряжение на выходе U1 = U0 – IBXR1 = const остаётся стабильным.

Типовая схема компенсационного стабилизатора напряжения параллельного типа приведена ниже. В качестве гасящего устройства в этих стабилизаторах применяются резисторы (R1 на схеме) или при высоких требованиях с стабильности выходного напряжения стабилизатора применяется стабилизатор тока описанный выше, имеющий большое внутреннее сопротивление.


Компенсационный стабилизатор напряжения с параллельно подключённым транзисторомКомпенсационный стабилизатор напряжения с параллельно подключённым транзистором
Схема простого компенсационного стабилизатора напряжения параллельного типа

В основном расчёт элементов компенсационного стабилизатора параллельного типа производится аналогично стабилизатору последовательного типа.

Стабилизаторы параллельного типа имеют невысокий КПД и применяются сравнительно редко, в случае стабилизации повышенных напряжений и токов, а также при переменных нагрузках в отличие от стабилизаторов последовательного типа. Их недостатком является то, что при возможном резком увеличении тока нагрузки (например, при коротком замыкании на выходе) к регулирующему элементу будет прикладываться повышенное напряжение, величина которого может превысить допустимое значение. Это обстоятельство необходимо учитывать при эксплуатации стабилизатора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Простой параллельный стабилизатор на транзисторе — Страница 2 — Источники питания

Извините меня конечно за безграмотность, но не могли бы Вы(вы) пояснить принцип работы данной схемы(и этой конкретной и параллельного стабилизатора в целом). КУ!!

 

Олег, обычный стабилизатор себе представляешь? На зенере?

Резистор и зенер. вот это и есть «параллельный стабилизатор».

Его входной ток равен разности напряжения на входе и на выходе, деленой на сопротивление резистора.

Собственно, этот ток в теории равен максимальному выходному току (в нагрезке) этого стабилизатора.

На практике — меьнше на величину минимально необходимого дляработы зенера тока.

 

Если нагрузки нет — весь ток идет через стабилитрон. Собственно, если стаб расчитан на достаточно большой рабочий ток, то без нагрузки ток через зенер может оказаться слишком большой, а его произведение на напряжение — этот зенер перегреет.

Теперь представь себе, что вместо зенера стоит нечто на лампе/транзисторе, обладающее такой же вольт-амперной характеристикой. Т.е. «мощный зенер». Вот это и будет то, что представлено в этой статье.

 

И еще непонятен такой момент как на выходе может быть 430В, если в параллельной ему цепи стоят стабилитроны на 430 В, 12 В и еще резистор.:ku)

 

Стабилитрон на 12в — это всего лишь защита гейта мосфета от перегрузки во время переходных процессов.

 

Зенер на 430в — это датчик выходного напряжения. как только оно превысит 430в — появляется ток, растет напряжение на резисторе R2, включенном последовательно с зенероом, которое откроет полевик.

Который «посадит» напряжение (за счет падения на R1).

Т.е. напряжение на гейте мосфета будет все время несколько вольт, а напряжение на выходе — 430+эти несколько вольт.

Параллельный стабилизатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Параллельный стабилизатор

Cтраница 1

Параллельный стабилизатор, включающий насыщенный трансформатор и емкость, основан на введении в цепь нагрузки генератора реактивного тока соответствующего знака. При номинальном напряжении в цепи стабилизатора наступает резонанс и он не влияет на напряжение генератора. При снижении напряжения стабилизатор нагружает генератор емкостным током, реакция якоря которого намагничивает генератор и увеличивает напряжение. При повышении напряжения ток индуктивный, размагничивающий, увеличивает размагничивающее действие реакции якоря и напряжение стабилизируется вновь.  [1]

Параллельный стабилизатор, реагируя на отклонения напряжения от номинальной величины, автоматически компенсирует температурные изменения напряжения генератора, что является достоинством данного типа стабилизатора.  [2]

Параллельные стабилизаторы напряжения могут быть очень просты, но они обычно менее эффективны, чем все остальные стабилизирующие цепи. Их использование объясняется низкой стоимостью и хорошей защитой от перегрузки и короткого замыкания. Эти качества очень ценны при экспериментальной работе, когда относительно часто происходят случайные короткие замыкания. В то же время в плохо защищенном последовательном стабилизаторе в результате короткого замыкания, длящегося доли секунды, может выйти из строя любой транзистор.  [3]

Поскольку параллельный стабилизатор представляет собой регулируемый делитель напряжения, то необходимо измерить напряжения на выходе и на балластном резисторе Rs, чтобы проверить, лежат ли их значения в допустимых пределах.  [4]

Поэтому

параллельные стабилизаторы применяются в основном, когда требуются небольшие мощности.  [5]

Регулирующий элемент параллельного стабилизатора должен выдерживать полное выходное напряжение, однако он не должен проводить весь ток нагрузки, если только не требуется стабилизация в диапазоне нагрузок от холостого хода до короткого замыкания. Поскольку включенный в схему параллельного стабилизатора последовательный гасящий резистор рассеивает большую мощность, коэффициент полезного действия такого стабилизатора мал.  [6]

Важным достоинством параллельного стабилизатора является отсутствие перегрузок по току в регулирующем элементе при перегрузках или даже коротких замыканиях на выходе.  [7]

Характер сопротивления параллельного стабилизатора не остается постоянным. Это является одним из недостатков рассматриваемого метода стабилизации. Недостатком параллельного стабилизатора является также то, что вследствие нелинейности сопротивления стабилизатора при значительной величине индуктивного тока может искажаться форма кривой напряжения генератора.  [8]

В схеме параллельного стабилизатора мощный транзистор управляется программируемым стабилитроном. Данную схему рекомендуется использовать как блок защиты от перенапряжения. Значения в скобках приведены в качестве примера.  [9]

Основными достоинствами параллельных стабилизаторов являют — — ся неизменность входного тока при изменяющемся токе нагрузки и постоянном входном напряжении и нечувствительность к коротким замыканиям на выходе.  [11]

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *