Site Loader

Содержание

2.2 Индуктивное сопротивление катушки

Включить звук

Так как самоиндукция препятствует всякому резкому изменению силы тока в цепи, то, следовательно, она представляет собой для переменного тока особого рода сопротивление, называемое индуктивным сопротивлением.

Чисто индуктивное сопротивление отличается от  обычного  (омического)  сопротивления тем, что при прохождении через него переменного тока в нем не происходит потери мощности.

Под чисто индуктивным сопротивлением мы понимаем сопротивление, оказываемое переменному току катушкой, проводник которой не обладает вовсе омическим сопротивлением. В действительности же всякая катушка обладает некоторым омическим сопротивлением. Но если это сопротивление невелико по сравнению с индуктивным сопротивлением, то им можно пренебречь.

При этом наблюдается следующее явление: в течение одной четверти периода, когда ток возрастает, магнитное поле потребляет энергию из цепи, а в течение следующей четверти периода, когда ток убывает, возвращает ее в цепь.

Следовательно, в среднем за период в индуктивном сопротивлении мощность не затрачивается. Поэтому индуктивное сопротивление называется реактивным (прежде его неправильно называли безваттным).

Индуктивное сопротивление одной и той же катушки будет различным для токов различных частот. Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.

Рисунок 2 —  

Зависимость индуктивного сопротивления катушки от частоты переменного тока. 

Реактивное сопротивление катушки возрастает с увеличением частоты тока.

Индуктивное сопротивление обозначается буквой XL и измеряется в Омах.

Подсчет индуктивного сопротивления катушки для переменного тока данной частоты производится по формуле

XL = 2π f L,

где XL — индуктивное сопротивление в Ом;

f—частота переменного тока в Гц;

L — индуктивность катушки в Гн

Как известно, величину 2πf называют угловой частотой и обозначают буквой ω (омега).

Поэтому приведенная выше формула может быть представлена так

XL = ωL.

Отсюда следует, что для постоянного тока (ω = 0) индуктивное сопротивление равно нулю. Поэтому, когда, нужно пропустить по какой-либо цепи постоянный ток, задержав в то же время переменный, то в цепь включают последовательно катушку индуктивности.

Для преграждения пути токам низких звуковых частот ставят катушки с железным сердечником, так называемые дроссели низкой частоты, а для более высоких радиочастот — без железного сердечника, которые носят название дросселей высокой частоты.

2.3 Электрические модели реальных катушек индуктивности

Характеристики идеальной катушки индуктивности будут соответствовать индуктивному элементу схемы замещения.

Реальные катушки индуктивности намотаны из провода, имеющего ненулевое удельное сопротивление, таким образом, чем больше витков содержит катушка, тем будет выше её активное сопротивление, которое, обычно, необходимо учитывать во всём диапазоне частот Следует отметить, что на постоянном токе индуктивная составляющая катушки будет равна нулю, и в качестве схемы замещения можно использовать один резистивный элемент (рисунок 3а).

С ростом частоты возрастёт индуктивное сопротивление катушки, поэтому в схеме замещения появляется индуктивность (рисунок 3б). Еще на более высоких частотах начинает проявляться влияние межвитковой ёмкости (витки выполнены из изолированного провода, таким образом два соседних можно рассматривать как конденсатор) (рисунок 3в).

На сверхвысоких частотах резко возрастает роль индуктивности и ёмкости выводов катушки индуктивности.

а –– на постоянном токе; б –– на низких частотах; в –– на высоких частотах;

Rк –– активное сопротивление катушки; Cп –– паразитная межвитковая ёмкость

Рисунок 3 —  Схема замещения катушки индуктивности

2.4 Параметры элементов схемы замещения на низких частотах

2.4.1 Индуктивность катушки

Согласно ГОСТ Р 52002-2003 и ГОСТ 20715-75 предусмотрены следующие термины и определения индуктивности.

Собственная индуктивность — это скалярная величина, равная отношению потокосцепления самоиндукции элемента электрической цепи к электрическому току в нем

.

Это понятие относится к одной катушке индуктивности или одному ее элементу, которые является одновременно источником магнитного поля и ее приемником.

 Взаимная индуктивность — скалярная величина, равная отношению потокосцепления взаимной индукции одного элемента электрической цепи к току в другом элементе, обусловливающему это потокосцепление

.

Это понятие относится как минимум к двум катушкам индуктивности или к двум элементам одной катушки, одни из которых являются одновременно источником магнитного поля, а другой — ее приемником и наоборот.

Начальная индуктивность катушки — значение индуктивности, определенное при условии отсутствия влияния собственной емкости, изменения начальной проницаемости сердечника и собственной индуктивности. Начальная индуктивность – это собственная индуктивность идеальной катушки. Индуктивность, максимально приближенная к начальной индуктивности опре­деляется на низкой частоте, где практически отсутствует влияние собствен­ной емкости.

Эффективная индуктивность катушки — значение индуктивности, определенное с учетом влияния собственной емкости, собственной индуктивности и изменения начальной проницаемости сердечника.

В настоящее время частично катушки индуктивности также как резисторы и конденсаторы можно отнести к изделиям общего применения. Они производятся на специализированных предприятиях и предназначены для продажи. Однако много катушек проектируют и производят те предприятия, в изделиях которых предполагается их эксплуатация. То есть такие катушки являются изделиями частного применения.

Для катушек обоих типов существует понятие номинальной индуктивности. Номинальная индуктивность — значение индуктивности, являющееся исходной для отсчета отклонений.

Номинальные индуктивности для катушек общего применения регламентируется обычно рядами Е6 и Е12 с допусками 1 %, 2 %, 5 %, 10 %, 20 % и 30 %.

Номинальные индуктивности и допуски для катушек частного применения определяются результатами электрического расчета, представленным в техническом задании на разработку катушки и регламентируются стандартами предприятий или техническими условиями на конкретную аппаратуру.

На практике под индуктивностью катушки обычно имеют ввиду собственную индуктивность. В РЭА применяются катушки с индуктивностью от долей микрогенри (контурные высокочастотные) до десятков генри (дроссели фильтров выпрямителей). Контурные катушки по величине индуктивности изготовляются с точностью от 0,2 до 0,5%, а для других катушек индуктивности допустима точность до 30 %.

Индуктивность катушки пропорциональна линейным размерам обмотки катушки, магнитной проницаемости сердечника, квадрату числа витков намотки и соотношению размеров экрана и обмотки.

В зависимости от вида и типа обмотки существуют различные аналитические или графические алгоритмы расчета ее параметров.

Из теоретической электротех­ники известно следующее выражение для индуктивности длинного соленоида круглого сечения (предполагается = 1)

,

где — магнитная постоянная;

— относительная магнитная проницаемость материала;

— число витков

— длина магнитной силовой линии. Это выражение дает достаточно точный (до 2%) резуль­тат лишь для соленоидов, длина которых от 20 до 30 раз больше диаметра, со сплошной намоткой проводом, имею­щим бесконечно тонкую изоляцию. В реальных соленои­дах (катушках) длина обычно соизмерима с диаметром. Благодаря этому магнитное поле у концов катушки искрив­ляется, крайние витки сцепляются с меньшим числом магнитных силовых линий и фактическая индуктивность оказывается меньше расчетной.

Точный учет этого явления приводит к громоздким, неудобным для практики выражениям. Поэтому для про­стоты в расчетные формулы вводят поправочные коэффи­циенты, величина которых зависит от отношения . Наиболее удобной является следующая формула

,

где — индуктивность, мкГн; —диаметр катушки, см. Значения поправочных коэффициентов для одно­слойных катушек определяются из графиков = f( ).

Емкостное и индуктивное сопротивление в цепи переменного тока; Школа для электриков: Электротехника и электроника

Емкостное и индуктивное сопротивления называются пассивными сопротивлениями. Энергия не тратится на реактивное сопротивление, как на активное. Энергия, запасенная в конденсаторе, периодически отдается обратно источнику, когда электрическое поле в конденсаторе исчезает.

Содержание

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он имеет бесконечное сопротивление, потому что постоянный ток просто не может пройти через диэлектрик между витками, так как диэлектрик по определению не проводит постоянный ток.

Конденсатор разрывает цепь постоянного тока. Однако если тот же конденсатор включить в цепь переменного тока, мы обнаружим, что конденсатор не разрывается полностью, а попеременно заряжается и разряжается, т.е. Электрический заряд перемещается, а ток во внешней цепи поддерживается.

Исходя из теории Максвелла, в этом случае можно сказать, что переменный ток, проходящий внутри конденсатора, замыкается, за исключением того, что в данном случае это реактивный ток. Таким образом, конденсатор в цепи переменного тока действует как своего рода сопротивление конечной величины. Это сопротивление называется емкость ..

Практика давно показала, что величина переменного тока, протекающего через провод, зависит от формы провода и магнитных свойств окружающей среды. Прямой провод будет иметь наибольший ток, но если тот же провод намотать в катушку с большим количеством витков, сила тока будет меньше.

А если в ту же катушку вставить ферромагнитный сердечник, ток еще больше уменьшится. Поэтому проводник имеет не только омическое (активное) сопротивление переменному току, но и некоторое дополнительное сопротивление, которое зависит от индуктивности проводника. Это сопротивление называется индуктивное сопротивление ..

Его физический смысл заключается в том, что изменение тока в проводнике, обладающем определенной индуктивностью, вызывает в этом проводнике ЭДС самоиндукции, которая стремится предотвратить изменение тока, то есть стремится уменьшить ток. Это эквивалентно увеличению сопротивления проводника.

Емкость в цепи переменного тока

Давайте сначала подробнее рассмотрим емкостное сопротивление. Предположим, что конденсатор емкостью C подключен к источнику синусоидально переменного тока, ЭДС этого источника будет описываться следующей формулой:

Падение напряжения на соединительных проводах будет опущено, так как оно обычно очень мало и при необходимости может быть рассмотрено отдельно. Теперь предположим, что напряжение на катушках конденсатора равно напряжению источника переменного тока. Следующий:

В любой момент времени заряд на конденсаторе зависит от его емкости и напряжения между его катушками. Затем, для заданного известного источника, о котором говорилось выше, мы получаем выражение для нахождения заряда на катушках конденсатора через напряжение источника:

Пусть за бесконечно долгое время dt заряд на конденсаторе изменится на величину dq, тогда ток I будет равен току, который течет по проводам от источника к конденсатору:

Значение амплитуды тока будет равно:

Тогда окончательное выражение для тока будет выглядеть следующим образом:

Перепишем формулу для амплитуды тока следующим образом:

Это уравнение является законом Ома, где обратная величина угловой частоты, умноженная на емкость, играет роль сопротивления, и по сути является выражением для нахождения емкости конденсатора в цепи синусоидально переменного тока:

Таким образом, емкость обратно пропорциональна угловой частоте тока и емкости конденсатора. Легко понять и физический смысл этих отношений.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще меняется направление тока в цепи, тем больше общий заряд, который в итоге проходит за единицу времени через поперечное сечение проводников, соединяющих конденсатор с источником переменного тока. Таким образом, ток пропорционален произведению емкости и угловой частоты.

В качестве примера рассчитаем емкость конденсатора 10 мкФ для цепи синусоидально переменного тока с частотой 50 Гц:

Если бы частота была 5000 Гц, тот же конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока на пи/2 (90 градусов) раньше, чем фаза напряжения. Это означает, что максимальный ток по времени всегда на четверть периода опережает максимальное напряжение. Поэтому в емкостном резисторе ток находится на четверть периода по времени или на 90 градусов по фазе перед напряжением.

Давайте объясним физическое значение этого явления. В первый момент конденсатор полностью разряжен, поэтому малейшее приложенное к нему напряжение перемещает заряды на пластинах конденсатора, создавая ток.

По мере заряда конденсатора напряжение на его катушках увеличивается, что препятствует дальнейшему протеканию заряда, поэтому ток в цепи уменьшается независимо от дальнейшего увеличения напряжения, приложенного к катушкам.

Таким образом, если ток был максимальным в начальный момент времени, то когда напряжение достигнет максимума через четверть периода, ток вообще перестанет течь.

В начале периода ток максимален, а напряжение минимально и начинает расти, но через четверть периода напряжение достигает максимума, а ток к тому времени падает до нуля. Поэтому ток на четверть периода раньше, чем напряжение.

Индуктивное сопротивление в цепи переменного тока

Давайте теперь вернемся к индуктивному сопротивлению. Предположим, что через катушку индуктивности протекает синусоидально переменный ток. Это можно выразить следующим образом:

Ток вызывается изменяющимся напряжением, приложенным к катушке. Это означает, что катушка будет иметь ЭДС самоиндукции, которая выражается следующим образом:

Опять же, давайте пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть изменяющееся напряжение, приложенное к катушке, в каждый момент времени полностью уравновешивается результирующей ЭДС самоиндукции, равной по величине, но противоположной по направлению:

Тогда у нас есть закон обозначений:

Поскольку амплитуда напряжения, приложенного к катушке, равна:

Выразим максимальный ток следующим образом:

Это выражение на самом деле является законом Ома. Величина, равная произведению индуктивности на угловую частоту, здесь выступает как сопротивление и является ничем иным, как индуктивным сопротивлением катушки индуктивности:

Поэтому индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, протекающего через катушку.

Это происходит потому, что индуктивное сопротивление обусловлено влиянием самоиндуцированного электромагнитного поля на напряжение источника – самоиндуцированное электромагнитное поле стремится уменьшить ток и тем самым вносит сопротивление в цепь. Известно, что величина ЭДС самоиндукции пропорциональна индуктивности катушки и скорости изменения протекающего через нее тока.

В качестве примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, включенной в цепь с частотой тока 50 Гц:

Если бы частота была 5000 Гц, то сопротивление той же катушки было бы около 31400 Ом. Напомним, что омическое сопротивление провода катушки обычно указывается в единицах Ом.

Из приведенных формул видно, что изменения тока и напряжения в катушке происходят в разных фазах, причем фаза тока всегда меньше фазы напряжения на pi/2. Поэтому максимум тока наступает на четверть периода позже, чем максимум напряжения.

В индуктивном резисторе ток отстает от напряжения на 90 градусов из-за тормозящего эффекта ЭДС самоиндукции, которая препятствует изменению тока (как увеличению, так и уменьшению), поэтому максимальный ток в цепи катушки наступает позже, чем максимальное напряжение.

Катушка и конденсатор работают вместе

Когда индуктор и конденсатор соединены последовательно в цепи переменного тока, напряжение на индукторе будет превышать напряжение на конденсаторе на половину периода, т.е. 180 градусов по фазе.

Емкостное и индуктивное сопротивления называются пассивными сопротивлениями. В реактивном сопротивлении энергия расходуется не так, как в активном. Энергия, запасенная в конденсаторе, периодически отдается обратно источнику, когда электрическое поле в конденсаторе исчезает.

То же самое справедливо и для катушки: пока магнитное поле катушки создается током, энергия накапливается в катушке в течение четверти периода, а затем возвращается к источнику в течение следующей четверти периода. В этой статье мы рассматриваем синусоидально переменный ток, для которого эти положения строго соблюдаются.

В цепях синусоидального переменного тока для ограничения тока традиционно используются индукционные катушки с сердечниками, называемые дросселями. Их преимущество перед реостатами заключается в том, что энергия не рассеивается в больших количествах в виде тепла.

Если вам понравилась эта статья, пожалуйста, поделитесь ею в социальных сетях. Это поможет нашему сайту сильно вырасти!

C – размер конденсатора в фарадах.

От чего зависит сопротивление конденсаторов в цепях переменного тока?

Его величина зависит не только от емкостных характеристик последнего, но и от частотной характеристики электрического тока, протекающего по цепи. Когда мы говорим о сопротивлении резистора, мы имеем в виду параметры самого резистора, например, материал, форму, но нет абсолютно никакой связи между его сопротивлением и электрической частотой цепи (мы говорим об идеальном резисторе, который не характеризуется паразитными параметрами). Когда мы говорим об устройстве для хранения энергии и зарядки электрическим полем – все по-другому. Конденсатор с одинаковой емкостью имеет разный уровень сопротивления при разных частотах тока. Амплитуда тока, протекающего через него при постоянной амплитуде напряжения, имеет другое значение.

Расчет Xc

Какие выводы можно сделать из этой формулы для сопротивления конденсатора в цепи переменного тока? По мере увеличения частоты сигнала электрическое сопротивление конденсатора уменьшается.

По мере увеличения емкости накопителя заряда энергия электрического поля Xc переменного электричества, протекающего через него, будет иметь тенденцию к уменьшению.

График, представляющий величину этого конденсатора при непостоянном токе в цепи, имеет форму гиперболы

По мере приближения значений частоты к нулю на оси (когда переменный ток становится похожим по своим параметрам на постоянный), это сопровождается увеличением Xc конденсатора до бесконечных значений. Это действительно так: известно, что конденсатор в сети постоянного тока на самом деле является разомкнутой цепью. Фактическое электрическое сопротивление, конечно, не бесконечно; оно ограничено коэффициентом утечки конденсатора. Однако его ценности остаются на высоком уровне, который нельзя игнорировать.

При увеличении числа частот до бесконечных значений емкость электрического конденсатора стремится к нулю. Это характеризует идеальные модели. В реальной жизни конденсатор обладает неприятными свойствами (такими как индуктивность и сопротивление утечки), поэтому емкость уменьшается до определенных значений, а затем увеличивается.

Пожалуйста, обратите внимание! Когда конденсатор подключен к переменной электрической цепи, его энергия не расходуется, поскольку фазовые характеристики напряжения и тока сдвинуты на 90° относительно друг друга. В течение одной четверти периода конденсатор заряжен (энергия накапливается в его электрическом поле), в течение следующего он разряжен, энергия отдается обратно в цепь. Его электрическое сопротивление без ваты, реактивное.

В этом случае сопротивление конденсатора в цепи переменного тока составляет 96,5 кОм. Если мы запишем все расчеты, то получим следующие результаты.

Векторное представление емкости

Для простого понимания процессов, происходящих в конденсаторе под воздействием источника переменного тока, удобно использовать векторное представление емкости.

В начальный момент зарядки конденсатора потенциал U на его катушках равен нулю (точка a). В то же время ток I имеет максимальное значение (точка b). В этот момент уже заметна задержка. Ток начинает уменьшаться от своего пикового значения (точка bd). Напряжение в этой точке еще не увеличилось и только приближается к своему максимальному значению (ac).

То же самое отражено на диаграмме справа. В точке, где напряжение U имеет наименьшее значение (e), ток I только начал переходить в отрицательную область (f).

Таким образом, в конце второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет своего наибольшего, амплитудного значения.

Емкость конденсатора

Мы уже видели, что ток в цепи с конденсатором может течь только при изменении приложенного к нему напряжения, и ток, протекающий через цепь при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.

Конденсатор в цепи переменного тока влияет на ток, протекающий через цепь, то есть ведет себя как сопротивление. Чем выше емкость и чем выше частота переменного тока, тем меньше значение емкостного сопротивления. И наоборот, сопротивление конденсатора для переменного тока увеличивается с уменьшением емкости и снижением частоты.

Рисунок 2. Зависимость емкости конденсатора от частоты.

Для постоянного тока, т.е. когда его частота равна нулю, емкостное сопротивление бесконечно велико; поэтому постоянный ток не может протекать через цепь с емкостью.

Значение емкости определяется по следующей формуле:

где Xc – емкость конденсатора в Ом;

f – частота переменного тока в гц;

ω – угловая частота переменного тока;

C – емкость конденсатора в ф.

Когда конденсатор подключен к цепи переменного тока, в нем не расходуется энергия, как в индуктивности, поскольку фазы тока и напряжения смещены на 90° относительно друг друга. Энергия накапливается в электрическом поле конденсатора в течение одной четверти периода – когда конденсатор заряжается – и в течение другой четверти периода – когда конденсатор разряжается – она высвобождается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Следует отметить, однако, что практически в каждом конденсаторе, когда через него проходит переменный ток, потребляется больше или меньше активной мощности из-за изменений в диэлектрическом состоянии конденсатора. Кроме того, между пластинами конденсатора никогда не бывает абсолютно идеальной изоляции; утечки в изоляции между пластинами приводят к тому, что конденсатор подключается параллельно с каким-либо активным сопротивлением, через которое протекает ток, и, следовательно, потребляется некоторая мощность. В обоих случаях мощность бесполезно расходуется на нагрев диэлектрика и поэтому называется мощностью потерь.

Потери из-за изменения состояния диэлектрика называются диэлектрическими потерями, а потери из-за несовершенства изоляции между пластинами – потерями утечки.

Ранее мы сравнивали электрическую емкость с емкостью герметично закрытого сосуда или с площадью дна открытого сосуда с вертикальными стенками.

Конденсатор в цепи переменного тока можно сравнить с упругостью пружины. Чтобы избежать возможного недопонимания, под упругостью следует понимать не эластичность (“твердость”) пружины, а ее противоположность, “мягкость” или “податливость” пружины.

Представьте себе, что мы периодически сжимаем и растягиваем свернутую пружину, которая одним концом плотно прикреплена к стене. Время, которое нам потребуется для завершения полного цикла сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы сожмем пружину в первом квартале периода, отпустим ее во втором квартале периода, растянем в третьем квартале периода и снова отпустим в четвертом квартале периода.

Кроме того, предположим, что наши усилия в течение периода будут неравномерными, а именно, они будут увеличиваться от нуля до максимума в первом и третьем кварталах периода и уменьшаться от максимума до нуля во втором и четвертом кварталах периода.

Сжимая и растягивая пружину таким образом, вы заметите, что в начале первой четверти периода свободный конец пружины будет двигаться довольно быстро при относительно небольшом усилии с нашей стороны.

В конце первой четверти периода (когда пружина сжата), наоборот, несмотря на увеличение силы, неприкрепленный конец пружины будет двигаться очень медленно.

Во второй четверти периода, когда мы постепенно уменьшаем давление на пружину, свободный конец пружины будет отходить от стены в нашу сторону, несмотря на то, что наши сдерживающие силы направлены в сторону стены. В этом случае наши силы в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины – наименьшей. В конце второй четверти периода, когда наши силы будут наименьшими, скорость пружины будет наибольшей, и так далее.

Продолжая аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и строя графики (рис. 1, б) изменения нашей силы и скорости движения незакрепленного конца пружины, мы увидим, что эти графики точно соответствуют графикам ЭДС и тока емкостной цепи (рис. 1, а), график силы будет соответствовать графику ЭДС, а график скорости – графику тока.

Рисунок 3. (a) Процессы, происходящие в цепи переменного тока с конденсатором и (b) Сравнение между конденсатором и пружиной.

Легко видеть, что пружина, как и конденсатор, накапливает энергию за одну четверть периода и отдает ее за другую четверть периода.

Также очевидно, что чем менее упругой является пружина, тем более упругой она является и тем большую силу она будет оказывать на нас. То же самое верно и для электрической цепи: чем меньше емкость, тем больше сопротивление цепи на данной частоте.

Наконец, чем медленнее мы сжимаем и растягиваем пружину, тем меньше скорость движения ее свободного конца. Аналогично, чем ниже частота, тем меньше ток при данной ЭДС.

При постоянном давлении пружина будет только сжиматься и тем самым останавливать свое движение, так же как при постоянной ЭДС конденсатор будет только заряжаться и тем самым останавливать дальнейшее движение электронов в цепи.

Теперь вы можете увидеть, как ведет себя конденсатор в цепи переменного тока на видео ниже:

ПОНРАВИЛАСЬ ЛИ ВАМ СТАТЬЯ? ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Если R = 0, то напряжение на конденсаторе равно приложенному напряжению и u = q/C. Мгновенное значение тока задается выражением:

Емкость

Конденсатор с емкостью C имеет бесконечное сопротивление в цепи постоянного тока. Однако если к конденсатору приложить переменное напряжение, он будет периодически заряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает своего максимального значения в те моменты, когда ток равен нулю.

Если R = 0, то напряжение на конденсаторе равно приложенному напряжению и u = q/C. Мгновенное значение тока задается выражением:

Между напряжением и током существует разность фаз -π/2.

В чисто емкостной цепи переменного тока ток превышает напряжение на π/2 (или T/4).

Из приведенного выше уравнения следует, что амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что 1/ωC действует как сопротивление.

Цепь переменного тока, содержащая емкость C, имеет сопротивление переменному току; это называется емкость ХC.

Единица СИ для емкостного сопротивления: [XC] = Ом.

ХCемкость цепи переменного тока,Ом
ω = 2πfкруговая частота переменного тока,радиан/секунда
Cемкость,Фарад

С увеличением частоты емкость уменьшается. Для постоянного тока (f = 0) она бесконечно велика.

Ток в цепи с одной только емкостью дается выражением

После этого можно легко определить значение емкости или реактивного сопротивления конденсатора: xc = 1/2π x f x C = 1/ ω x C. Этот показатель рассчитывается, когда конденсатор подключен к цепи переменного тока. Поэтому, согласно закону Ома, в цепи переменного тока с подключенным конденсатором значение тока будет следующим: I = U/xc, а напряжение на катушках составит: Uc = Ic x xc.

Емкость в цепи переменного тока

Когда конденсатор подключается к цепи постоянного тока, через него в течение короткого периода времени протекает зарядный ток. После завершения зарядки, когда напряжение конденсатора совпадет с напряжением источника тока, протекание тока в цепи на короткое время прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет представлять собой своего рода разомкнутую цепь или сопротивление бесконечной величины. При переменном токе конденсатор будет вести себя совсем по-другому. В такой цепи он будет заряжаться в переменном направлении. Протекание переменного тока в цепи не прерывается в этой точке.

Более внимательное рассмотрение этого процесса показывает, что в момент включения конденсатор имеет нулевое напряжение. При подаче напряжения сети переменного тока начинается зарядка. В это время напряжение в сети будет расти в течение первой четверти этого периода. По мере накопления заряда на катушках напряжение самого конденсатора будет увеличиваться. Когда напряжение в сети достигнет максимума в конце первого квартала, зарядка закончится, и ток в цепи будет равен нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q – количество электроэнергии, протекающей через цепь в момент времени t. Согласно законам электростатики, количество электричества в приборе составит: q = C x Uc = C x U. В этой формуле C – емкость конденсатора, U – напряжение сети, а Uc – напряжение на катушках элемента. Окончательная формула для тока в цепи будет такой: i = C x (∆Uc/∆t) = C x (∆U/∆t).

В начале второго квартала напряжение в сети упадет, и конденсатор начнет разряжаться. Ток в цепи изменит направление и потечет в противоположном направлении. В следующем полупериоде напряжение сети изменит направление, ячейка зарядится, а затем снова начнет разряжаться. Ток, присутствующий в цепи конденсатора, будет опережать напряжение на катушках на 90 градусов.

Установлено, что ток конденсатора изменяется со скоростью, пропорциональной угловой частоте ω. Поэтому, согласно уже известной формуле для тока в цепи i = C x (∆U/∆t), по аналогии получается, что среднеквадратичное значение тока также является пропорциональной зависимостью между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

После этого можно легко определить значение емкости или реактивного сопротивления конденсатора: xc = 1/2π x f x C = 1/ ω x C. Этот показатель рассчитывается, когда конденсатор подключен к цепи переменного тока. Поэтому, согласно закону Ома, в цепи переменного тока с подключенным конденсатором значение тока будет следующим: I = U/xc, а напряжение на катушках составит: Uc = Ic x xc.

Часть сетевого напряжения, падающая на конденсатор, называется емкостным падением напряжения. Она также известна как реактивная составляющая напряжения, обозначаемая символом Uc. Значение емкости xc и значение индуктивного сопротивления xi напрямую зависят от частоты переменного тока.

Читайте далее:

  • Значение слова ЭЛЕКТРОТЕХНИКАЦИЯ. Что такое ЭЛЕКТРОТЕХНИКА?.
  • Урок 28 Электрическая емкость. Конденсатор – Физика – 10 класс – Российская электронная школа.
  • 1 Понятие электромагнитного поля и его различные проявления. Материальность – Работа в школе.
  • Полное сопротивление цепи переменного тока – Основы электроники.
  • Лекции по ТЭ – #27 Явление резонанса в электрических цепях.
  • Урок 7 Свободные и вынужденные электромагнитные колебания. колебательный контур – физика – 11 класс – Русская электронная школа.
  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.

Калькулятор индуктивного реактивного сопротивления

Автор Purnima Singh, PhD

Отзыв Стивена Вудинга

Последнее обновление: 02 февраля 2023 г.

Содержание:
  • Что такое индуктивное сопротивление? — Определение индуктивного сопротивления
  • Формула расчета индуктивного сопротивления
  • Единица измерения индуктивного сопротивления
  • Как пользоваться калькулятором индуктивного сопротивления?
  • Часто задаваемые вопросы

Калькулятор индуктивного сопротивления Omni (калькулятор XLX_LXL​) позволяет вам определить эффективное сопротивление (импеданс) катушки индуктивности . Просто введите индуктивность катушки и частоту сигнала переменного тока, и калькулятор импеданса индуктора мгновенно рассчитает реактивное сопротивление индуктора (индуктивный импеданс)!

Продолжайте читать, чтобы узнать , что такое индуктивное сопротивление и формулу для его расчета. Вы также найдете пример расчета индуктивного сопротивления с помощью калькулятора XLX_LXL​.

Что такое индуктивное сопротивление? — Определение индуктивного реактивного сопротивления

Индуктивное реактивное сопротивление или индуктивный импеданс — это эффективное сопротивление , оказываемое катушкой индуктивности электрическому току, протекающему через нее .

Это аналогично сопротивлению резистора в том смысле, что оба сопротивления противодействуют потоку электрического заряда. Однако в случае резисторов оппозиция возникает из-за столкновения с электронов , когда они проходят через него. В катушке индуктивности именно ЭДС самоиндукции противодействует нарастанию и спаду тока .

Формула индуктивного сопротивления

Рассмотрим простую цепь, состоящую из катушки индуктивности, подключенной к источнику переменного напряжения (рис. 1). Поскольку величина и направление переменного тока непрерывно изменяются , катушка индуктивности будет противодействовать любому изменению протекающего через нее тока, индуцируя в себе ЭДС.

Рисунок 1: Цепь переменного тока, состоящая из катушки индуктивности.

Используя формулу закона Фарадея, мы можем выразить эту ЭДС самоиндукции (VVV) как:

V=−L⋅(dIdt)\scriptsize V = -L \cdot \left ( \frac{dI}{dt} \right)V=−L⋅(dtdI​)

где:

  • LLL — собственная индуктивность индуктора; и
  • dI/dtdI/dtdI/dt — Скорость изменения тока через дроссель.

Вы можете использовать калькулятор индуктивности соленоида, чтобы найти собственную индуктивность любой катушки индуктивности.

Чтобы найти средний ток (III) через катушку индуктивности, мы можем использовать вариант закона Ома:

I=VXL\размер сценария I = \frac{V}{X_L}I=XL​V​

, где индуктивное сопротивление (XLX_LXL​) зависит от частоты (ν\nuν) сигнала переменного тока:

XL=2πνL\scriptsize X_L = 2 \pi \nu LXL​=2πνL

Мы также можем рассчитать проводимость (BLB_LBL​), т. е. насколько легко цепь пропускает через себя ток, следующим образом:

BL=1XL\scriptsize B_L = \frac{1}{X_L}BL​=XL​1​

Единица индуктивного сопротивления

Чтобы найти единицу индуктивного сопротивления, проведем размерный анализ формулы для индуктивного сопротивления:

XL=2πνL⟹1сек⋅Генри=1сек⋅вольт(ампер/сек)=вольтампер=Ом (Ом)\scriptsize \начать{выравнивать*} X_L &= 2 \pi \nu L \\ \ подразумевает & \rm \frac{1}{sec} \cdot henry \\ & = \rm \frac{1}{sec} \cdot \frac{volt}{(amp/sec)} \\ & \rm = \frac{volt}{amp} = ohm\ (\Omega) \end{align*}XL​⟹​=2πνLsec1​⋅henry=sec1​⋅(amp/sec)volt​=ampvolt​=ohm (Ω)​

Анализ размерностей приведенной выше формулы говорит нам, что размеры индуктивное сопротивление такое же, как сопротивление. Следовательно, индуктивное сопротивление измеряется в омах (Ом\ОмегаОм).

Для измерения проводимости мы используем ту же единицу измерения, что и проводимость, т. е. сименс (S\rm SS).

Как пользоваться калькулятором индуктивного сопротивления?

Давайте посмотрим, как использовать калькулятор индуктивного реактивного сопротивления для расчета реактивного сопротивления катушки 14 мГн , когда через нее протекает переменный ток 100 Гц .

  1. Введите индуктивность катушки, т. е. 14 мГн .
  2. Подключите частоту сигнала переменного тока, т. е. 100 Гц .
  3. Калькулятор XLX_LXL​ отобразит реактивное сопротивление катушки индуктивности (XLX_LXL​), т. е. 8,80 Ом , и адмиттанс (BLB_LBL​), т. е. 0,11 S .
  4. Вы также можете использовать этот калькулятор импеданса катушки индуктивности для расчета индуктивности катушки.

Мы также рекомендуем воспользоваться нашим калькулятором емкостного реактивного сопротивления, чтобы узнать об эффективном сопротивлении конденсатора протекающему через него току.

Часто задаваемые вопросы

Как рассчитать индуктивное сопротивление?

Для расчета индуктивного сопротивления выполните следующие действия:

  1. Определите частоту сигнала переменного тока.
  2. Умножьте частоту на и индуктивность .
  3. Поздравляем! Вы рассчитали индуктивное сопротивление.

Что такое индуктивное сопротивление в цепи постоянного тока?

Ноль . Индуктивное сопротивление прямо пропорционально частоте сигнала. В цепях постоянного тока частота равна нулю . Следовательно, индуктивное сопротивление в цепях постоянного тока также равно нулю.

В чем разница между индуктивным реактивным сопротивлением и емкостным реактивным сопротивлением?

Основные различия между индуктивным реактивным сопротивлением и емкостным реактивным сопротивлением:

  • Индуктивное реактивное сопротивление представляет собой эффективное сопротивление , предлагаемое катушкой индуктивности . Емкостное сопротивление — это эффективное сопротивление , предлагаемое конденсатор .
  • Индуктивное сопротивление прямо пропорционально частоте сигнала и индуктивности . Емкостное реактивное сопротивление обратно пропорционально частоте сигнала и емкости .

Как рассчитать индуктивность по реактивному сопротивлению?

Чтобы рассчитать индуктивность по реактивному сопротивлению, следуйте приведенным инструкциям:

  1. Умножьте на частота сигнала переменного тока с .
  2. Разделите реактивное сопротивление на значение из шага 1 .
  3. Вы рассчитали индуктивность по реактивному сопротивлению!

Что такое единица измерения индуктивного сопротивления в системе СИ?

Ом . Единица СИ индуктивного реактивного сопротивления такая же, как и сопротивление, т. е. ом.

Пурнима Сингх, доктор философии

Индуктивность (л)

Частота (f)

Реактивное сопротивление (Xʟ)

Адмиттанс (Bʟ)

Посмотреть 40 похожих калькуляторов электромагнетизма 🧲

Ускорение частицы в электрическом поле Мощность переменного тока Ёмкость… 37 more

Чему равно индуктивное сопротивление катушки? 800 мА и напряжение на нем 40 В?

SL ARORA-AC ЦЕПИ И ЭЛЕКТРИЧЕСКИЕ ЦЕПИ-проблема

20 видео

РЕКЛАМА

Ab Padhai каро бина объявления ке

Khareedo DN Про и дехо сари видео бина киси объявление ки рукаават ке!

Ответить

Пошаговое решение от экспертов, которое поможет вам в разрешении сомнений и получении отличных оценок на экзаменах.


Похожие видео

Катушка сопротивлением 40 Ом подключена к аккумулятору 4,0 В. Через 0,10 с после подключения батареи ток в катушке равен 63 мА. Найдите индуктивность катушки.

9728923

В цепи переменного тока реактивное сопротивление катушки в √3 раза больше ее сопротивления, разность фаз между напряжением на токе через катушку будет 9(@) . Какова индуктивность катушки?

121562331

चित्र में एक डायोड एक बाह्म प्रतिरोध एवं एक वि.व. बल स्त्रोत से जुड़ा हुआ दिखाया गया है| यह मानते हुए की डायोड में उत्पन्न विभव प्राची выполнение 0,5 В है, प्रतिरोड में धारा की गड़ना ma में कीजिए |

255158639

Синусоидальное напряжение V(t) = 100 sin (500t) приложено к чистой индуктивности L = 0,02 Гн. Ток через катушку равен

415578774

A сопротивления катушки

40 Ом подключен к батарее 4,0 В. Через 0,10 с после подключения батареи ток в катушке равен 63 мА. Найдите индуктивность катушки.

642597870

Чему равно индуктивное сопротивление катушки, если ток через нее равен 80 мА, а напряжение на ней равно 40 В?

642779549

В цепи переменного тока реактивное сопротивление катушки в √3 раза больше ее сопротивления разность фаз между напряжением на катушке и током в катушке составляет

643266338

В цепи переменного тока реактивное сопротивление катушки sqrt(3) умножает на сопротивление.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *