Site Loader

Содержание

Чем отличается синхронный двигатель от асинхронного для чайников кратко, простыми словами, сравнение по конструкции и принципу действия

Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).

Отличие – кратко простыми словами

Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вами электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.

В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.

У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.

Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.

У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.

Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Читайте также:

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Плюсы:

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.

Минусы:

  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Асинхронный двигатель (АД)

Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.

Конструктивные особенности

Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.

Рассмотрим, из чего состоит асинхронный двигатель:

  • сердечник;
  • вентилятор с корпусом;
  • подшипник;
  • коробка с клеммами;
  • тройная обмотка;
  • контактные кольца.

С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.

Читайте также:

Принцип действия

В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.

Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.

Простыми словами, принцип действия можно разложить на несколько составляющих:

  1. При подаче напряжения в статоре создается магнитное поле.
  2. В роторе появляется ток, взаимодействующий с ЭДС статора.
  3. Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.

Сфера применения

Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.

Они часто применяются в бытовой аппаратуре:

  • стиральных машинках;
  • вентиляторе;
  • вытяжке;
  • бетономешалках;
  • газонокосилках и т. д.

Также применяются они и в производстве, где подключаются к 3-фазной сети.

К этой категории относятся следующие механизмы:

  • компрессоры;
  • вентиляция;
  • насосы;
  • задвижки автоматического типа;
  • краны и лебедки;
  • станки для обработки дерева и т. д.

Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.

Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.

Трехфазный АИР 315S2 660В 160кВт 3000об/мин

Преимущества и недостатки

Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.

Преимущества:

  1. Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
  2. Более низкая стоимость, по сравнению с синхронным аналогом.
  3. Возможность прямого пуска.
  4. Низкое потребление энергии, что делает двигатель более экономичным.
  5. Высокая степень надежности, благодаря упрощенной конструкции.
  6. Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
  7. Возможность применения при подключении к одной фазе.
  8. Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
  9. Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.

Недостатки:

  1. Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
  2. Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
  3. Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
  4. Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
  5. Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
  6. Трудности регулирования устройств, которые приводятся в движение «синхронниками».
  7. Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
  8. При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
  9. Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Про реактивную мощность

Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.

Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.

Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.

Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.

Читайте также:

Какой лучше

При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.

В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.

Синхронный, асинхронный – какая разница?! — Электродвигатели для складского и подъемно-транспортного оборудования – Склад и техника

И. Станкевич

Обычно о том, какие электродвигатели стоят на том или ином оборудовании, его владельцы особенно не задумываются, но только до тех пор, пока они не выходят из строя. А уже первые «болезни» этих «скромных тружеников» вызывают коллапс необъятных потоков грузов. На склады России поступает много иностранного подъемно-транспортного оборудования, и читателям будет интересно узнать, какие существуют типы и исполнения электродвигателей, работающих в этих машинах и механизмах.

Электродвигатели – непременная составляющая подъемно-транспортного и автоматизированного оборудования: конвейеров, автоматизированных складов, штабелеров, упаковочных автоматов и иной складской техники. Обычно эти агрегаты подбирают для своего оборудования сами изготовители, но все чаще бывает так, что покупатели и владельцы машин сами могут выбирать электрические силовые агрегаты для нужд своего предприятия в зависимости, например, от специфики условий работы отдельных его участков. В некоторых случаях компании комплектуют электродвигателями одного типа технику на всех своих складах и предприятиях, чтобы за счет унификации процедур и запчастей сократить расходы на техобслуживание. Иногда электродвигатели выбирают по соображениям невысокой стоимости.

В складском и подъемно-транспортном оборудовании наиболее широко применяют электродвигатели пяти типов:

  • электродвигатели постоянного тока с возбуждением от постоянного магнита;
  • асинхронные электродвигатели переменного тока. Их применяют в оборудовании непрерывного цикла, например, в обычных конвейерах;
  • серводвигатели (сервомоторы). Они работают в машинах, которые должны совершать точные движения, перемещать и позиционировать грузы на строго определенные места: в штабелерах, автоматических складских системах;
  • линейные асинхронные двигатели. Используются в оборудовании, для которого важна прежде всего высокая скорость работы, например, в сортировочных машинах;
  • мотор-ролики (или мотор-барабаны), т. е. ведущие герметичные ролики, внутри которых заключены небольшие электродвигатели и редукторы. Используются для привода конвейеров, работающих периодически. Раньше складское подъемно-транспортное оборудование оснащали электродвигателями постоянного тока с возбуждением от постоянных магнитов. В настоящее время машины и автоматы комплектуют асинхронными электродвигателями переменного тока, применение которых постоянно расширяется.

В чем преимущества асинхронных электродвигателей?

Асинхронные двигатели переменного тока проще и дешевле электродвигателей других типов, поэтому в настоящее время их применяют все чаще. При выборе асинхронного двигателя следует учитывать два фактора – к.п.д. преобразования энергии и тип исполнения агрегата.

К.п.д. В ряде стран законодательством установлена минимальная величина к.п.д. для электродвигателей приводов, однако многие производители изготавливают электродвигатели по более жестким стандартам Национальной ассоциации производителей электрооборудования США (NEMA). Если, выбирая электродвигатель, вы видите, что он соответствует стандарту NEMA Premium, то это гарантирует его высокий к.п.д., надежность и экономичность.

У электродвигателей обычного качества к.п.д. равен 75…85%, у агрегатов высшего качества – 85…95%. Как считают специалисты, агрегаты с высоким к.п.д. стоят намного дороже обычных, но если электродвигатель будет работать непрерывно, он окупится быстро. Кроме того, благодаря экономии энергии улучшается экологическая обстановка, на которую все больше обращают внимание в цивилизованных государствах.

Тип исполнения – важная характеристика при выборе электродвигателя. Существует пять основных исполнений асинхронных электродвигателей:

• ODP (Open drip proof) – «каплезащищенный электродвигатель открытого исполнения». Этот тип электродвигателей наиболее широко используют в промышленности. Они не оборудованы вентилятором и имеют проемы в корпусе, через которые внутрь может проникнуть грязь и влага, поэтому использовать такие электродвигатели рекомендуется только в закрытых помещениях;

• TEFC (Totally Enclosed Fan Cooled) – «закрытого типа с вентиляторным охлаждением». Эти двигатели оборудованы вентилятором, создающим поток воздуха через их корпус. Вентилятор герметизирован, и инородные частицы и жидкости не могут проникнуть в электродвигатель извне. Электродвигатели в исполнении TEFC часто применяют в конвейерах;

• TENV (Totally Enclosed Non-Ventilated Motor) – «закрытого типа без охлаждения». Эти электродвигатели также используются в подъемно-транспортном оборудовании складов, если есть внешний источник, создающий воздушный поток для охлаждения двигателя;

• TEBC (Totally Enclosed Blower-Cooled Motor) – «охлаждаемый обдувом». Эти двигатели комплектуют собственным вентилятором, но расположенным и управляемым снаружи. Электродвигатели типа TEBC обычно применяют в оборудовании высокой мощности: в подъемных кранах, лебедках и т. п. или в оборудовании, работающем с переменной скоростью, где электродвигатель иногда может работать с частотой вращения, близкой к нулю;

• EPFC (Explosion Proof Fan Cooled Motor) – «во взрывозащищенном исполнении с вентиляторным

охлаждением». Используются в условиях высокого содержания в воздухе горючих и взрывоопасных элементов, например, паров бензина, других нефтепродуктов, аммиака, угольной пыли и проч.

Возможности применения любого асинхронного электродвигателя расширяются благодаря использованию электропривода с частотным регулированием (VFD). Асинхронные электродвигатели традиционной конструкции работают с постоянной частотой. Электропривод с частотным регулированием позволяет менять скорость двигателя и всей машины. В складском подъемно-транспортном оборудовании электроприводы с частотным регулированием позволяют максимально увеличивать скорость в «пиковые» периоды работы и снижать в другое время, благодаря чему экономится энергия и средства.

Серводвигатели

Эти двигатели занимают свою особую нишу – они работают в оборудовании, где требуется точное регулирование положения и скорости движений. Эти устройства специально разработаны как электродвигатели с якорем малого диаметра, но развивающие высокий крутящий момент. Чем меньше якорь, тем меньше инерция и, следовательно, электродвигатель быстрее разгоняется, и машина работает быстрее.

Серводвигатели оснащают также системами управления по обратной связи: по сигналам тахометра, датчиков линейных перемещений и аналого-цифрового преобразователя (АЦП). Благодаря управлению по сигналам от этих приборов увеличивается точность движений и регулирования скорости машин. Серводвигатели применяют в оборудовании и системах, где требуется высокая точность движений: в роботизированном оборудовании, штабелерах и подобных складских машинах. Электродвигатели этого типа применяют также в оборудовании и системах, где необходима большая точность синхронизации – в машинах, выполняющих установку (позиционирование) грузов на стеллажах автоматизированных складов.

Линейные асинхронные электродвигатели

Линейные асинхронные электродвигатели – новинка в отрасли складского подъемно-транспортного оборудования. Они позволяют значительно увеличить скорость движений машин при замечательной их повторяемости и точности. Линейный асинхронный двигатель генерирует магнитное поле, которое перемещает ползун (пластину) в двигателе. Обычно ползун прикрепляется к объекту, который должен передвигаться магнитным полем: например, в сортировочных машинах ползун электродвигателя соединен с подвижным лотком распределителя.

В такой конструкции нет деталей, которые бы изнашивались. Линейные асинхронные электродвигатели обеспечивают точность движений до 0,0335 мм на 1 м перемещения, т. е. позволяют выполнять прецизионные работы. Насколько уникальна такая способность устройств, иллюстрирует тот факт, что толщина человеческого волоса составляет около 0,09 мм, т. е. в три раза больше! Скорость работы линейных асинхронных электродвигателей очень высокая – до 5 м/с, а следовательно, длительность рабочих циклов у них небольшая и производительность на высочайшем уровне. Скорость перемещения ползуна на разных отрезках в течение одного цикла можно менять, а можно задавать пошаговое перемещение – это очень полезное качество для некоторых автоматических машин.

Мотор-ролики

Линейные асинхронные электродвигатели – не единственная инновация в области электрических силовых агрегатов. В последнее время в конвейерах все шире стали применять мотор-ролики (MDR – Motor Driven Roller). Еще два года назад на выставке оборудования по транспортировке материалов и логистике ProMat в Чикаго лишь несколько фирм представили конвейеры с приводом от мотор-роликов, зато в экспозиции в январе 2007 г. в ассортименте почти каждой фирмы, предлагающей конвейеры, были модели с мотор-роликами.

В Соединенных Штатах конвейеры с приводом от мотор-роликов впервые использовала почтовая служба. Конструкция их проста. Внутри ведущего ролика устанавливается миниатюрный электродвигатель постоянного тока, работающий от напряжения 24 В, и редуктор. В обычных конвейерах один мотор-ролик приходится на 9 обычных роликов.

По словам специалистов, если конвейер перемещает грузы непрерывным потоком, привод от наружных электродвигателей более экономичен. Конвейеры с мотор-роликами рентабельны и используются в основном в тех случаях, когда надо накапливать поступающие грузы на конвейере, а затем перемещать их дальше либо когда требуется разделять поток грузов на группы и перемещать грузы группами.

У мотор-роликов целый «букет» преимуществ. Уровень шума от конвейеров, оснащенных мотор-роликами, значительно ниже, чем от обычных конвейеров. Они позволяют экономить энергию: не только благодаря более высокому к.п.д. мотор-роликов, но и потому, что конвейер работает только тогда, когда надо. Еще одно преимущество – более высокий уровень систем управления мотор-роликами. В настоящее время выпускаются конвейеры с мотор-роликами, развивающие скорость до 90 м/мин, а если поток грузов уменьшился, можно снизить скорость до 30 м/мин, уменьшив таким образом износ деталей конвейера и энергопотребление. Наконец, мотор-ролик практически не нуждается в техобслуживании. Поскольку он работает лишь тогда, когда надо, его ресурс продляется на годы. Когда электродвигатель выйдет из строя, мотор-ролик заменяют другим практически без остановки конвейера.

✔ Асинхронные и синхронные электродвигатели

Главным назначением данных агрегатов является преобразование электрической энергии в механическую, что позволяет задействовать массу различных механизмов и устройств.

Чтобы понять, чем отличается синхронный электродвигатель от асинхронного аналога, нужно иметь определенное представление о работе агрегатов. В основе лежит создание индукции магнитных полюсов посредством вращающегося ротора и неподвижного статора. Датчик положения ротора посылает все необходимые данные для регуляции в соответствии с фазами напряжения.

Главное различие асинхронных и синхронных электродвигателей заключается в устройстве ротора, который представляет собой постоянный или электрический магнит, а если быть точнее — в принципе создания полюсов:

  • при помощи индукции;
  • при помощи катушек или постоянных магнитов.

Преимущества и недостатки синхронных и асинхронных электродвигателей переменного тока:

  • Синхронные модели — высокая надёжность и КПД, стабильная частота вращения, не зависящая от нагрузки, простота обслуживания. Минусом можно считать некоторую сложность запуска двигателя, а также необходимость питания обмотки постоянным током. В моделях некоторых производителей часто выходят из строя коллекторы и щётки.
  • Асинхронные аналоги — низкое потребление энергии, простота конструкции, эксплуатация в бытовых приборах с использованием однофазного подключения. Главный минус заключается в больших тепловых потерях и сложности регулировки.

Конструктивные особенности

Стоит обратить внимание на конструктивные отличия синхронного электродвигателя и асинхронного двигателя.

В состав синхронной конструкции, которая используется и как двигатель, и как генератор, входят следующие детали:

  • подшипниковый узел;
  • сердечник;
  • магниты, индуктор и якорь с обмоткой;
  • втулка;
  • стальная тарелка.

Стоит добавить, что некоторые новые модели обладают короткозамкнутой пусковой обмоткой, которая позволяет запускать агрегат в асинхронном режиме.

Асинхронные аналоги бывают двух типов (с короткозамкнутым и фазным ротором) и состоят из следующих деталей:

  • сердечника и магнитопровода;
  • вентилятора с кожухом;
  • подшипника;
  • клеммной коробки и тройной обмотки;
  • контактных колец.

Данная разновидность обладает большей популярностью, поскольку позволяет регулировать частоту вращения вала с помощью реостатов.

Чем асинхронные электродвигатели отличаются от синхронных

Самые распространённые электродвигатели — трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.

Принцип действия и устройство электромашин разных типов


Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

 

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.


Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

Номинальная величи

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.


Принцип действия синхронных электродвигателей


Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.

Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.


Запуск электродвигателей

Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.


Пуск асинхронных двигателей большой мощности

Для запуска таких машин используются разные способы:

  • Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
  • В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
  • В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
  • При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.

Пуск синхронных электромашин

В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.


  • С помощью дополнительного асинхронного двигателя. Так запускаются машины с постоянными магнитами в роторе. При достижении скорости, близкой к синхронной, асинхронхронник отключается и подаётся напряжение в статор синхронного двигателя.
  • Асинхронный пуск. В роторе, кроме электромагнита, находится «беличья клетка». С её помощью аппарат разгоняется, после чего в обмотку подаётся постоянное напряжение, и двигатель начинает работать в качестве синхронного.
  • Обмотки ротора закорачиваются напрямую или через добавочное сопротивление. После разгона в них подаётся постоянное напряжение.
  • При помощи ТПЧ (тиристорного преобразователя частоты) частота питающего напряжения и скорость вращения плавно поднимается до номинальной. Этот способ применяется в механизмах с регулировкой скорости.

Особенности и применение разных  видов электродвигателей

У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.


Достоинства и использование асинхронных электродвигателей

Такие машины имеют достоинства перед синхронными аппаратами:

  • простота конструкции и низкая цена; аппараты с фазным ротором позволяют регулировать скорость вращения и осуществлять плавный пуск без использования преобразователей частоты;
  • большое разнообразие мощностей — от нескольких ватт до десятков киловатт.

Кроме достоинств есть недостатки:

  • падение скорости вращения при росте нагрузки;
  • более низкий КПД и большие габариты, чем у синхронных аппаратов той же мощности;
  • кроме активной, такие аппараты потребляют реактивную (индуктивную) мощность, что ведёт к необходимости устанавливать компенсаторы или дополнительно оплачивать реактивную электроэнергию.

Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.


Применение синхронных машин


  • Регулировка путём изменения тока возбуждения cos φ. Это позволяет уменьшить ток потребления, габариты и сечение подводящего кабеля, а также увеличить КПД. Кроме того, такие аппараты используются в качестве компенсаторов реактивной мощности.
  • Менее чувствительны к колебаниям напряжения и обладают большей перегрузочной способностью, особенно к ударным нагрузкам. Способность к превышению мощности повышается путём перевозбуждения обмоток ротора. Благодаря этому такие двигатели используются в экскаваторах, гильотинных ножницах и других подобных механизмах.
  • Частота вращения не меняется при изменения нагрузки. Поэтому синхронные машины применяются в прецизионных станках в металлургии, машиностроении и деревообатывающей промышленности.

Разница асинхронного и синхронного двигателя

Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).

Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.

Различия в работе и стоимости

Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези — пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.

Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.

У синхронных моделей при малых мощностях они представляют собой постоянные магниты.

Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.

 

Агрегаты используются на практике и как генераторы и как двигатели.

 

Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.

По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.

Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.

 

Основные достоинства и недостатки

  1. Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
  2. Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
  3. Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
  4. Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.

Какой агрегат лучше

В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.

Достоинством синхронной модели является то, что можно легко установить высокий коэффициент мощности. Поэтому модель является гораздо более эффективной, но по цене она будет соответственно дороже. Машины применяются в системах с требуемой мощностью 100 кВт и более.

Синхронный или асинхронный. Как выбрать двигатель? Отличие синхронного двигателя от асинхронного

Асинхронные двигатели — это двигатели, в процессе работы которых под нагрузкой наблюдается явление скольжения, то есть «отставание» вращения ротора от вращения магнитного поля статора. Другими словами, вращение ротора происходит не синхронно с вращением намагниченности статора, а асинхронно по отношению к этому движению. Вот почему такого рода двигатели называются асинхронными (не синхронными) двигателями.

В большинстве случаев, произнося словосочетание «асинхронный двигатель», имеют ввиду именно бесколлекторный двигатель переменного тока. Величина скольжения асинхронного двигателя может быть разной в зависимости от нагрузки, а также от параметров питания и способа управления токами обмотки статора.

Если мы имеем дело с обычным двигателем переменного тока, наподобие АИР712А, то при синхронной частоте вращения магнитного поля в 3000 оборотов в минуту, в условиях номинальной механической нагрузки на валу в 750 ватт, мы будем иметь реальную частоту вращения 2840 оборотов в минуту, а значит величина скольжения составит 0,053.

Это нормальное явление для асинхронного двигателя. И мы не увидим круглых цифр оборотов, вроде 3000 или 1500, вместо них там будет указано 2730 или 1325. Вместо 1000 может быть написано например 860, несмотря на то, что магнитное поле во время работы двигателя вращается с частотой 1000 оборотов в минуту, как и должно быть в электрической машине с 3 парами магнитных полюсов, предназначенной для питания переменным током частотой 50 Гц.

Что касается двигателей постоянного тока, то в большинстве случаев так называют коллекторные двигатели, на скорость вращения ротора у которых влияет не частота тока, а его средняя величина. Датчик скорости может помочь электронной системе управления установить правильную величину тока для получения заданной скорости вращения, однако связь тока и оборотов здесь будет отнюдь не линейной, так как при разной нагрузке токи разной величины дадут очень разные частоты вращения ротора.

На роторе двигателя постоянного тока может располагаться многосекционная обмотка возбуждения или постоянные магниты. Но сегодня ротор с магнитами характерен скорее для шаговых двигателей, которые тоже относятся к двигателям постоянного тока, однако коллекторно-щеточных узлов не имеют. Как вариант разновидности конструкции мотора постоянного тока — магниты на статоре, а обмотка — на роторе.

Так или иначе, асинхронный бесколлекторный двигатель имеет мощную рабочую обмотку на статоре, которая в процессе работы разогревается от прохождения по ней рабочего тока, и передает тепло на корпус двигателя. Поэтому и обмотку и корпус двигателя необходимо все время активно охлаждать.

В связи с этой особенностью, большинство асинхронных двигателей по умолчанию имеют на своих валах крыльчатки вентиляторов, а на корпусах — выступы, вдоль которых вентилятор, как через радиатор, гонит свежий воздух, охлаждая таким образом статор. Поэтому, если перед вами двигатель, на валу которого установлен вентилятор (обычно под крышкой, закрепленной на корпусе двигателя), вдоль корпуса имеются ребра (как на радиаторе), а на шильдике указана конкретная величина оборотов в минуту и величины переменного напряжения 220/380 — пред вами типичный асинхронный двигатель переменного тока.

В двигателях постоянного тока, с коллекторно-щеточными узлами и с многосекционными многовитковыми обмотками на якарях, выведенными на ламели коллектора, в качестве рабочих обмоток выступают — и обмотка статора, и обмотка ротора (якоря).

Здесь фактически получается, что рабочая обмотка как-бы разделена на две части: рабочий ток идет и через якорную обмотку, и через статорную обмотку, поэтому проблема нагрева только статора отсутствует, и вентилятор здесь не нужен.

Для охлаждения достаточно вентиляционных отверстий, через которые можно разглядеть ротор с якорной обмоткой на нем. Поэтому, если перед вами двигатель с коллекторно-щеточным узлом, где коллектор имеет множество ламелей (блестящих пластинок) с выводами от обмоток, и вентилятора словно бы и не предусмотрено — перед вами двигатель постоянного тока.

Статор двигателя постоянного тока может представлять собой набор постоянных магнитов. Большинство двигателей постоянного тока, рассчитанных на сетевое напряжение, будут легко работать и от переменного тока (пример такого универсального мотора — мотор болгарки).


В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Прежде чем разобраться, в чём их отличие, необходимо выяснить, что такое электродвигатель? Электродвигатель – это электрическая машина, которая приводится в действие от электроэнергии и служит приводом для других механизмов.

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Объяснение принципа работы асинхронного электродвигателя для «чайников»

Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.

Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.

Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.

В чём же отличия синхронного и асинхронного электродвигателей?

Если поставить рядом два современных электродвигателя одного и другого типа, то по внешним признакам их отличить трудно даже специалисту.

По существу, их главное отличие рассмотрено в приведённых примерах принципов работы этих электродвигателей. Они отличаются по конструкции роторов . Ротор синхронного электродвигателя состоит из обмоток, а ротор асинхронного представляет собой набор пластин.

Статоры одного и другого электродвигателей почти неотличимы и представляют собой набор обмоток, однако, статор синхронного электродвигателя может быть набран из постоянных магнитов.

Обороты синхронного двигателя соответствуют частоте подаваемого на него тока, а обороты асинхронного несколько отстают от частоты тока.

Отличаются они и по сферам применения . Например, синхронные электродвигатели ставят для привода оборудования, которое работает с постоянной скоростью вращения (насосы, компрессоры и т.д.) не снижая её с увеличением нагрузки. А вот асинхронные электродвигатели снижают частоту вращения при увеличении нагрузки.

Синхронные электродвигатели конструктивно сложней, а значит, и дороже асинхронных электродвигателей.

Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).

Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.

Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези — пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.

Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.

У синхронных моделей при малых мощностях они представляют собой постоянные магниты.

Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.

Агрегаты используются на практике и как генераторы и как двигатели.

Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.

По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.

Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.

Основные достоинства и недостатки

  1. Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
  2. Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
  3. Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
  4. Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.

Какой агрегат лучше

В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.

Трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.

Принцип действия и устройство электромашин разных типов

Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.

Устройство и принцип действия асинхронных электродвигателей

Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:

  • Корпус с подшипниковыми щитами и лапами или фланцем.
  • В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
  • Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор . В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.

В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».

Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.

Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.


Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.

Номинальная величи

на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.

В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.

Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.

Принцип действия синхронных электродвигателей

Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.

Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.

Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.

Запуск электродвигателей

Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.

Пуск асинхронных двигателей большой мощности

Для запуска таких машин используются разные способы:

  • Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
  • В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
  • В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
  • При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.

Пуск синхронных электромашин

В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.

У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.

Такие машины имеют достоинства перед синхронными аппаратами:

Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.

Свойства, характеристики и параметры синхронного двигателя с постоянными магнитами при векторном и скалярном частотном управлении | Фираго

1. Мохсен, А. Перспективный электропривод мостовых кранов / А. Мохсен // Електромеханiчнi системи, методы моделювання та оптимiзацii: зб. матер. VI Мiжнар. наук.-техн. конф. молод. учених i спец. у мiстi Кременчук, 8–10 квiтня 2008 р. / Кремен. держ. політехн. ун-т; наук. ред. О. П. Чорний. Кременчук, 2008. С. 57–61.

2. Бешта, О. С. Обоснование целесообразности использования синхронных двигателей с постоянными магнитами со встроенными магнитами / О. С. Бешта, О. В. Балахонцев, С. Г. Фурса // Вiсник Кременчуцького державного унiверситету iменi Михайла Остроградського. 2010. Т. 63, № 4. С. 73–75. Ч. 2.

3. Толочко, О. I. Особливості векторного керування синхронними двигунами з постійними магнітами при врахуванні втрат у сталі / О. I. Толочко, В. В. Божко // Електромеханiчнi i енергозберегаючi системи. 2012. Т. 19, № 3. С. 45–47.

4. Фираго, Б. И. Векторные системы управления электроприводами / Б. И. Фираго, Д. С. Васильев. Минск: Вышэйш. шк., 2016. 159 с.

5. Trzynadlowski, A. Control of Induction Motor / А. Trzynadlowski. London: Academic Press, 2001.

6. Фираго, Б. И. Исследование переходных процессов в частотно-регулируемом синхронном электроприводе / Б. И. Фираго, С. В. Александровский // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2016. Т. 59, № 6. С. 507–518. https://doi.org/10.21122/1029-7448-2016-59-6-507-518.

7. Шабанов, В. А. О законах частотного регулирования синхронных двигателей на нефтеперекачивающих станциях / В. А. Шабанов, О. В. Кабардина // Нефтегазовое дело. 2010. № 2. С. 5–10.

8. Шевченко, В. П. Синхронный двигатель при частотном регулировании / В. П. Шевченко, О. Б. Бабийчук // Электротехнические и компьютерные системы. 2014. Т. 90, № 14. С. 39–42.

9. Фираго, Б. И. Теория электропривода / Б. И. Фираго, Л. Б. Павлячик. Минск: Техноперспектива, 2007. 585 с.

10. Фираго, Б. И. Регулируемые электроприводы переменного тока / Б. И. Фираго, Л. Б. Павлячик. Минск: Техноперспектива, 2006. 363 с.

Основное различие между синхронным и асинхронным двигателем

В чем разница между синхронным и асинхронным двигателем (асинхронным двигателем)

Электродвигатели — это машины, которые преобразуют электрическую энергию в механическую для выполнения механических операций. Эти двигатели могут быть предназначены для работы на переменном (AC) или постоянном (DC) токе. Двигатели переменного тока подразделяются на два типа; Синхронные двигатели и асинхронные двигатели. Оба они имеют некоторые общие черты, например, по конструкции, но совершенно разные по принципу действия и производительности.

Прежде чем перейти к списку различий между синхронным двигателем и асинхронным двигателем, мы собираемся обсудить их основы и то, как они работают. Для ясного объяснения вы можете знать разницу между однофазным и трехфазным источником питания, относящуюся к работе однофазных и трехфазных двигателей переменного тока.

Как работает двигатель переменного тока?

Как мы знаем из нашей предыдущей статьи «Различия между двигателями переменного и постоянного тока», двигатели постоянного тока работают по принципу магнитного поля, действующего на проводник с током, который испытывает механическую силу.Где статор генерирует статическое магнитное поле, а ротор, состоящий из нескольких обмоток, несет входной постоянный ток.

В двигателях переменного тока используется идея вращательного магнитного поля RMF. Статор состоит из нескольких обмоток, которые создают переменное магнитное поле при подаче входного переменного тока. Это магнитное поле вращается вокруг ротора.

Ротор, состоящий из обмоток или проводников с замкнутым контуром, пропускает ток либо через индукцию, либо через внешний источник тока, генерирующий собственное магнитное поле.Магнитное поле, создаваемое ротором, взаимодействует с вращающимся магнитным полем и начинает вращаться в его направлении.

Относительная разница между полем вращения статора и скоростью ротора называется скольжением. если скольжение двигателя равно нулю или ротор имеет ту же скорость вращения, что и поле вращения статора, двигатель называется синхронным двигателем переменного тока. если двигатель переменного тока имеет скольжение или существует разница между скоростью возбуждения статора и ротором, двигатель называется асинхронным двигателем.Чтобы узнать больше о различных типах двигателей, обратитесь к предыдущим сообщениям о двигателях BLDC (бесщеточный постоянного тока), шаговых двигателях и серводвигателях.

Связанные сообщения:

Синхронный двигатель

Как следует из названия, синхронный двигатель имеет ротор, который предназначен для вращения с той же скоростью, что и его вращающееся магнитное поле статора, называемой синхронной скоростью .

Статор создает вращающееся магнитное поле при подаче переменного тока.Ротор может быть спроектирован для создания собственного магнитного поля с использованием внешнего источника постоянного тока через контактные кольца или постоянного магнита .

Ротор предназначен для создания магнитных полюсов, равных полюсам статора или целых кратных полюсов. Когда статор и ротор находятся под напряжением, магнитное поле ротора блокируется с вращающимся магнитным полем статора, и он вращается с точной скоростью поля статора.

Из-за инерции синхронный двигатель не запускается сразу с синхронной скоростью (вращательное магнитное поле).Поэтому для обеспечения пускового момента используется дополнительная обмотка, называемая « демпферная обмотка ». Во время запуска он действует как асинхронный двигатель. Таким образом, предполагается, что синхронные двигатели не самозапускающиеся , им нужен дополнительный пусковой механизм.

Это может быть двигатель с раздельным возбуждением или без возбуждения, т.е. первый требует отдельного источника постоянного тока, возбуждает обмотки ротора и генерирует магнитное поле, в то время как последний описывает синхронный двигатель, ротор которого предназначен для намагничивания вращающимся магнитным полем статора. и вращается вместе с ним.

Ротор синхронного двигателя вращается с синхронной скоростью, которая зависит от частоты питания и полюсов обмоток статора. Следовательно, скорость двигателя не зависит от нагрузки. Чтобы изменить скорость синхронного двигателя, необходимо изменять частоту питания. Это достигается за счет использования частотно-регулируемого привода (VFD).

Связанные сообщения:

Асинхронный двигатель

Название асинхронного двигателя предполагает, что скорость ротора асинхронна со скоростью вращения магнитного поля статора.Точнее, ротор асинхронного двигателя вращается с относительно меньшей скоростью, чем статор RMF. Это связано с наличием проскальзывания между его скоростью статора и ротора.

Ротор асинхронного двигателя представляет собой короткозамкнутый ротор с обмоткой. Ротор с короткозамкнутым ротором построен с использованием тяжелых медных стержней, соединенных на конце с помощью токопроводящего кольца, которое электрически закорачивает их вместе. Ротор с обмоткой состоит из нескольких обмоток поверх многослойного стального сердечника.

Вращающееся магнитное поле статора вызывает индуцированный ток в роторе. Этот индуцированный ток течет внутри ротора, создавая собственное магнитное поле. Согласно закону Ленца, это поле ротора противодействует причине, которая его порождает, и пытается устранить ее, догоняя скорость статора RMF (синхронную скорость). При этом ротор вращается в направлении статора RMF. Асинхронный двигатель также известен как асинхронный двигатель , поскольку он работает по принципу индукции.

Асинхронный двигатель никогда не может работать на синхронной скорости, вместо этого она всегда ниже, чем синхронная скорость, и это зависит от скольжения двигателя. Причина в том, что индуцированный ток в роторе генерируется из-за разницы между полем статора и ротора. если в случае, если он работает с синхронной скоростью, это означает, что ротор магнитно заблокирован и между полем статора и ротора нет разницы. Следовательно, не будет магнитного потока, индуцирующего ток в роторе.Магнитный поток необходим для асинхронного двигателя, поэтому он должен работать с меньшей скоростью, чем его синхронная скорость.

Ротор с короткозамкнутым ротором имеет более простую конструкцию и позволяет наведенному току проходить через медные шины. В то время как заведенный ротор позволяет пользователю изменять ток ротора во время его запуска, как это используется в «Пускателе двигателя». Дело в том, чтобы безопасно запустить двигатель, уменьшив огромный пусковой ток, потребляемый асинхронным двигателем. Обычно это делается путем последовательного подключения переменного резистора к обмоткам ротора с помощью контактных колец.

Скорость асинхронного двигателя зависит от скольжения двигателя, которое изменяется в зависимости от нагрузки и сопротивления ротора. Другими словами, скорость асинхронного двигателя может изменяться в зависимости от нагрузки или за счет изменения сопротивления ротора.

Связанное сообщение:

Различия между синхронным двигателем и асинхронным двигателем

В следующей таблице показаны основные различия между синхронным двигателем и асинхронным (асинхронным) двигателем.

Синхронный двигатель Асинхронный двигатель
Синхронный двигатель — это тип двигателя переменного тока, который работает с синхронной скоростью. Асинхронный двигатель — это тип двигателя переменного тока, который работает со скоростью, меньшей, чем синхронная скорость.
Он работает по принципу магнитной блокировки между полем ротора и статора. Он работает по принципу электромагнитной индукции между статором и ротором.
Нет скольжения, т.е. скольжение синхронного двигателя равно 0. В асинхронном двигателе есть скольжение, и оно всегда больше 0.
Скорость двигателя зависит от частоты питания и количество полюсов статора.

N s = 120 f / P

Скорость двигателя зависит от нагрузки, сопротивления ротора и скольжения, s. это всегда меньше синхронной скорости.

N = N с (1-с)

N с

Скорость не меняется при изменении нагрузки, подключенной к двигателю. Скорость меняется в зависимости от нагрузки двигателя.
Он не запускается автоматически и требует дополнительных обмоток для запуска двигателя. Асинхронные двигатели самозапускаются и не требуют дополнительных механизмов.
Ротор требует дополнительного источника тока. Ротор асинхронного двигателя не требует дополнительного питания.
Синхронному двигателю с независимым возбуждением требуется дополнительный источник постоянного тока для питания его обмотки ротора. Не требует дополнительных исходников.
Также необходимы контактные кольца и щетки для подачи постоянного тока на обмотки ротора. Не требует контактных колец, однако, намотанный тип может использовать контактные кольца для управления скоростью.
Скорость двигателя регулируется только путем изменения частоты питания с помощью частотно-регулируемого привода. Скорость двигателя можно регулировать с помощью переменного сопротивления ротора, а также устройств VFD.
Источник входного напряжения не изменяет скорость или крутящий момент синхронного двигателя. Источник входного напряжения можно использовать для изменения крутящего момента и скорости двигателя.
Колебания основного напряжения питания не влияют на работу синхронного двигателя. Колебания сетевого напряжения влияют на его скорость и работу.
Начальная стоимость больше, чем у асинхронного двигателя. Асинхронные двигатели дешевле.
Операция сложная. Операция проста и удобна для пользователя.
Если предлагают высокую эффективность и точность. Они не так эффективны, как синхронный двигатель.
Может легко работать на очень низкой скорости с помощью ЧРП. Работать на малых оборотах довольно сложно.
Лучше всего работает на более низких оборотах, обычно ниже 300 об / мин. Лучше всего подходит для работы на скорости выше 600 об / мин.
Он может работать с отстающим, опережающим или единичным коэффициентом мощности, регулируя его возбуждение. Асинхронный или асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
Он также может одновременно использоваться для коррекции коэффициента мощности, используя его в качестве опережающего коэффициента мощности. Его нельзя использовать для корректировки коэффициента мощности, а только для управления механическими нагрузками.
Поскольку он работает с постоянной скоростью, резкое изменение нагрузки вызовет колебания потребляемого тока. В асинхронном двигателе такого явления нет.

Вывод этой статьи состоит в том, что синхронные двигатели эффективны, но дороже и используются для приложений со сверхнизкими оборотами, предлагая при этом функцию коррекции коэффициента мощности. С другой стороны, асинхронные двигатели используются для высоких оборотов с регулируемой скоростью, будучи недорогими и простыми в эксплуатации.

Связанный пост об электрических двигателях.

Разница между синхронным и асинхронным двигателем (со сравнительной таблицей)

Разница между синхронным двигателем и асинхронным двигателем объясняется с учетом таких факторов, как его тип, скольжение, потребность в дополнительном источнике питания, требования к контактным кольцам и щеткам, их стоимость, эффективность, коэффициент мощности, источник тока, скорость, самозапуск , влияние на крутящий момент из-за изменения напряжения, их рабочей скорости и различных применений как синхронного, так и асинхронного двигателя.

Различия между синхронным и асинхронным двигателем объясняются ниже в табличной форме.

BASIS СИНХРОННЫЙ ДВИГАТЕЛЬ АСИНХРОННЫЙ ДВИГАТЕЛЬ
Определение Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора.
N = NS = 120f / P
Асинхронный двигатель — это машина, ротор которой вращается со скоростью, меньшей, чем синхронная скорость.
N
Тип Бесщеточный электродвигатель, электродвигатель с регулируемым сопротивлением, электродвигатель с переключаемым сопротивлением и электродвигатель с гистерезисом — это синхронные электродвигатели. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
Скольжение Не имеет проскальзывания. Значение скольжения равно нулю. Имеют пробуксовку, поэтому величина пробуксовки не равна нулю.
Дополнительный источник питания Требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Не требует дополнительных исходных кодов.
Контактное кольцо и щетки Контактное кольцо и щетки необходимы Контактное кольцо и щетки не требуются.
Стоимость Синхронный двигатель дороже по сравнению с асинхронным двигателем Дешевле
КПД КПД выше, чем у асинхронного двигателя. Менее эффективный
Коэффициент мощности Изменяя возбуждение, коэффициент мощности может быть соответственно отрегулирован как отстающий, опережающий или единичный. Асинхронный двигатель работает только с отстающим коэффициентом мощности.
Электропитание Ток подается на ротор синхронного двигателя Ротор асинхронного двигателя не требует тока.
Скорость Скорость двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
Самозапуск Синхронный двигатель не самозапускается Самозапускается
Влияние на крутящий момент Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя Изменение приложенного напряжения влияет на крутящий момент асинхронного двигателя
Рабочая скорость Они работают плавно и относительно хорошо на низкой скорости, ниже 300 об / мин. Двигатель со скоростью выше 600 об / мин работает отлично.
Применения Синхронные двигатели используются на электростанциях, обрабатывающей промышленности и т. Д. Они также используются в качестве регулятора напряжения. Используется в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.

Синхронный двигатель — это двигатель, который работает с синхронной скоростью, то есть скорость ротора равна скорости статора двигателя.Отсюда следует соотношение N = N S = 120f / P, где N — скорость ротора, а Ns — синхронная скорость.

Асинхронный двигатель — это асинхронный двигатель переменного тока. Ротор асинхронного двигателя вращается со скоростью меньше синхронной, т.е. N S

Разница между синхронным и асинхронным двигателем

  1. Синхронный двигатель — это машина, скорость ротора которой равна скорости магнитного поля статора. Асинхронный двигатель — это машина, ротор которой вращается со скоростью меньше синхронной.
  2. Бесщеточный двигатель, двигатель с регулируемым сопротивлением, двигатель с регулируемым сопротивлением и двигатель с гистерезисом являются синхронными двигателями. Асинхронный двигатель переменного тока известен как асинхронный двигатель.
  3. Синхронный двигатель не имеет скольжения. Значение скольжения равно нулю. Асинхронный двигатель имеет скольжение, поэтому значение скольжения не равно нулю.
  4. Синхронному двигателю требуется дополнительный источник постоянного тока для первоначального вращения ротора, близкого к синхронной скорости. Асинхронный двигатель не требует дополнительного источника пуска.
  5. Контактное кольцо и щетки необходимы в синхронном двигателе, тогда как асинхронный двигатель не требует контактного кольца и щеток. Только асинхронный двигатель с обмоткой требует и контактного кольца, и щеток.
  6. Синхронный двигатель дороже асинхронного двигателя.
  7. КПД синхронного двигателя больше, чем у асинхронного двигателя.
  8. Путем изменения возбуждения коэффициент мощности синхронного двигателя может быть соответственно отрегулирован как отстающий, опережающий или единичный, тогда как асинхронный двигатель работает только с отстающим коэффициентом мощности.
  9. Ток подается на ротор синхронного двигателя. Ротор асинхронного двигателя не требует тока.
  10. Скорость синхронного двигателя не зависит от изменения нагрузки. Это постоянно. Скорость асинхронного двигателя уменьшается с увеличением нагрузки.
  11. Синхронный двигатель не запускается автоматически, тогда как асинхронный двигатель запускается автоматически.
  12. Изменение приложенного напряжения не влияет на крутящий момент синхронного двигателя, но влияет на крутящий момент асинхронного двигателя.
  13. Синхронный двигатель работает плавно и относительно хорошо на низкой скорости, которая ниже 300 об / мин, тогда как скорость выше 600 об / мин работа асинхронного двигателя превосходна. Асинхронные двигатели используются в центробежных насосах и вентиляторах, воздуходувках, бумажных и текстильных фабриках, компрессорах и лифтах. и т. д.
  14. Синхронный двигатель используется в различных сферах применения на электростанциях, обрабатывающей промышленности и т. Д. Он также используется в качестве регулятора напряжения.

Таким образом, синхронный двигатель отличается от асинхронного двигателя.

Разница между синхронным двигателем и асинхронным двигателем

Двигатели переменного тока можно разделить на две основные категории — (i) синхронный двигатель и (ii) асинхронный двигатель . Асинхронный двигатель обычно называют асинхронным двигателем. Оба типа сильно отличаются друг от друга. Основные различия между синхронным двигателем и асинхронным двигателем обсуждаются ниже.
Конструктивная разница
  • Синхронный двигатель : Статор имеет осевые пазы, которые состоят из обмотки статора, намотанной на определенное количество полюсов.Обычно используется ротор с явнополюсным ротором, на котором установлена ​​обмотка ротора. Обмотка ротора запитана постоянным током с помощью контактных колец. Также можно использовать ротор с постоянными магнитами.
    Синхронный двигатель
  • Асинхронный двигатель : Обмотка статора аналогична обмотке синхронного двигателя. Он накручивается на определенное количество полюсов. Можно использовать ротор с короткозамкнутым ротором или ротор с обмоткой.В роторе с короткозамкнутым ротором стержни ротора постоянно замкнуты накоротко с концевыми кольцами. В роторе с намоткой обмотки также постоянно закорочены, поэтому контактные кольца не требуются.
    Асинхронный двигатель
Разница в работе
  • Синхронный двигатель : Полюса статора вращаются с синхронной скоростью (Нс) при питании от трехфазного источника питания. Ротор питается от источника постоянного тока.Во время пуска ротор необходимо вращать со скоростью, близкой к синхронной. В этом случае полюса ротора магнитно соединяются с вращающимися полюсами статора, и, таким образом, ротор начинает вращаться с синхронной скоростью.
    • Синхронный двигатель всегда работает со скоростью, равной его синхронной скорости.
      т.е. Фактическая скорость = Синхронная скорость
      или N = Ns = 120f / P
    • Подробнее о работе синхронного двигателя здесь.
  • Асинхронный двигатель : Когда на статор подается двух- или трехфазный источник переменного тока, создается вращающееся магнитное поле (RMF).Относительная скорость между вращающимся магнитным полем статора и ротором вызовет индуцированный ток в проводниках ротора. Ток ротора порождает поток ротора. Согласно закону Ленца, направление этого индуцированного тока таково, что он будет иметь тенденцию противодействовать причине его образования, то есть относительной скорости между RMF статора и ротором. Таким образом, ротор будет пытаться догнать RMF и снизить относительную скорость.
Прочие отличия
  • Синхронным двигателям требуется дополнительный источник постоянного тока для питания обмотки ротора.Асинхронные двигатели не требуют дополнительного источника питания.
  • Контактные кольца и щетки необходимы в синхронных двигателях, но не в асинхронных двигателях (за исключением асинхронного двигателя с обмоткой, в котором двигатели с контактным кольцом используются для добавления внешнего сопротивления обмотке ротора).
  • Синхронным двигателям требуется дополнительный пусковой механизм для первоначального вращения ротора, близкого к синхронной скорости. В асинхронных двигателях пусковой механизм не требуется.
  • Коэффициент мощности синхронного двигателя может быть отрегулирован на отстающий, единичный или опережающий, изменяя возбуждение, тогда как асинхронный двигатель всегда работает с отстающим коэффициентом мощности.
  • Синхронные двигатели обычно более эффективны, чем асинхронные.
  • Синхронные двигатели дороже.
Асинхронный двигатель

и синхронный: в чем разница?

Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей. Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

В простом двигателе постоянного тока имеется вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора. Щетки — в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении — также служат для подачи электрического тока во вращающийся якорь. В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками.Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе.Твердый сердечник ротора состоит из листов электротехнической стали.

Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора. Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо.Как только ротор достигает конечной скорости, полюса ротора переключаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока. Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора.Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила генерируется, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора.Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

Размер скольжения может быть разным. Это зависит главным образом от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора. Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора.Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцированного в нем напряжения f r падает. Если f — частота напряжения статора, то скольжение s связывает эти два параметра через f r = sf. Здесь s выражается в виде десятичной дроби.

Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.

Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе. Магнитное поле статора вращается синхронно с частотой сети.

Обмотка ротора синхронного двигателя может получать ток различными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента).Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока. Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

.

N = 120 футов / P = 60 футов / точек

Где f — частота сети переменного тока в Гц, P — количество полюсов (на фазу), а p — количество пар полюсов на фазу.

Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

  • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
  • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
  • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
  • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
  • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
  • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.
Промышленный синхронный двигатель. Синхронные двигатели переменного тока

малой мощности полезны там, где требуется точное время. Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

Существует несколько различных типов синхронных двигателей переменного тока. Обычно их классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машине. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.

Синхронные двигатели без возбуждения имеют стальные роторы. В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубья. Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраивают специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

В двигателе с гистерезисом используется широкая петля гистерезиса в высококоэрцитивном роторе из кобальтовой стали.Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора. Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются, обеспечивая непрерывное вращение. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора.Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора. Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

Синхронный двигатель с прямым возбуждением может называться разными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты.Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

Компьютер управляет последовательным включением питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается.Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере, некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба. В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

Еще один тип синхронного двигателя — это реактивный двигатель с регулируемым сопротивлением (SR).
Его ротор состоит из уложенных друг на друга стальных пластин с рядом зубцов.Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

В отличие от асинхронных двигателей, здесь нет стержней ротора и, следовательно, в роторе отсутствует ток, создающий крутящий момент. Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, содержащих роторы, несущие проводники.

Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора.Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

Основное различие между асинхронным двигателем и синхронным двигателем | by Starlight Generator

Основное отличие состоит в том, что асинхронный двигатель является асинхронной машиной, тогда как другой, как следует из названия, является синхронной машиной.

Асинхронный двигатель:

Асинхронный двигатель состоит из статора с проводниками, размещенными в определенных положениях в зависимости от требований к фазе.Например, в трехфазном двигателе проводники расположены под пространственным углом 120 градусов. Ротор в асинхронном двигателе состоит из проводников, обычно закороченных с помощью концевых колец, или имеет внешнюю обмотку, которая может быть подключена через внешнее сопротивление. Рассмотрим случай трехфазного асинхронного двигателя. При включении питания создается вращающееся магнитное поле, называемое полем статора. Это поле вращается со скоростью Ns, называемой синхронной скоростью. Это поле индуцирует ЭДС в проводниках ротора, которая, в свою очередь, вызывает протекание тока в закороченных проводниках ротора.Протекание этого тока создает магнитное поле ротора, которое следует за полем статора. Ротор вращается со скоростью Nr. Относительная скорость между ротором и статором равна Ns-Nr, что называется скоростью скольжения. Скорость поля ротора по отношению к полю статора будет (Ns-Nr) + Nr. [Относительная скорость между статором и ротором + скорость ротора]. Таким образом, скорость поля ротора также будет Нс. Два поля вращаются с одинаковой скоростью в одном направлении, но скорость ротора никогда не может быть равна синхронной скорости.Если скорость ротора равна синхронной скорости, существует относительное движение между полем статора и проводниками ротора, следовательно, есть ЭДС и ток, наведенные бо, и, следовательно, крутящий момент отсутствует. Таким образом, асинхронный двигатель никогда не может работать с синхронной скоростью, отсюда и название асинхронный двигатель.

Синхронный двигатель:

Статор синхронного двигателя аналогичен статору асинхронного двигателя. Ротор синхронного двигателя состоит из электромагнита, создаваемого возбуждением постоянным током.Это создает поле ротора. Трехфазное питание статора создает вращающееся магнитное поле с синхронной скоростью. Поле ротора теперь следует за полем статора с запаздыванием по углу, но вращается с синхронной скоростью. Синхронный двигатель может работать только с синхронной скоростью.

В двух словах, крутящий момент в асинхронном двигателе создается из-за относительной скорости, тогда как в синхронном двигателе производство крутящего момента происходит из-за углового отставания между двумя полями.

Основное отличие состоит в том, что асинхронный двигатель является асинхронной машиной, тогда как другой, как следует из названия, является синхронной машиной.

Асинхронный двигатель:

Скорость: Скорость асинхронного двигателя всегда меньше синхронной скорости и зависит от нагрузки, поскольку скорость уменьшается с увеличением нагрузки.

Пусковой момент: Этот тип двигателя имеет собственный пусковой момент.

Возбуждение: это машина с одиночным возбуждением, в которой обмотки статора возбуждаются от источника переменного тока.В отличие от синхронного двигателя, асинхронный двигатель работает только при отстающем коэффициенте мощности.

Эффективность: сравнительно менее эффективен.

Стоимость: Стоимость асинхронной машины меньше по сравнению с синхронным двигателем той же мощности.

Синхронный двигатель:

Скорость: Начиная с его названия «синхронный», этот двигатель работает с синхронной скоростью независимо от величины нагрузки. Скорость такого двигателя не зависит от нагрузки.

Пусковой крутящий момент: У этого двигателя нет самозапуска, поэтому для запуска синхронной машины должны быть предусмотрены другие вспомогательные средства.

Возбуждение: Синхронный двигатель — это машина с двойным возбуждением. Обмотка возбуждения, которая является ротором, возбуждается от источника постоянного тока, а его статор, который является обмоткой якоря, возбуждается от источника переменного тока. В дополнение к этому его можно заставить работать с коэффициентом мощности, опережающим по сравнению с отстающим коэффициентом мощности, просто изменив его возбуждение.

КПД: Он сравнительно более эффективен, чем асинхронный двигатель.

Стоимость: Этот тип двигателя намного дороже, чем асинхронный двигатель аналогичного номинала.

Таким образом, мы можем суммировать основные различия между асинхронной машиной и синхронной машиной:

Индукционная машина самозапускается, а синхронная — нет.

Индукционная машина работает по принципу электромагнитной индукции, аналогично трехфазным трансформаторам. Короткозамкнутая обмотка ротора действует как токопроводящая петля внутри переменного магнитного поля, где магнитное поле изменяется из-за разницы в скорости между магнитным полем ротора и статора.Синхронная машина работает по принципу возбуждения ротора с помощью постоянного тока и заставляет его вести себя как электромагнит, так что он заставляется синхронизироваться с синхронной скоростью магнитного поля.

Как мы видим, асинхронный двигатель вращается и выдает мощность на несинхронных скоростях (при наличии относительного потока, разрезающего ротор), в то время как синхронные машины предназначены для работы на синхронных скоростях.

В случае асинхронного двигателя подойдет любая скорость, отличная от синхронной, и вы получите выходной сигнал, в то время как для синхронной машины единственный способ изменить скорость — это изменить частоту.Другими словами, синхронная машина — это машина с постоянной скоростью (синхронной скоростью).

Влияние нагрузки: Увеличение нагрузки асинхронного двигателя приводит к снижению скорости. Однако в случае синхронной машины это изменение скорости не подлежит обсуждению, вместо этого система пытается вращаться с самой синхронной скоростью, но с разницей между выровненными положениями статора и оси полюса ротора, называемой углом нагрузки.

Синхронный двигатель испытывает «рывки» при резком изменении нагрузки.Это означает, что ротор из-за инерции не может мгновенно достичь своего равновесия и колеблется в нужном положении. В любом случае, это нежелательное явление с точки зрения двигателя (так как оно вызывает большие колебания потребляемого тока). Следует отметить, что в асинхронных машинах нет рывков.

Starlight Power может предоставить синхронный генератор от 20кВт до 3000кВт с хорошим качеством и низкой ценой.

16 Основные различия между синхронными и асинхронными двигателями

В этом посте мы узнаем разницу между двумя типами двигателей переменного тока (AC).Эти два двигателя переменного тока —

  • Синхронный двигатель и
  • Асинхронный двигатель.

Если вы готовитесь к экзамену, виве или собеседованию, вам будут заданы вопросы — синхронные или асинхронные двигатели. Это очень важные темы в электротехнике.

Вас часто просят сравнить эти два типа двигателей.

Здесь я сравниваю синхронный двигатель и асинхронный двигатель с их характеристиками, функциями, приложениями и примерами.

Примечание. Асинхронный двигатель называется «Асинхронный двигатель ».

Разница между синхронными и асинхронными двигателями

Давайте изучим сравнение обоих двигателей переменного тока в табличной форме.

# Содержание Синхронный двигатель Асинхронный двигатель
01 Определение
[Что такое синхронные и асинхронные двигатели]
Электромагнитный двигатель, который преобразует электрическую энергию в механическую работу с постоянной скоростью и называется «синхронным двигателем». Электромагнитный двигатель, преобразующий электрическую энергию в механическую работу с переменной скоростью, называется «асинхронным двигателем».
02 Двигатель Скорость Синхронный двигатель работает с синхронной скоростью. Асинхронный двигатель работает с несинхронной скоростью.
03 Принцип Синхронный двигатель работает по принципу «магнитной блокировки». Асинхронный двигатель работает по принципу «электромагнитной индукции».
04 Исходное положение Это не самозапускающийся двигатель. Это самозапуск двигателя. (особенно трехфазный асинхронный двигатель)
05 Подключенное питание
(переменного и постоянного тока)
Он состоит из двух основных частей — статора и ротора.

Статор подключается к трехфазному источнику переменного тока, а ротор подключается к источнику постоянного тока соответственно.

Точно так же он также состоит из двух основных частей — статора и ротора.

Единственный статор подключается к трехфазному источнику переменного тока.

06 Система возбуждения (источник постоянного тока для ротора) Синхронному двигателю требуется система возбуждения постоянного тока (или первичный двигатель) для запуска двигателя (т. Е. Для вращения ротора). Асинхронный двигатель не требует системы возбуждения для запуска двигателя.
07 Конструкция Конструкция синхронного двигателя очень сложна. Конструкция асинхронного двигателя относительно проста.
08 Относительное движение Для синхронного двигателя относительное движение не требуется между статором и ротором. Для асинхронного двигателя требуется относительное движение между статором и ротором.
09 Скольжение
(зависимость магнитного поля от скорости ротора)
В синхронном двигателе возникает нулевое скольжение (S = 0). В асинхронном двигателе происходит различное скольжение.
10 Скорость двигателя
(об / мин)
Он работает от 150 до 1800 об / мин . синхронной скорости. Работает менее 1500 об / мин. синхронная скорость.
11 Коэффициент мощности Он имеет единичный, запаздывающий или опережающий коэффициент мощности.
В основном работает с единичным коэффициентом мощности.
Имеет только отстающий коэффициент мощности.
12 КПД
(соотношение выходной и входной мощности)
Синхронный двигатель имеет более высокий КПД по мощности благодаря единице или опережающему коэффициенту мощности. Асинхронный двигатель менее эффективен, чем синхронный двигатель.
13 Использует Используется для коррекции коэффициента мощности, обслуживания нагрузки с постоянной скоростью, регулирования напряжения линии электропередачи и т. Д. В основном используется в промышленности.
14 Стоимость Этот двигатель дороже асинхронного двигателя. Этот двигатель дешевле синхронного двигателя.
15 Техническое обслуживание Требуется максимальное техническое обслуживание. Требуется минимальное обслуживание.
16 Пример Вентилятор, нагнетательный вентилятор, осушитель — это пример синхронного двигателя. Конвейерная лента, прокатный стан, смеситель, измельчитель являются примером асинхронного двигателя.

Это все о разнице между синхронными и асинхронными двигателями. Также рассмотрены преимущества и недостатки этих двух двигателей переменного тока.

Надеюсь, это поможет вам при подготовке к экзамену или собеседованию. Если у вас есть какие-либо вопросы, напишите мне в разделе комментариев ниже.

Связанные сравнения:

Спасибо за чтение!

Если вы цените то, что я делаю здесь, в DipsLab, вам следует принять во внимание:

DipsLab — это самый быстрорастущий и пользующийся наибольшим доверием сайт сообщества инженеров по электротехнике и электронике.Все опубликованные статьи доступны БЕСПЛАТНО всем.

Если вам нравится то, что вы читаете, пожалуйста, купите мне кофе (или 2) в знак признательности.

Это поможет мне продолжать оказывать услуги и оплачивать счета.

Я благодарен за вашу бесконечную поддержку.

Я получил степень магистра в области электроэнергетики. Я работаю и пишу технические руководства по ПЛК, программированию MATLAB и электричеству на DipsLab.com портал.

Я счастлив, поделившись своими знаниями в этом блоге. А иногда вникаю в программирование на Python.

Синхронные двигатели

и асинхронные двигатели

Электродвигатели

бывают сотен размеров, форм и разновидностей, и огромное количество вариантов может парализовать при поиске лучшего варианта.

Первый шаг в поиске любого двигателя — это определение его источника питания; он питается от постоянного или переменного тока? Это разделит варианты на две большие категории: двигатели переменного тока и двигатели постоянного тока, а также исключит любые двигатели, которые не будут работать с вашим источником питания.Тем не менее, обе эти категории по-прежнему содержат много типов машин, поэтому эта статья поможет еще больше дифференцировать класс двигателей переменного тока (в нашей статье о бесщеточных и щеточных двигателях постоянного тока рассматриваются основные типы двигателей постоянного тока). Двигатели переменного тока можно разделить на синхронные и асинхронные двигатели, и в этой статье дается краткое объяснение обоих, а также сравниваются их рабочие характеристики и области применения.

Асинхронные двигатели

Асинхронные двигатели

считаются одними из самых распространенных двигателей переменного тока, используемых сегодня в промышленности.Они были одними из первых изобретенных электродвигателей, поэтому у них было достаточно времени, чтобы их оптимизировать для работы во многих приложениях. Они имеют относительно простую конструкцию, состоящую из внешнего статора и внутреннего ротора, которые взаимодействуют посредством эффекта электромагнитной индукции, создавая механическое вращение. Определенные типы асинхронных двигателей достигают этого вращения по-разному, и, пожалуйста, прочтите наши статьи о двигателях с короткозамкнутым ротором, двигателях с фазным ротором и однофазных промышленных двигателях, чтобы узнать больше.Вообще говоря, цель асинхронных двигателей — пропускать переменный ток через катушки в статоре, которые создают магнитное поле, а частота колебаний источника переменного тока заставляет это магнитное поле вращаться. Это вращающееся магнитное поле (RMF) затем будет индуцировать противоположные магнитные поля в роторе (свободно движущийся якорь, прикрепленный к выходному валу) и вызывать полезное вращение.

Эти двигатели также известны как асинхронные двигатели, поскольку частота их переменного тока напрямую не соответствует количеству оборотов выходного вала.Это явление известно как «проскальзывание» и происходит потому, что ротор всегда играет в магнитную игру «догонять» с RMF. Наличие проскальзывания означает, что точное время для асинхронных двигателей затруднено. Как было сказано ранее, эти двигатели можно найти в бытовых приборах, электромобилях и даже в крупном механизированном промышленном оборудовании, поскольку они бывают сотнями скоростей, крутящих моментов, напряжений, размеров и форм. Для получения дополнительной информации об этих машинах, узнайте больше в нашей статье об асинхронных двигателях.

Двигатели синхронные

Синхронные двигатели охватывают основы, недоступные для асинхронных двигателей, а именно их «асинхронный» характер. Синхронные двигатели согласовывают выходную частоту вращения с входной частотой переменного тока, что позволяет разработчикам использовать эти двигатели в точно синхронизированных приложениях, таких как часы, прокатные станы, проигрыватели и т. Д. Они достигают этого, соединяя магнитные полюса (пары север-юг в каждом магнитном поле) статора и ротора, так что RMF статора вращает ротор с точной синхронной скоростью.Есть много способов заблокировать эти полюса, и в наших статьях о реактивных двигателях и бесщеточных двигателях постоянного тока приводятся конкретные примеры этих механизмов. Обратите внимание, что бесщеточный двигатель постоянного тока не является двигателем переменного тока; это связано с тем, что синхронные конструкции не обязательно должны получать питание от сети переменного тока, тогда как асинхронные двигатели обычно всегда питаются от сети переменного тока.

Синхронные двигатели не являются самозапускающимися по своей природе — то есть этим двигателям часто требуется пускатель двигателей для разгона их роторов на полную скорость.Эти пускатели не часто используются с асинхронными двигателями, потому что они могут запускаться из состояния покоя без первоначального «толчка». Чтобы узнать больше, не стесняйтесь читать нашу статью о типах пускателей двигателей. Кроме того, даже несмотря на то, что их скорость является синхронной, скорость синхронных двигателей трудно изменить, и для этого требуется контроллер двигателя переменного тока, чтобы позволить разработчикам регулировать скорость двигателя (дополнительную информацию можно найти в нашей статье о контроллерах двигателей переменного тока). Синхронные двигатели, хотя, как правило, дороже асинхронных двигателей, обладают более высоким КПД (> 90%) и являются отличным выбором для дробилок, мельниц, измельчителей и других низкоскоростных и высокомощных приложений.

Сравнение асинхронных и синхронных двигателей

Поскольку эти два типа двигателей переменного тока по-прежнему довольно широки, в этой статье дается общее сравнение рабочих характеристик каждого типа, чтобы разработчики могли использовать эту информацию для дальнейшего определения машины, наиболее подходящей для их спецификаций. Ниже, в таблице 1, показано качественное сравнение некоторых характеристик, общих для асинхронных двигателей и синхронных двигателей, и показаны преимущества и недостатки каждой конструкции двигателя переменного тока.

Таблица 1: Сравнение асинхронных двигателей и синхронных двигателей.

Характеристики

Асинхронные двигатели

Синхронные двигатели

Сложность

Простой дизайн

Комплекс

Самозапускающийся

В целом да

Обычно нет

Плотность мощности

Среднее значение

Высокая

КПД

Среднее значение

Высокая

Регулятор коэффициента мощности

Нет (всегда с запаздыванием)

Да (может опережать и отставать)

Стоимость

Низкая

Высокая

Сложность (или ее отсутствие) асинхронных двигателей — лучшее преимущество, которое они имеют перед синхронными конструкциями.Их очень просто производить, эксплуатировать и обслуживать, поэтому асинхронные двигатели в целом дешевле синхронных. И наоборот, реализация синхронной машины требует более сложного ротора, который труднее изготавливать / ремонтировать, и требует дополнительных схем, которые необходимо покупать и устанавливать, чтобы эти двигатели могли работать эффективно.

Как указывалось ранее, асинхронные двигатели обычно самозапускаются, а синхронные — нет. Это означает, что асинхронным двигателям для эффективной работы требуется меньше внешних периферийных устройств, что снижает их стоимость и сложность.

Плотность мощности — это количество мощности (обычно измеряется в лошадиных силах HP или киловаттах кВт), генерируемых на единицу объема двигателя. Синхронные двигатели обычно имеют более высокую удельную мощность, чем асинхронные двигатели сопоставимого размера, что позволяет им обеспечивать большую мощность при меньшем объеме. Это отлично подходит для приложений с ограниченными размерами и является причиной выбора синхронного двигателя над асинхронным.

Синхронные двигатели в некоторых случаях могут достигать КПД> 90% и, как правило, более энергоэффективны, чем асинхронные двигатели.Эффективность зависит от конкретного типа и размера двигателя, но отсутствие скольжения в синхронных двигателях означает, что при преобразовании электрической энергии в механическую энергию теряется меньше энергии.

Коэффициент мощности — это отношение рабочей мощности к полной мощности и выражается в процентах, чтобы показать эффективность распределения мощности и связанные с этим потери. Например: завод должен работать на 1000 кВт (рабочая мощность), а электросчетчик, подключенный к источнику питания, показывает 1250 кВА (полная мощность, которая измеряется в киловольт-амперах или кВА, и составляет используется для выражения энергии индуктивным нагрузкам, таким как катушки двигателей, провода и т. д.). Таким образом, коэффициент мощности для этого завода составляет 1000/1250 = 0,8 или 80%, что означает, что только 80% тока, подаваемого на завод, используется для полезной работы, а 20% теряется на тепло и другие виды неэффективности. Инженеры могут помочь восстановить эти потери, используя синхронные двигатели, чтобы «опередить» коэффициент мощности или вырабатывать энергию обратно в систему (помните, что двигатели также могут работать как электрические генераторы, если им дано вращение на входе). Часто синхронные двигатели работают в паре с асинхронными двигателями для коррекции индуктивных потерь мощности асинхронного двигателя, что представляет собой еще одно огромное преимущество синхронных двигателей.

Наконец, общей чертой синхронных и асинхронных двигателей является их ценовое разделение. По причинам, описанным ранее, синхронные двигатели дороже в производстве, внедрении, обслуживании и ремонте, чем асинхронные двигатели. Однако можно утверждать, что их способность к экономии энергии и коррекции коэффициента мощности может компенсировать более высокие начальные затраты. Верно ли это, будет в конечном итоге зависеть от конкретных приложений, но это следует учитывать, поскольку общие затраты жизненного цикла всегда должны быть минимизированы в любом проекте.

Сводка

В этой статье представлено краткое сравнение асинхронных двигателей переменного тока и синхронных двигателей. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://geosci.uchicago.edu
  2. http://nit-edu.org/wp-content/uploads/2019/06/ch-38-Synchronous-motor.pdf
  3. http: // www.egr.unlv.edu/~eebag/Synchronous%20Generator%20I.pdf
  4. http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
  5. http://electricalacademia.com/induction-motor/torque-speed-characteristics-induction-motor/

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *