УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ — это… Что такое УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ?
УДЕЛЬНОЕ СОПРОТИВЛЕНИЕ электрическое, физическая величина , равная электрическому сопротивлению (см. СОПРОТИВЛЕНИЕ ЭЛЕКТРИЧЕСКОЕ) R цилиндрического проводника единичной длины (l = 1м) и единичной площади поперечного сечения (S =1 м2)..r = R S/l.
В Си единицей удельного сопротивления является Ом.м.
Удельное сопротивление могут выражать также в Ом.см.
Удельное сопротивление является характеристикой материала, по которому протекает ток, и зависит от материала, из которого он изготовлен. Удельное сопротивление, равное r = 1 Ом.м означает, что цилиндрический проводник, изготовленный из данного материала, длиной l = 1м и с площадью поперечного сечения S = 1 м2 имеет сопротивление R = 1 Ом.м.
Величина удельного сопротивления металлов (см. МЕТАЛЛЫ), являющихся хорошими проводниками (см. ПРОВОДНИКИ), может иметь значения порядка 10-8 – 10-6Ом
Величина s, обратная удельному сопротивлению , называется удельной проводимостью:
s = 1/r
Удельная проводимость измеряется в сименсах (см. СИМЕНС (единица проводимости)) на метр См/м.
Удельное электрическое сопротивление (проводимость) является скалярной величиной для изотропного вещества; и тензорной — для анизотропного вещества.
От чего зависит удельное сопротивление проводника. Большая энциклопедия нефти и газа
Cтраница 2
Температурная зависимость сопротивления металлических проводников широко используется в технике для создания термометров сопротивления. Помещая в печь спираль известного сопротивления 7.0 и измеряя ее сопротивление Rt, можно согласно (15.10) определить температуру i печи. С другой стороны, эта температурная зависимость оказывает вредное влияние на работу точных электроизмерительных приборов, меняя сопротивление последних при изменении внешних условий.
Согласно электронной теории сопротивление металлических проводников электрическому току возникает вследствие того, что носители тока — электроны проводимости при своем движении испытывают соударения с ионами кристаллической решетки. При этом движущиеся электроны передают ионам часть своей энергии, приобретенной ими при свободном пробеге в электрическом поле. Различие в сопротивлении различных металлов объясняется различием величины среднего свободного пробега электронов и количества свободных электронов в единице объема металла.
С повышением температуры сопротивление металлических проводников увеличивается, а с понижением — уменьшается.
При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R Ro (1 — f — 0 004&), где / 4 — сопротивление при 0 С и & — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 10 ом, равномерно нагревается от 8j 20 до 02 200 в течение 10 мин. В это время по нему идет ток под напряжением в 120 в.
Согласно электронной теории сопротивление металлических проводников электрическому току возникает вследствие того, что носители тока — электроны проводимости при своем движений испытывают соударения с ионами кристаллической решетки. При этом движущиеся электроны передают ионам часть своей энергии, приобретенной ими при свободном пробеге в электрическом поле. Различие в сопротивлении различных металлов объясняется различием величины среднего свободного пробега электронов и количества свободных электронов в единице объема металла.
От чего зависит сопротивление металлического проводника.
При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R RQ (l 0 0040), где Д0 — сопротивление при 0 С и 9 — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 100м, равномерно нагревается от 0г 20 до 02 200 в течение 10 мин.
С увеличением температуры сопротивление металлических проводников увеличивается, а при уменьшении — уменьшается.
При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R — R0 (l — f 0 0046), где Ro — сопротивление при О GC и 6 — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 10 Ом, равномерно нагревается от 8i 20 до 62 200Э в течение 10 мин. В это время по нему идет ток под напряжением в 120 В.
Опыты показывают, что сопротивление металлических проводников зависит от размеров проводника и материала, из которого изготовлен проводник.
Какое явление приводит к увеличению сопротивления данного металлического проводника.
АР и КР, определяется соотношением сопротивлений металлических проводников между рамой и катодом, с одной стороны, и между рамой и анодом, с другой стороны. Если подобрать сопротивление проводника, соединяющего раму с анодом, так, чтобы каждое из значений АР и КР находилось в пределах 0 8 — 1 5 в (при напряжении на ячейке 2 3 в), то рама не сможет участвовать в электрохимическом процессе и на ее поверхности не будут выделяться газообразные водород или кислород. Если же соединить раму с анодом при помощи проводника малого сопротивления, потенциал рамы может настолько сдвинуться в анодную сторону, что поверхность рамы включится в электрохимическую работу в качестве анода с выделением кислорода в катодное пространство и загрязнением водорода кислородом.
Метод сопротивления основан на учете изменения сопротивления металлического проводника от его температуры.
Общее сопротивление заземляющего устройства складывается из сопротивлений металлических проводников, заземляющих спусков и сопротивления, которое земля оказывает растеканию электрического тока. Активное сопротивление металлических проводников и заземляющих спусков настолько мало по сравнению с сопротивлением растеканию, что им, как правило, пренебрегают. Поэтому термин сопротивление заземляющего устройства означает не что иное, как сопротивление, которое оказывает прохождению электрического тока земля, окружающая металлические проводники. В процессе стекания тока в землю за-землитель приобретает по отношению к удаленным точкам земли потенциал, равный по своей величине падению напряжения, которое вызывается проходящим в земле током.
Cтраница 1
Удельное сопротивление проводника зависит от температуры, давления, материала и др., вследствие чего от этих же факторов зависит и сопротивление проводника. Наибольшее практическое значение имеет зависимость удельного сопротивления, а следовательно, и сопротивления проводника, от температуры. В общем случае эта зависимость достаточно сложна.
Удельное сопротивление проводников является величиной не постоянной, а зависящей от температуры. Для всех металлов сопротивление увеличивается с увеличением температуры. При небольших колебаниях температуры зависимость удельного сопротивления от температуры следует линейному закону. Для каждого металла существует определенный температурный коэффициент сопротивления а, который определяет собой изменение удельного сопротивления проводника, отнесенное к одному ому при повышении температуры на ГС.
Удельное сопротивление проводников лежит в пределах от 10 — 6 до 10 — 2 ом-см, а технических диэлектриков от 109 до 1020 ом-см. Эти пределы в известной мере условны, но приближенно отражают установившиеся в технике представления.
Удельное сопротивление проводника представляет собой сопротивление провода длиной I м и площадью поперечного сечения 1 мм2 при температуре 20 С.
Удельное сопротивление проводников и непроводников зависит от температуры.
Удельное сопротивление проводников первого рода зависит от температуры. Как правило, с ростом температуры оно повышается. Исключение составляют графит и уголь.
Чем меньше удельное сопротивление проводника, тем меньшее количество тепла (при том же токе) в нем выделяется. При состоянии сверхпроводимости, когда удельное сопротивление становится неизмерим э малым, в проводнике при прохождении тока не выделяется сколько-нибудь заметного количества тепла. Так как при этом энергия тока никуда не тратится, то раз возбужденный в замкнутом сверхпроводнике то; поддерживается в нем неопределенно долго без затраты энергии извне.
Изменение удельного сопротивления проводника под действием растягивающих или сжимающих усилий называют тензорезистивным эффектом. Он характеризуется тензочувст-вительностью, устанавливающей связь между относительным изменением сопротивления и относительной деформацией.
Здесь р — удельное сопротивление проводника, остальные обозначения расшифрованы в предыдущей задаче.
От чего зависит удельное сопротивление проводника.
Если бы величина удельного сопротивления проводника р не зависела от его температуры, соотношение между допустимой плотностью тока / 1ДОп и допустимым превышением температуры проводника при коротком замыкании было бы относительно простым. В действительности удельное сопротивление р изменяется с нагревом проводника, и соотношение между плотностью тока и превышением температуры получается более сложным.
Чтобы повысить величину удельного сопротивления проводников, применяют сплавы нескольких металлов. Установлено, что только сплавы с неупорядоченной структурой обладают повышенными значениями удельного сопротивления и малыми значениями температурного коэффициента сопротивления. Сплавами с неупорядоченной структурой называются такие, в кристаллической решетке которых нет правильного чередования атомов металлов, составляющих сплав. Эти сплавы составляют группу проводниковых материалов с большим удельным сопротивлением и малыми значениями температурного коэффициента удельного сопротивления. Все перечисленные группы проводников обладают высокой пластичностью, позволяющей получать провода диаметром до 0 01 мм и ленты толщиной 0 05 — 0 1 мм.
Сопротивление проводника зависит от его размеров и формы, а также от материала, из которого проводник изготовлен.
Для однородного линейного проводника сопротивление R прямо пропорционально его длине ℓ и обратно пропорционально площади его поперечного сечения S:
где ρ — удельное электрическое сопротивление, характеризующее материал проводника.
§ 13.4 Параллельное и последовательное соединение проводников
При последовательном соединении проводников
а) сила тока на всех участках цепи одинакова, т.е.
б) общее напряжение в цепи равно сумме напряжений на отдельных её участках:
в) общее сопротивление цепи равно сумме сопротивлений отдельных проводников:
или
(13.23)
При параллельном соединении проводников выполняются следующие три закона:
а) общая сила тока в цепи равно сумме сил токов в отдельных проводниках:
б) напряжение на всех параллельно соединённых участках цепи одно и то же:
в) величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлению каждого из проводников в отдельности:
или
(13.24)
§ 13.5 Разветвленные электрические цепи. Правила Кирхгофа
При решении задач, наряду с законом Ома, удобно использовать два правила Кирхгофа. При сборке сложных электрических цепей в некоторых точках сходятся несколько проводников. Такие точки называют узлами.
Первое правило Кирхгофа основано на следующих соображениях. Токи, втекающие в данный узел, приносят в него заряд. Токи, вытекающие из узла, уносят заряд. Заряд в узле накапливаться не может, поэтому величина заряда, поступающего в данный узел за некоторое время, в точности равна величине уносимого из узла заряда за то же самое время. Токи, втекающие в данный узел, считаются положительными, токи, вытекающие из узла, считаются отрицательными.
Согласно первому правилу Кирхгофа , алгебраическая сумма сил токов в проводниках, соединяющихся в узле, равна нулю .
(13.25)
I 1 + I 2 + I 3 +….+ I n =0
I 1 +I 2 =I 3 + I 4
I 1 + I 2 — I 3 — I 4 =0
Второе правило Кирхгофа: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура .
(13.26)
Это правило особенно удобно применять в том случае, когда проводящем контуре содержится не один, а несколько источников тока (рис.13.8).
При использовании этого правила направления токов и обхода выбираются произвольно. Токи, текущие вдоль выбранного направления обхода контура, считаются положительными, а идущие против направления обхода –отрицательными. Соответственно положительными считаются ЭДС тех источников, которые вызывают ток, совпадающий по направлению с обходом контура.
ε 2 –ε 1 =Ir 1 +Ir 2 +IR (13.27)
Сопротивление грунта и заземление
Удельное сопротивление грунта — это главный параметр, который влияет на конструкцию заземляющего устройства: количество и длину заземляющих электродов. Физически оно равняется электрическому сопротивлению, которое грунт оказывает току при прохождении им расстояния между противоположными гранями условного куба объёмом 1 куб. м.; размерность Ом*м. Удельное сопротивление зависит от многих факторов: состава и структуры грунта, его плотности, влажности, температуры, наличия примесей – солей, кислот, щелочей. Все эти параметры изменяются в течение года, поэтому соответствующим образом меняется и сопротивление грунта. Данный факт нужно учитывать при проведении замеров, расчётов, а также при измерении сопротивления растеканию смонтированного заземляющего устройства.
Сопротивление грунта и сопротивление заземления
Чем ниже значение удельного сопротивления грунта, тем лучше электрический ток растекается в среде, и тем меньше получится сопротивление заземляющего устройства. Низкое сопротивление заземления обеспечивает поглощение грунтом токов повреждений, токов утечки и молниевых токов, что предотвращает их нежелательное протекание по проводящим частям электроустановок и защищает контактирующих с ними людей от поражения электрическим током, а оборудование — от помех и нарушений работы. Заземляющее устройство обязательно должно быть дополнено правильно организованной системой уравнивания потенциалов.
Такие объекты, как жилой дом и линия электропередачи не требуют столь низкого сопротивления заземления, как, например, подстанции и сооружения с большим объёмом информационного и коммуникационного оборудования: ЦОД, медицинские центры и объекты связи. Более низкое сопротивление заземляющего устройства можно обеспечить растеканием тока с большего количества электродов, при том что высокое сопротивления грунта приводит к ещё большему увеличению габаритов заземлителя.
Норма сопротивления заземляющего устройства определяется ПУЭ 7 изд. раздел 1.7. — для электроустановок разных классов напряжения, пункты 2.5.116-2.5.134 — для линий электропередачи, а также другими отраслевыми стандартами и документацией к аппаратам и приборам.
Удельное сопротивление преимущественно зависит от типа грунта. Так, «хорошие» грунты, обладающие низким сопротивлением — это глина, чернозём (80 Ом*м), суглинок (100 Ом*м). Сопротивление песка сильно зависит от содержания влаги и колеблется от 10 до 4000 Ом*м. У каменистых грунтов оно легко может достигать нескольких тысяч Ом*м: у щебенистых — 3000-5000 Ом*м, а у гранита и других горных пород — 20000 Ом*м.
Удельное сопротивление грунтов в России
Среднее удельное сопротивление часто встречающихся на территории России грунтов приведено в таблице на странице, посвященной удельному сопротивлению грунта
Принять тип грунта можно по карте почв на территории России (для просмотра карты в полном размере, щёлкните на ней).
Значения, приведённые в таблицах справочные и подходят только для ориентировочного расчёта в том случае, когда другая информация отсутствует. Для того чтобы получить точное значение удельного сопротивления, необходимо проводить изыскательные работы. Замеры грунта проводятся в полевых условиях методом амперметра-вольтметра, а также путем измерения инженерно-геологических элементов (ИГЭ), проведенных на разной глубине методом вертикально электрического зондирования (ВЭЗ). Значения, полученные этими двумя способами, могут значительно отличаться, также, как отличаются характеристики грунта незначительно удаленных точек на местности. Поэтому, чтобы исключить ошибку в расчетах необходимо брать максимальный из результатов этих двух методов при приведении к однослойной расчётной модели. Если для расчётов необходимо привести грунт к двухслойной модели, то использовать можно только метод ВЭЗ.
Сезонное изменение сопротивления грунта и его учёт
Для учёта сезонных изменений и влияния природных явлений «Руководство по проектированию, строительству и эксплуатации заземлений в установках проводной связи и радиотрансляционных узлов» оперирует коэффициентом промерзания, который предписывается определенной климатической зоне России и коэффициентом влажности, учитывающим накопленную грунтом влагу и количество осадков, выпавших перед измерением. РД 153-34.0-20.525-00 при определении сопротивления заземляющего устройства подстанций использует сезонный коэффициент.
При пропитывании почвы водой, удельное сопротивление может снижаться в десятки раз, а при промерзании в разы увеличиваться. Поэтому, в зависимости от того, в какое время года были выполнены измерения, необходимо учитывать данные коэффициенты.
Это позволит предотвратить превышения нормы заземляющего устройства в результате изменений удельного сопротивления; нормируемое значение в соответствии с ПУЭ 7 изд. должно обеспечиваться при самых неблагоприятных условиях в любое время года.
При увеличении габаритов заземляющего устройства влияние сезонных изменений значительно снижается. Если заземлитель имеет горизонтальные размеры порядка 10 метров, то его сопротивление в течение года может изменяться в десятки и сотни раз, тогда как сопротивление заземлителя габаритами 100-200 метров изменяется всего лишь в 2 раза. Это связано с тем, что глубина растекания тока соизмерима с габаритами горизонтального заземлителя.Таким образом, распространенная в горизонтальном направлении конструкция действует на глубинные слои почвы, часто обладающие низким удельным сопротивлением в любое время года.
«Сложные грунты» с высоким удельным сопротивлением
Некоторые типы грунта имеют крайне высокое удельное сопротивление. Его значение для каменистых грунтов достигает нескольких тысяч Ом*м при том, что организация заземляющего устройства в такой среде связана с множеством трудностей – значительными затратами материалов и объёмами земляных работ. Из-за твердых включений практически невозможно использовать вертикальные электроды без применения бурения. Пример заземления в условиях каменистого грунта приведён на странице.
Возможно, ещё более сложный случай – это вечномерзлый грунт. При понижении температуры удельное сопротивление резко возрастает. Для суглинка при +10 С° оно составляет около 100 Ом*м, но уже при -10 С° может достигать 500 — 1000 Ом*м. Глубина промерзания вечномерзлого грунта бывает от нескольких сот метров до нескольких километров, при том что в летнее время оттаивает лишь верхний слой незначительной толщины: 1-3 м. В результате круглый год вся зона эффективного растекания тока будет иметь значительное удельное сопротивление – порядка 20000 Ом*м в вечномерзлом суглинке и 50000 Ом*м в вечномерзлом песке. Это чревато организацией заземляющего устройства на огромной площади, либо применением специальных решений, например, таких как электролитическое заземление. Для наглядного сравнения, пройдя по ссылке, можно посмотреть расчёт в вечномерзлом грунте.
Решения по достижению необходимого сопротивления
Традиционные способы
В хороших грунтах, как правило, устанавливается традиционное заземляющее устройство, состоящее из горизонтальных и вертикальных электродов.
Использование вертикальных электродов несет важное преимущество. С увеличением глубины удельное сопротивление грунта «стабилизируется». В глубинных слоях оно в меньшей степени зависит от сезонных изменений, а также, благодаря повышенному содержанию влаги, имеет более низкое сопротивление. Такая особенность очень часто позволяет значительно снизить сопротивление заземляющего устройства.
Горизонтальные электроды применяются для соединения вертикальных, также они способствуют ещё большему снижению сопротивления. Но могут использоваться и в качестве самостоятельного решения, когда монтаж вертикальных штырей сопряжен с трудностями, либо когда необходимо организовать заземляющее устройство определенного типа, например, сетку.
Нестандартные способы
В тяжелых каменистых и вечномерзлых грунтах монтаж традиционного заземления сопряжен с рядом проблем, начиная сложностью монтажа из-за специфики местности, заканчивая огромными размерами заземляющего устройства (соответственно — большими объемами строительных работ), необходимыми для соответствия его сопротивления нормам.
В условиях вечномерзлого грунта также имеет место такое явление как выталкивание, в результате которого горизонтальные электроды оказываются над поверхностью уже через год.
Чтобы решить эти проблемы, специалисты часто прибегают к следующим мерам:
- Замена необходимых объёмов на грунт с низким удельным сопротивлением (несет ограниченную пользу в случае вечномерзлого грунта, т.к. грунт замены также промерзает). Объемы такого грунта часто очень велики, и не всегда приводят к ожидаемым результатам, т.к. зона действия заземлителя вглубь практически равна его горизонтальным размерам, поэтому влияние верхнего слоя может быть незначительным.
- Организация выносного заземлителя в очагах с низким удельным сопротивлением, что позволяет установить заземлитель на удалении до 2 км.
- Применение специальных химических веществ – солей и электролитов, которые снижают удельное сопротивление мерзлого грунта. Данное мероприятие необходимо проводить раз в несколько лет из-за процесса вымывания.
Одним из наиболее предпочтительных решений в тяжелых условиях является электролитическое заземление, оно сочетает химическое воздействие на грунт (снижение его удельного сопротивления) и замену грунта (уменьшение влияния промерзания). Электролитический электрод наполнен смесью минеральных солей, которые равномерно распределяются в рабочей области и снижают её удельное сопротивление. Данный процесс стабилизируется с помощью околоэлектродного заполнителя, который делает процесс выщелачивания солей равномерным. Применение электролитического заземления позволяет избежать проблем организации традиционного заземляющего устройства, значительно уменьшает количество оборудования, габариты заземлителя и объёмы земляных работ.
Заключение
При проектировании заземляющего устройства необходимо иметь достоверные данные об удельном сопротивлении грунта на месте строительства. Точную информацию можно получить только с помощью изысканий и измерений на местности, но по разным причинам бывает, что возможности их провести нет. В таком случае можно воспользоваться справочными таблицами, но стоит принять во внимание, что расчёт будет носить ориентировочный характер.
Независимо от того, каким образом получены значения удельного сопротивления, нужно внимательно рассматривать все влияющие факторы. Важно учесть пределы, в которых удельное сопротивление может меняться, чтобы сопротивление заземляющего устройства никогда не превышало норму.
Смотрите также:
Смотрите также:
Министерство образования Республики Беларусь
%PDF-1.6 % 1 0 obj > /Metadata 4 0 R /OCProperties > > > ] /ON [ 5 0 R ] /Order [ ] /RBGroups [ ] >> /OCGs [ 5 0 R ] >> /Pages 7 0 R /StructTreeRoot 27 0 R /Type /Catalog >> endobj 2 0 obj >> endobj 3 0 obj > /Font > >> /Fields [ ] >> endobj 4 0 obj > stream application/pdf
Каков физический смысл удельного сопротивления? Укажите единицу измерения удельного сопротивления. Как зависит удельное сопротивление (сопротивление) от температуры?
Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность препятствовать прохождению электрического тока. Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм²/м. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м². В технике часто применяется в миллион раз меньшая производная единица: Ом·мм²/м, равная 10−6 от 1 Ом·м: 1 Ом·м = 1·106 Ом·мм²/м. Физический смысл удельного сопротивления в технике: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв.мм. Величина удельного сопротивления обозначается греческой буквой . Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры; изменяется их концентрация при нагревании проводника. Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами: ρt=ρ0(1+αt), Rt=R0(1+αt), где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
18. Метод магнетрона для определения удельного заряда электрона (e/m)? Почему при некотором значении тока через соленоид электроны не достигают анода?
Существуют различные методы определение отношения , в основе которых лежат результаты исследования движения электрона в электрическом и магнитном полях. Один из них – метод магнетрона. Называется он так потому, что конфигурация полей в нем напоминает конфигурацию полей в магнетронах – генераторах электромагнитных колебаний сверхвысоких частот. Сущность метода состоит в следующем: специальная двухэлектродная электронная лампа, электроды которой представляют собой коаксиальные цилиндры, помещается внутри соленоида так, что ось лампы совпадает с осью соленоида. Электроны, вылетающие из катода лампы, при отсутствии тока в соленоиде движутся радиально к аноду. При подключении тока к соленоиду в лампе создается магнитное поле, параллельное оси лампы, и на электроны начинает действовать магнитная сила где e — величина заряда электрона; — скорость электрона; — индукция магнитного поля. Под действием этой силы, направленной в каждый момент времени перпендикулярно вектору скорости, траектория электронов искривляется. При определенном соотношении между скоростью электрона и индукцией магнитного поля электроны перестают поступать на анод, и ток в лампе прекращается. Экспериментально определив , можно вычислить величину . Для нахождения в лампе следует установить разность потенциалов между анодом и катодом и, включив ток в соленоиде, постепенно наращивать его, что увеличивает магнитное поле в лампе. Если бы все электроны покидали катод со скоростью равной нулю, то зависимость величины анодного тока от величины индукция магнитного поля имела бы вид. В этом случае при все электроны, испускаемые катодом, достигали бы анода, а при ни один электрон не попадал бы на анод. Однако некоторая некоаксиальность катода и анода, наличие остаточного газа в лампе, падение напряжения вдоль катода, неоднородность поля соленоида по высоте анода и т.д. приводят к тому, что критические условия достигаются для разных электронов при различных значениях . Все же перелом кривой останется достаточно резким и может быть использован для определения . , которое называют критическим.
Зависимость сопротивления проводника от температуры. Сверхпроводимость
Зависимость сопротивления проводника от температуры. Сверхпроводимость
- Подробности
- Просмотров: 763
«Физика — 10 класс»
Какую физическую величину называют сопротивлением
От чего и как зависит сопротивление металлического проводника?
Различные вещества имеют разные удельные сопротивления. Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.
Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.
Если при температуре, равной 0 °С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:
Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.
Температурный коэффициент сопротивления — величина, равная отношению относительного изменения сопротивления проводника к изменению его температуры.
Он характеризует зависимость сопротивления вещества от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К (на 1 °С).
Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов
У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них α < 0. Например, для 10%-ного раствора поваренной соли α = -0,02 К-1.
При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения Вычисления приводят к следующему результату:
ρ = ρ0(1 + αt), или ρ = ρ0(1 + αΔТ), (16.2)
где ΔТ — изменение абсолютной температуры.
Так как а мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 16.2).
Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.
У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10-5 К-1; удельное сопротивление Константина велико: ρ ≈ 10-6 Ом • м. Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.
Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10-3 К-1. Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления.
На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, — термисторы. Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.
Обычно в качестве основного рабочего элемента термометра сопротивления берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить.Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Сверхпроводимость.
Сопротивление металлов уменьшается с уменьшением температуры. Что произойдёт при стремлении температуры к абсолютному нулю?
В 1911 г. голландский физик X. Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля (рис. 16.3).
Явление падения до нуля сопротивления проводника при критической температуре называется сверхпроводимостью.
Открытие Камерлинг-Оннеса, за которое в 1913 г. ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже было открыто много других сверхпроводников.
Сверхпроводимость многих металлов и сплавов наблюдается при очень низких температурах — начиная примерно с 25 К. В справочных таблицах приводятся температуры перехода в сверхпроводящее состояние некоторых веществ.
Температура, при которой вещество переходит в сверхпроводящее состояние, называется критической температурой.
Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово имеет структуру алмаза с кубической кристаллической решёткой и является полупроводником, а белое олово обладает тетрагональной элементарной ячейкой и является серебристо-белым, мягким, пластичным металлом, способным при температуре, равной 3,72 К, переходить в сверхпроводящее состояние.
У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств, так что правильнее говорить не о сверхпроводящем состоянии, а об особом, наблюдаемом при низких температурах состоянии вещества.
Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается.
Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения тепла в сверхпроводящей обмотке не происходит.
Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано и током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превысить которое, не нарушая сверхпроводящего состояния, нельзя.
Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскалённого ионизованного газа, движущегося в магнитном поле, в электрическую энергию.
Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г. американскими учёными Дж. Бардиным, Л. Купером, Дж. Шриффером и советским учёным, академиком Н. Н. Боголюбовым.
В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).
Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозится необходимостью охлаждения проводников до температур кипения дорогого газа — гелия.
Физический механизм сверхпроводимости довольно сложен. Очень упрощённо его можно объяснить так: электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.
Надо надеяться, что удастся создать сверхпроводники и при комнатной температуре. Генераторы и электродвигатели станут исключительно компактными (уменьшатся в несколько раз) и экономичными. Электроэнергию можно будет передавать на любые расстояния без потерь и аккумулировать в простых устройствах.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика
Электрическая проводимость различных веществ. Электронная проводимость металлов — Зависимость сопротивления проводника от температуры. Сверхпроводимость — Электрический ток в полупроводниках. Собственная и примесная проводимости — Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы — Электрический ток в вакууме. Электронно-лучевая трубка — Электрический ток в жидкостях. Закон электролиза — Электрический ток в газах. Несамостоятельный и самостоятельный разряды — Плазма — Примеры решения задач по теме «Электрический ток в различных средах»
Зависимость сопротивления проводника от температуры: график, видео, формулы
Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.
Металлы
Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.
где:
- Металлическая проволока
- Батарея
- Амперметр
Зависимость указывается и обосновывается формулами:
Из этих формул следует, что R проводника определяется по формуле:
Пример зависимости сопротивления металлов от температуры предоставлен на видео:
Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.
Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.
Газы
Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.
Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.
Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.
Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.
Если приложить напряжение между катодом и анодом, то возникает проводимость газов.
Жидкости
Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.
где:
- Электролит
- Батарея
- Амперметр
Зависимость воздействия электролитов от нагревания прописывает формула:
Где а – отрицательный температурный коэффициент.
Как зависит R от нагрева (t) показано на графике ниже:
Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.
Полупроводники
А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.
Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.
Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:
- если температура элемента меньше нуля, то такие проводники используются в качестве реле;
- чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.
Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.
Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, как сделать термоэлектрический генератор своими руками.
Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.
Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:
Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.
Вот мы и рассмотрели зависимость сопротивления проводника от температуры. Надеемся, предоставленная информация была для вас понятной и полезной!
Наверняка вы не знаете:
ВведениеВажно понимать, как удельное электрическое сопротивление (или проводимость) соотносится с реальными геологическими свойствами земли. Ниже приведены вопросы, на которые он может помочь ответить:
В этой главе электрические свойства геологических материалов обсуждаются отдельно для металлических минералов, горных пород, почв и электролитов (грунтовых жидкостей). Что такое сопротивление?Электропроводность (или удельное сопротивление) — это объемное свойство материала, описывающее, насколько хорошо этот материал позволяет электрическим токам проходить через него.
Электропроводность материалов Земли варьируется на многие порядки. Это зависит от многих факторов, в том числе от типа породы, пористости, связности пор, природы флюида и содержания металлов в твердой матрице.На следующем рисунке показан очень приблизительный диапазон проводимости горных пород и минералов. Напоминание об этом разделе описывает факторы, влияющие на электрическую проводимость минералов, горных пород, флюидов в земле, почв Электропроводность металлических минераловМеталлические рудные минералы относительно редко встречаются по сравнению с другими материалами земной коры. Однако они часто становятся целью разведки полезных ископаемых.Даже в небольших количествах они могут существенно повлиять на объемное удельное сопротивление геологических материалов. Большинство металлических рудных минералов являются электронными полупроводниками. Их удельное сопротивление ниже, чем у металлов, и сильно варьируется, потому что включение примесных ионов в конкретный металлический минерал имеет большое влияние на удельное сопротивление. Например, чистый пирит имеет удельное сопротивление около 3х10 -5 Ом · м, но добавление небольших количеств меди может увеличить удельное сопротивление на шесть порядков до 10 Ом · м.Свойства электропроводности некоторых важных минералов можно резюмировать следующим образом:
Хотя металлические минералы (особенно сульфиды) могут быть проводящими, есть по крайней мере две причины, по которым залежи этих минералов с содержанием руды могут быть не такими проводящими, как ожидалось.
Электрические свойства горных породИз всех геофизических свойств горных пород удельное электрическое сопротивление является наиболее изменчивым.Могут встречаться значения, варьирующиеся до 10 порядков, и даже отдельные типы горных пород могут отличаться на несколько порядков. Следующий рисунок представляет собой типичную диаграмму (адаптированную из Palacky , 1987), которая в очень общем виде показывает, как удельные сопротивления важных групп горных пород сравниваются друг с другом. Этот тип рисунков приводится в большинстве текстов по прикладной геофизике.
Большая часть наших знаний об удельном сопротивлении пористых пород пришла из индустрии каротажа нефтяных / газовых скважин. Влияние других жидкостей, кроме воды, закона Арчи, фактора образования и т. Д. Подробно описано в следующих нескольких разделах. Электролиты в землеЭлектропроводность жидкостей зависит от количества и подвижности (скорости) носителей заряда.Подвижность зависит от вязкости жидкости (следовательно, от температуры) и диаметра носителей заряда. Температурная зависимость значительна. Для растворов хлорида натрия изменение проводимости составляет примерно 2,2% на градус C. Таким образом, изменение на 40 o C удваивает проводимость. На иллюстрации, показывающей проводимость вод Великих озер (ниже), сравните проводимость в магматических (западных) и осадочных (восточных) регионах и обратите внимание на зависимость проводимости от температуры этих озерных вод. Типичная проводимость электролитов и примеры из Великих озер.
, где R — удельное сопротивление, t — температура, а a — приблизительно 0.025, где R 18C — удельное сопротивление при комнатной температуре (18 градусов C). Напомним, что удельное сопротивление = 1 / проводимость. Влияние пористостиНасыщенные чистые (без глины) почвы или горные породы: Эмпирическая формулаАрчи связывает пористость и проводимость воды с объемной проводимостью для различных консолидированных горных пород, а также для неконсолидированных материалов. Формула Арчи или «закон» выражается несколькими способами.Одна из версий: x — объемная проводимость, 1 — проводимость связанной воды, n — пористость (представленная в виде доли от общего объема) и м — постоянная величина. Значение м около 1,2 подходит для сферических частиц, а значение около 1,85 используется для пластинчатых частиц. Для песков этот параметр обычно составляет 1,4 — 1,6. Другой способ выражения отношения Арчи, более широко используемый в нефтегазовой отрасли каротажа скважин: F = 1/ м , где F , «коэффициент пласта », равен F = Ro / Rw, Ro — это объемное удельное сопротивление, если поровое пространство на 100% заполнено рассолом (связанной водой), Rw — это удельное сопротивление самой связанной воды и пористость.Как всегда, не запутайтесь при использовании удельной проводимости или удельного сопротивления — они просто взаимны друг с другом. С помощью электронной таблицы легко изучить, как уравнения Арчи определяют взаимосвязь пористости и удельного сопротивления в различных материалах.
В фуникулерной зоне почв (рисунок справа) влага не полностью заполняет поровые пространства, но пути проводимости все же существуют.Можно использовать закон, аналогичный закону Арчи, где n теперь является долей объема пор, заполненной электролитом, а не пористостью, а m = 2 . Таким образом, проводимость оказывается очень низкой при низком содержании влаги. Однако «смачивание» материала имеет решающее значение для воздействия на проводимость, а слегка влажные материалы намного более проводящие, чем сухие. Отношение, показанное ниже, аналогично формуле Арчи и дает водонасыщенность, S W , в чистых (без глины) пластах, где — пористость, w — удельное сопротивление воды, t — полное удельное сопротивление. , а a и m являются константами, рассчитанными эмпирическим путем.Это соотношение сложно использовать и определенно не применимо к грязному (глинистому) материалу. Следовательно, водонасыщенность может быть оценена, если
Это похоже на определение водонасыщенности, Sw , когда часть порового пространства заполнена нефтью или газом, как это часто делается, с использованием данных каротажа в углеводородных коллекторах. Удельное сопротивление грунтовЭлектропроводность грунтов довольно сложна, на насыпные свойства влияют многие факторы. Следующий материал не включен в большинство текстов по прикладной геофизике, но он важен, поскольку грунты обычно (за исключением скважинных работ) являются наиболее близким материалом к исследовательским электродам. Поэтому почвы имеют большое влияние на результаты. Как отмечалось выше, первичным эталоном является Geonics TN5, 1980. Пористость колеблется от 20% до 70% для большинства неконсолидированных материалов (т.е. для грунтов). Однако нечасто иметь большой диапазон пористости в одной ситуации. Как отмечалось выше, пористость является основным свойством, связанным с удельным сопротивлением, отсюда трудности в различении песка и гравия с одинаковой пористостью. Влияние промерзания на проводимость почвПонижение температуры снижает электролитическую активность и, следовательно, проводимость.На рисунке справа показан этот эффект с точки зрения удельного сопротивления. При замерзании проводимость воды становится очень низкой, как у льда. Однако замораживание редко бывает простым. Пресная вода замерзает при более высокой температуре, чем соленая. Поэтому растворенные вещества имеют тенденцию концентрироваться в зоне незамерзшей соленой воды, прилегающей к частицам почвы. Кроме того, электрическое поле катионов a d , сорбированных на частицах почвы, локально ориентирует молекулы воды рядом с частицей, предотвращая их замерзание. Чистый эффект — небольшое и устойчивое уменьшение проводимости по мере приближения температуры к нулю, затем выравнивание до 0 градусов и дальнейшее снижение ниже точки замерзания. Коллоидная проводимость(проводимость за счет глины) Сложность и разнообразие типов почв проиллюстрировано на тройной диаграмме внизу слева. Для изменения электрических свойств почвы не нужно много глины. Любой мелкозернистый минерал обладает определенной катионообменной емкостью (CEC).То есть заряды (катионы) могут быть сорбированы (прикреплены к поверхности) на слегка отрицательно заряженной поверхности, и впоследствии они могут быть обменены или растворены.
Поскольку глина имеет огромное отношение площади поверхности к объему, она имеет гораздо более высокую обменную способность.Особенно это касается глин вермикулита и монтмориллонита. Следовательно, глины могут значительно увеличить проводимость связанной воды, особенно пресной. Соленая вода может не обладать большей способностью поглощать лишние электролиты. Анизотропный грунт
Вертикально анизотропный грунт: Горизонтально анизотропный грунт: Эффект, противоречащий интуиции: Почему возникает анизотропия:
, где Дж, — это векторная плотность тока, Дж, и , — это составляющая плотности тока i th , E — вектор электрического поля, В, — напряжение, а ik — . ik th компонента тензора проводимости.В однородной земле с одиночными токовыми и потенциальными электродами выражение для В с точки зрения удельного сопротивления и расстояния от источника тока будет. В анизотропном грунте есть как горизонтальные, так и вертикальные удельные сопротивления. Выражение для напряжения в терминах горизонтально и вертикально ориентированных удельных сопротивлений и расстояния называется коэффициентом анизотропии (введено выше в разделе «Вертикально анизотропная земля»). В таблице справа приведены некоторые значения лямбда , встречающиеся в обычных геологических материалах. Аспекты почвообразования, влияющие на электрические свойства почвСтоит обсудить формирование грунтов, чтобы лучше понять, что задействовано при прогнозировании электрических свойств приповерхностных материалов и при интерпретации неглубоких геофизических исследований. Это обсуждение не заменяет курс почвоведения, но некоторые вопросы, влияющие на удельное электрическое сопротивление, должны стать более ясными. Как правило, на электрические свойства влияет различное содержание глины, тип иона и концентрация ионов в воде.Ниже приводится краткое описание того, как эти факторы развиваются в почвах. Выветривание включает механические, химические и биологические процессы, которые преобразуют поверхностные материалы в гумус (органическое вещество), глину и мелкозернистые отложения. В присутствии воды и CO 2 горные породы распадаются на ионы (часто растворяются и удаляются дренажом), образуются глинистые минералы, вода расходуется (становится частью глинистых соединений), а растворы становятся более щелочными (т.е. менее кислая).Этот процесс является самовоспроизводящимся, поскольку тонкий слой почвы вызывает более быстрое протекание соответствующих процессов на поверхности породы. Это связано с тем, что слой удерживает воду и CO 2 , который производит слабую угольную кислоту, которая соединяется с компонентами породы с образованием глин.
На влажность почвы влияет несколько факторов. См. Рис. 7 выше:
ПРИМЕЧАНИЕ: описанные здесь процессы являются естественными. При наличии конструкционного материала поверхностное наслоение может быть совершенно другим. Источники
|