Site Loader

Содержание

Теоретические основы электротехники — Википедия

Материал из Википедии — свободной энциклопедии

Теорети́ческие осно́вы электроте́хники (ТОЭ ) — техническая дисциплина, связанная с изучением теории электричества и электромагнетизма. ТОЭ подразделяется на две части — теорию электрических цепей и теорию поля. Изучение ТОЭ является обязательным во многих технических ВУЗах, поскольку на знании этой дисциплины строятся все последующие: электротехника, автоматика, энергетика, приборостроение, микроэлектроника, радиотехника и другие.

В 1600 году английский учёный Уильям Гильберт написал трактат «О магните, магнитных телах и о большом магните — Земле». В 1745 году голландским физиком Питером ван Мушенбруком создан первый источник электроэнергии — Лейденская банка. В 1785 году французский физик Кулон открыл закон о взаимодействии заряженных частиц. В 1820 году датский физик Эрстед обнаружил действие электрического тока на магнитную стрелку. В 1832 году во Франции Пикси сконструировал генератор переменного тока. В 1834 году Якоби в России создал электродвигатель. Густав Роберт Кирхгоф в 1845—47 гг. открыл закономерности в протекании электрического тока в разветвленных электрических цепях, а в 1857 построил общую теорию движения тока в проводниках. В 1848 году немецкий учёный Румкорф создал трансформатор. Уже первые опыты по электрической передаче энергии (в России Ф. А. Пироцкий — 1874 г., в Германии и во Франции Марсель Депре — 1882, 1883 гг.) обратили на себя всеобщее внимание. В 1876 году Яблочков изобрёл электрические цепи. В 1889 году Доливо-Добровольский создал трёхфазный двигатель и трёхфазный трансформатор. После изобретения первых гальванических элементов, которые изобрёл Луиджи Гальвани, ученые начали исследовать ток в электрических цепях, как влияет поле проводника с током на стрелку компаса, который находится рядом с проводником и т. д. Георг Симон Ом экспериментальным способом вывел Закон Ома в интегральной форме. Позже Джеймс Максвелл теоретически выведет закон Ома в дифференциальной форме. Последующие исследования продолжили ученые Генрих Герц (вибратор Герца), Майкл Фарадей (электромагнитная индукция), Карл Гаусс (магнетизм), Никола Тесла (переменный ток, теория эфира).

В России первые труды по электричеству принадлежат академикам М. В. Ломоносову и Г. В. Рихману, которые вместе проводили количественные исследования атмосферного электричества.

В 1904 году профессор В. Ф. Миткевич начал читать в Петербургском политехническом институте созданный им курс лекций «Теория явлений электрических и магнитных», а затем курс лекций «Теория переменных токов».

В 1905 году профессор К. А. Круг начал в Московском высшем техническом училище чтение своего курса лекций «Теория переменных токов», а затем курса лекций «Теория электротехники».

В последующем эти теоретические дисциплины образовали техническую дисциплину «Теоретические основы электротехники». Первая часть курса, именуемая «Основные понятия и законы теории электромагнитного поля и теории электрических и магнитных цепей», даёт физическое представление о процессах, происходящих в электрических и магнитных цепях и в электромагнитных полях.

  • Афонин В. В. Сборник задач по электротехнике — 2004.
  • Башарин С. А. Теоретические основы электротехники — 2004.
  • Бессонов Л. А. ТОЭ. Теория поля — 2003.
  • Бессонов Л. А. ТОЭ. Теория электрических цепей — 2007.
  • Бессонов Л. А. ТОЭ. Методические указания и контрольные задания — 2003.
  • Бессонов Л. А. ТОЭ. Сборник задач — 1980.
  • Демирчян К. С. Теоретические основы электротехники т. 1 — 2003.
  • Демирчян К. С. Теоретические основы электротехники т. 2 — 2003.
  • Демирчян К. С. Теоретические основы электротехники т. 3 — 2003.
  • Зайчик М. Ю. Сборник задач и упражнений по ТОЭ — 1980.
  • Коровкин Н. В. ТОЭ. Сборник задач — 2004.
  • Кузовкин В. А. Теоретическая электротехника — 2005.
  • Прянишников В. А. Теоретические основы электротехники — 2004.
  • Прянишников В. А. Электротехника и ТОЭ — 2007.
  • Шимони К. Теоретическая электротехника — 1964.

основы, понятия, положения и определения

Теоретические основы электротехники (ТОЭ) являются дисциплиной, обязательной к изучению электриками. Прежде всего, на занятиях по ней изучаются общие представления об электрическом токе, его свойствах, параметрах и основных направлениях использования. Другим предметом изучения являются феномен электромагнетизма и способы его применения на практике. Ученики узнают, как построить электрическую цепь, как выполнять простые электромонтажные работы в квартире или частном доме, как устроены механизмы, использующие электроэнергию.

Синусоида переменного тока

Синусоида переменного тока

Основные понятия

Основные положения электротехники и базовые используемые термины – первое, с чем происходит краткое знакомство при изучении ТОЭ.

Постоянный ток

Так называется ток, не меняющий вектора движения на каком-либо временном отрезке и направленный строго от положительного полюса к отрицательному. Постоянный электроток отличается способностью к аккумуляции – на ней базируется принцип действия аккумуляторных источников питания. Кроме того, такой ток может получаться в батарейках посредством химической реакции. Аккумуляторы и гальванические батарейки обеспечивают работу большого числа портативных приборов. На схемах данный вид тока показывают, обозначая плюсовой и минусовой полюса. Если какой-то электроприбор рассчитан на эксплуатацию только при постоянном токе, на корпус ставят соответствующую маркировку в виде одиночной черты или пары параллельных горизонтальных линий.

Электромагнетизм

Это явление входит в число основных понятий электротехники. Оно является продуктом взаимодействия магнитного эффекта и электротока. Первым его зафиксировал Х. Эрстед при приближении компаса к кабелю, по которому проходил ток: стрелка устройства в это время сместилась, что иллюстрировало присутствие магнитного поля поблизости от кабеля.

Электромагнитами называются материалы, в которых магнитные свойства обнаруживаются только при пропускании тока по намотке. Чтобы сила магнитного поля возросла, намотку делают состоящей из большого числа витков. Металлическая основа с магнитными свойствами, которую обматывают, называется сердечником. Вектор линий поля определяется направлением течения электротока в проводе обмотки. Если у магнита присущие ему свойства обнаруживаются константно, а не только при наличии тока и обмотки, его называют постоянным. Часто он имеет кольцевую или подковообразную форму.

Переменный ток

Это один из первых терминов, с которым знакомятся изучающие теорию электричества. Одновременно с этим узнают о его отличиях от постоянного тока.

Этот вид тока характеризуется тем, что циклически меняет свои величину и направление (в отличие от постоянного, у которого эти параметры неизменны на любом временном отрезке). При этом характер изменений можно отразить на графике в виде синусоиды. Когда лампа подключается в электросеть с таким током, минус и плюс на ее контактах будут периодически меняться места.

Применение такого тока дает возможность передачи электрической энергии на очень большие расстояния. Поскольку генераторы создают огромное напряжение, которое опасно подавать в жилые помещения, ток от них направляется в подстанции, где трансформируется.

К сведению. Из этого тока можно получать постоянный с помощью выпрямляющего устройства – диодного моста. Он распрямляет синусоидальную кривую, что заставляет электроны двигаться в одном векторе, не меняя его с течением времени.

Единицы измерения

Одной из основных характеристик такого тока является частота – величина, показывающая число инцидентов изменения параметров за единицу времени. Ее обозначают как f и измеряют в герцах (Гц). Чаще всего для бытовых и промышленных нужд используют частоту 50 Гц. Это означает, что на двух зажимах розетки полюса меняются позициями 50 раз в секунду.

Период – это время, за которое происходит одиночный инцидент изменения. Если в секунду их 50, то период будет равен 0,02 с.

Эффективное значение тока – создающее для некоторого сопротивления выделение тепла, равное определенному переменному току за заданное время.

Трансформаторы

Это приборы, преобразующие переменный электроток с заданными параметрами в ток с иным показателем напряжения, но идентичной исходному частотой. Их действие основано на принципе взаимоиндукции. Устройство является статичным, не снабжено подвижными элементами, потому не является машиной, но учащиеся знакомятся с его действием одновременно с принципами работы электрических машин. В прибор вмонтированы две катушки с неодинаковым количеством витков (это сделано для обеспечения разницы напряжений). По магнитному полю электроэнергия передается между катушками.

Трансформатор тока

Трансформатор тока

Электрические машины (электродвигатели и генераторы)

Данные механизмы широко используются в автоматике, промышленности, являются главными элементами электроустановок. Два основных типа, различающиеся по назначению и способу действия, – генераторы и двигатели. Любая машина включает в себя устойчивую часть (статор) и подвижную (ротор).

Электродвигатели

Эти машины преобразуют электрическую энергию в механическую. Используются они для приведения в движение разнообразных механизмов в сельском хозяйстве, различных отраслях промышленности. Ось двигателя вращается, благодаря взаимодействию магнитных полей ротора и статора. Первое возникает при протекании тока по обмоткам, второе существует, благодаря использованию постоянных магнитов в статорной конструкции.

Электрогенераторы

Они функционируют по другому принципу, основанному на действии электродвижущей силы. Она наводится в обмотке при постоянном движении магнитного поля через нее. Когда ось машины вращается, магнитный поток воздействует на катушки.

 Электрогенератор

Электрогенератор

Машины постоянного тока

Такие механизмы можно классифицировать на:

  • однофазные, двухфазные и трехфазные – в зависимости от того, какой ток они создают или потребляют;
  • синхронные и асинхронные (у первых скорости движения ротора и магнитного поля идентичны, у вторых – различаются между собой).

Типы проводников

При изучении теоретических основ электротехники нельзя обойти вниманием влияние проводимости используемых в различных устройствах веществ на электроток. По этому параметру материалы можно разделить на следующие группы:

  1. Проводники – субстанции, беспрепятственно пропускающие ток (металлы, электролиты, жидкая ртуть, графитные стержни). Проводимость может относиться не только к собственно электронам, но и к ионам, как положительно, так и отрицательно заряженным. Пример второго типа – раствор хлорида натрия в воде, обладающий электролитными свойствами (чистая вода является диэлектриком).
  2. Полупроводники – вещества, приобретающие способность проводить ток только при определенных внешних условиях (температура, освещение и иные факторы).
  3. Диэлектрики – материалы, не обладающие способностью пропускать ток. Благодаря этому, они обладают изоляционными свойствами.
Диэлектрик во внешнем электрическом поле

Диэлектрик во внешнем электрическом поле

Применяемые радиодетали

При изучении основ электромонтажа всегда происходит знакомство с основными деталями, использующимися в электронике. При их изготовлении применяются все перечисленные типы веществ. Из проводниковых материалов делают кабели, соединяющие устройства, входящие в схему. Также они подсоединяют источник питания к нагрузочному напряжению. Проводники наматывают на катушки, которые как эксплуатируются в самостоятельном виде, так и применяются в трансформаторах, электрических машинах, на печатных платах (последние сами делаются из диэлектрика). Транзисторные и диодные элементы включают в себя проводниковые и полупроводниковые детали из нескольких типов материалов с разным уровнем проводимости. Основные функции диэлектриков – защитная и изоляционная.

Меры безопасности

Электрику необходимо знать нормы охраны электротехнического труда и обеспечения безопасности. Пренебрежение ими чревато травматической ситуацией, инвалидностью или смертью. Основные правила:

  1. Ручки инструмента должны быть сделаны из диэлектрика. Использовать неизолированные рукоятки запрещено.
  2. Использовать заземленные браслеты, работая с микросхемами.
  3. Не касаться кабелей, находящихся под напряжением.
  4. При проведении работ вешать предупредительные плакаты.
  5. Использовать только провода, покрытые диэлектрической изоляцией.
  6. Работать в резиновых перчатках и специальной обуви из диэлектрика.
  7. Тестирование параметров сети проводить только измерительными приборами.
  8. При поражении электротоком одного из коллег немедленно отключить ток, вызвать врача и провести мероприятия первой помощи.

Штудирование ТОЭ обязательно для любого, кто собирается самостоятельно выполнять электромонтажные работы. Первым делом учащиеся узнают о разновидностях электротока и их характерных особенностях, а также об устройствах, использующих электричество.

Видео

Электротехника — Википедия

Электроте́хника — область техники, связанная с получением, распределением, преобразованием и использованием электрической энергии. А также — c разработкой, эксплуатацией и оптимизацией электронных компонентов, электронных схем и устройств, оборудования и технических систем[1]. Под электротехникой также понимают техническую науку, которая изучает применение электрических и магнитных явлений для практического использования[2][3][4]. Электротехника выделилась в самостоятельную науку из физики в конце XIX века. В настоящее время электротехника как наука включает в себя следующие научные специальности: электромеханика, ТОЭ, светотехника, силовая электроника. Кроме того, к отраслям электротехники часто относят энергетику[2], хотя легитимная классификация[5] рассматривает энергетику как отдельную техническую науку. Основное отличие электротехники от слаботочной электроники заключается в том, что электротехника изучает проблемы, связанные с силовыми крупногабаритными электронными компонентами: линии электропередачи, электрические приводы, в то время как в электронике основными компонентами являются компьютеры и другие устройства на базе интегральных схем, а также сами интегральные схемы[6]. В другом смысле, в электротехнике основной задачей является передача электрической энергии, а в слаботочной электронике — информации.

Основы для развития электротехники заложили обширные экспериментальные исследования и создание теорий электричества и магнетизма. Широкое практическое применение электричества стало возможно только в XIX веке с появлением вольтова столба, что позволило как найти приложение открытым законам, так и углубить исследования. В этот период вся электротехника базировалась на постоянном токе.

В конце XIX века, с преодолением проблемы передачи электроэнергии на большие расстояния за счёт использования переменного тока и созданием трёхфазного электродвигателя, электричество повсеместно внедряется в промышленность, а электротехника приобретает современный вид, включающий множество разделов, и оказывает влияние на смежные отрасли науки и техники[4].

Электричество является своеобразной «разменной монетой» в области преобразования и использования энергии. Электричество возможно получить множеством различных способов: механическим (мускульные, гидро- ,ветро-, паро-, ДВС-генераторы и т.д, трибоэлектризация, пьезоэлектричество, эффект Виллари, опыт Мандельштама-Папалекси), тепловым (термопары, РИТЭГи), химическим (гальванические батареи, аккумуляторы, топливные элементы, МГД-генераторы), световым (фотогальванические элементы, наноантенны), биологическим (электрический скат, электрический угорь), звуковым (микрофоны), индукционным (антенны, ректенны). В то же время можно реализовывать обратные процессы — преобразование электричества в механическое усилие (электродвигатели, электромагниты, магнитострикция, МГД-насосы, опыты Гальвани, электромиостимуляция), тепло (ТЭНы, индукционный нагрев, искровой поджиг, элементы Пельтье), световое, УФ- и ИК-излучение (лампы накаливания, светодиоды), химические процессы (электрохимия, плазмогенераторы, гальваностегия, гальванопластика), звуковые волны (динамические головки, пьезоизлучатели), элекромагнитное излучение (антенны, магнетроны, лампы бегущей волны). Этими же методами возможно фиксировать различные параметры промышленных, бытовых и научных приборов. Таким образом, используя одно физическое явление, можно удовлетворить огромное множество потребностей человека. Именно это обеспечило широчайшее применение электричества в современном быту, промышленности и научных исследованиях.

Электротехника имеет множество разделов, самые важные из которых описаны ниже. Хотя инженеры работают каждый в своей области, многие из них имеют дело с комбинацией из нескольких наук.

Электроэнергетика[править | править код]

Электроэнергетика — наука о выработке, передаче и потреблении электроэнергии, а также о разработке устройств для этих целей. К таким устройствам относят: трансформаторы, электрические генераторы, ТЭНы, электродвигатели, низковольтную аппаратуру и электронику для управления силовыми приводами. Многие государства мира имеют электрическую сеть, называемую электроэнергетической системой, которая соединяет множество генераторов с потребителями энергии. Потребители получают энергию из сети, не тратя ресурсы на выработку своей собственной энергии. Энергетики работают как над проектированием и обслуживанием сети, так и над энергетическими системами, присоединёнными к сети. Такие системы называются внутрисетевыми и могут как поставлять энергию в сеть, так и потреблять её. Энергетики работают также и над системами, не присоединёнными к сети, называемыми внесетевыми, которые в некоторых случаях являются более предпочтительными, чем внутрисетевые системы. Имеется перспектива создания энергетических систем, контролируемых со спутника, имеющих обратную связь в реальном времени, что позволит избежать скачков напряжения и предотвратить нарушения энергоснабжения.

Электромеханика[править | править код]

Электромеханика  рассматривает общие принципы электромеханического преобразования электрической энергии и их практическое применение для проектирования и эксплуатации электрических машин. Предметами изучения электромеханики являются: преобразование электрической энергии в механическую и наоборот, электрические машины, электромеханические комплексы и системы. Цель электромеханики — управление режимами работы и регулирование параметров обратимого преобразования электрической энергии в механическую. К основным направлениям электромеханики относятся: общая теория электромеханического преобразования энергии; проектирование электрических машин;анализ переходных процессов в электрических машинах.

Системы автоматического управления[править | править код]

Задачами автоматических систем управления (и автоматизации в целом) является моделирование различных динамических систем и разработка систем управления, которые заставляют работать динамические системы нужным образом. Для создания таких устройств могут использоваться электрические схемы, процессоры цифровой обработки сигналов, микроконтроллеры и программируемые логические контроллеры. Системы управления имеют широкую область применения от систем, встраиваемых в энергетические установки (например, на коммерческих авиалайнерах), автоматов постоянной скорости (имеющихся во множестве современных автомобилей) и ЧПУ в станках до систем управления на базе промышленных ПК в автоматизации промышленного производства.

Инженеры часто используют обратную связь при проектировании систем управления. Например, в автомобиле с автоматом постоянной скорости скорость транспортного средства постоянно отслеживается, и данные передаются системе, которая соответственно регулирует выходную мощность двигателя. Если имеется стандартная система обратной связи, можно использовать теорию управления для определения того, как система должна реагировать на поступающую информацию.

Электроника[править | править код]

Основы электротехники » Заметки Электрика

Закон полного тока в веществе

В этой статье мы рассмотрим один из фундаментальный и важных законов. Речь пойдет о законе полного тока для магнитного поля. Узнаете в чем физический смысл его и как он описывается формулами.

Заметки Электрика SMD - резисторы

Практическое использование радиодеталей для изготовления всевозможных радиолюбительских устройств, ремонта домашнего и производственного оборудования предусматривает внушительный объем номиналов радиоэлементов. Поэтому в рамках данной статьи мы детально рассмотрим ряды номиналов резисторов и особенности построении каждого из них.

Заметки Электрика Схематическое изображение электрометра

В этой статье мы рассмотрим такое фундаментальное понятие, как электрический заряд. Ознакомимся с историей возникновения такого термина и понятия, а также со свойствами заряда.

Заметки Электрика Взаимодействие заряженных частиц

Наверное каждый из нас сталкивался с таким распространенным явление, как электризация тел. Рассмотрит как возникает данное явление и к чему может в итоге привести.

Заметки Электрика Черный - плюс, красный - переменный

Диодный мост представляет собой довольно распространенный вид выпрямителя, широко используемый в самых разнообразных устройствах. В случае пробоя или при подозрении на неисправность диодный мост можно проверить как подручными средствами, так и специальными приборами. Как проверить диодный мост на исправность, и какие методики существуют, мы разберем в данной статье.

Заметки Электрика Сдвиг фаз индуктивной нагрузкой

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%.

Заметки Электрика Магнитное поле катушки

В этом материале рассмотрим распространенное явление в электротехнике — самоиндукцию. Когда возникает самоиндукция. Формулы которые описывают данное явление.

Заметки Электрика Пример принципиальной схемы

Электрические схемы являются неотъемлемой частью как любого, даже самого маленького, бытового прибора, так и крупных подстанций. Но мало кто знает, что одно и то же оборудование или электроустановка может иметь несколько схем, отличающихся принципом графической передачи информации и назначением. Какие бывают виды электрических схем, чем они отличаются и для чего используются, мы рассмотрим в данной статье.

Заметки Электрика Дуговой разряд на ЛЭП

В этой статье мы рассмотрим такое опасное явление как электрическая дуга. Разберем что это такое, ознакомимся со строением и свойствами электродуги.

Заметки Электрика Петля гистерезиса

Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.

Заметки Электрика Замена резистора или стабилитрона

Если вы столкнулись с проблемой получения определенного номинала напряжения в домашних или производственных условиях, не спешите отчаиваться, вы можете самостоятельно понизить вольтаж с помощью специальных методов. В данной статье мы рассмотрим, как понизить напряжение различного рода и приведем несколько наиболее популярных методов для преобразования.

Заметки Электрика Форма тела и распределение статического электричества

Проводником электричества является любое вещество, у которого присутствуют свободные отрицательные или положительные заряды. У металлов носителями зарядов являются электроны. Рассматривая вопрос о распределении зарядов в проводнике мы, по…

Заметки Электрика Пример схемы сварочного агрегата

В виду большой популярности радиомоделирования среди молодежи, многие начинающие радиолюбители сталкиваются с вопросом, что же такое диодный мост. В данной статье мы детально рассмотрим отличительные особенности выпрямительных приборов на базе диодного моста, его принцип работы и основные характеристики. Для наглядного примера приведем несколько практических схем с его применением.

Заметки Электрика Резонанс в электрической цепи

В этой статье рассмотрим такое распространенное явление в электрических цепях — как резонанс напряжений. Сформулируем понятие резонанса и опишем формулами данное явление.

Заметки Электрика Выводы Лоренца

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не…

Заметки Электрика Выбор расположения

Подключить wi-fi у себя дома – уже более чем обычное явление, ведь каждый привык пользоваться услугами интернета в любой точке квартиры или даже во дворе. Но что делать, если имеющегося сигнала недостаточно или ваши устройства вообще не могут обнаружить точку доступа. В данной статье мы рассмотрим несколько наиболее эффективных способа, которые помогут вам усилить сигнал wi-fi роутера до более мощного уровня.

Заметки Электрика Пример схемы 12В из 24В

Довольно часто дома или в гараже вы можете столкнуться с проблемой получения специфического напряжения, которое в прямом доступе у вас отсутствует. По ряду причин наиболее часто для каких-либо приборов нужно достать 12 Вольт. Как можно преобразовать имеющиеся электрические величины и как получить 12 Вольт в бытовых условиях мы рассмотрим в данной статье на нескольких интересных примерах.

Заметки Электрика Взаимодействие параллельных проводников

В этой статье я рассмотрю один из фундаментальных законов в физике электричества — закон Ампера. Рассмотрим формулировку закона, его формулу и варианты применения в реальной жизни.

Заметки Электрика Примеры выполненных работ

Далеко не все электрики обладают достаточными навыками и знаниями, добросовестно относятся к своим обязанностям, из-за чего неопытные клиенты могут пострадать как финансово, так и физически, от электрического удара. Чтобы избежать подобной участи, когда вам действительно требуется помощь профессионала, в данной статье мы расскажем о том, как выбрать хорошего электрика.

Заметки Электрика Иллюстрация второго правила Кирхгофа

В этой статье я объяснил простым языком 2 фундаментальных правила Кирхгофа, которые применяются для расчета электрической цепи.

Заметки Электрика Тепловые приборы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество…

Заметки Электрика Иллюстрация правила правой руки

В этой статье я постарался объяснить известное правило буравчика правой и левой руки. Основное определение и главное правило. Полезные сведения и советы.

Заметки Электрика

Урок-4. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Все что будет дано в этом уроке, необходимо не только прочитать и запомнить некоторые ключевые моменты, а и зазубрить некоторые определения и формулировки. Именно с этого урока начнутся элементарные физические и электрические расчеты. Возможно, будет не все понятно, но не надо отчаиваться, все со временем станет на свои места, главное не спеша усваивать и запоминать материал. Даже если по началу не все будет понятно, постарайтесь хотя бы запомнить основные правила и те элементарные формулы, которые здесь будут рассматриваться. Хорошенько освоив этот урок, вы потом сможете выполнять более сложные радиотехнические расчеты и решать необходимые задачи. Без этого в радиоэлектронике не обойтись. Дабы подчеркнуть значимость данного урока, все формулировки и определения, которые необходимо заучить я буду выделять красным курсивом.
ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ОЦЕНКА

До сих пор, характеризуя количественное значение электрического тока, я иногда пользовался такой терминологией, как, например, малый ток, большой ток. На первых порах такая оценка тока как — то нас устраивала, но она совершенно непригодна для характеристики тока с точки зрения работы которую он может выполнять. Когда мы говорим о работе тока, под — этим подразумеваем, что его энергия преобразуется в какой-либо иной вид энергии: тепло, свет, химическую или механическую энергию. Чем больше поток электронов, тем значительнее ток и его работа. Иногда говорят, сила тока или просто ток. Таким образом слово ток имеет два значения. Оно обозначает само явление движения электрических зарядов в проводнике, а так же служит оценкой количества электричества, проходящего по проводнику. Ток (или силу тока) оценивают количеством электронов, проходящих по проводнику в течение 1 с. Число его огромно. Через нить накала горящей лампочки электрического карманного фонарика, например, ежесекундно проходит около 2000000000000000000 электронов. Вполне понятно, что характеризовать ток количеством электронов неудобно, так как пришлось бы иметь дело с очень большими числами. За единицу электрического тока принят Ампер (сокращенно пишут А). Так ее назвали в честь французского физика и математика А. Ампера (1775 — 1836 гг.), изучившего законы механического взаимодействия проводников с током и другие электрические явления. Ток 1 А — это ток такого значения, при котором через поперечное сечение проводника за 1 с проходит 6250000000000000000 электронов. В математических выражениях ток обозначают латинской буквой I или i (читается и). Например, пишут: I 2 А или 0,5 А. Наряду с ампером применяют более мелкие единицы силы тока: миллиампер (пишут мА), равный 0,001 А, и микроампер (пишут мкА), равный 0,000001 А, или 0,001 мА. Следовательно, 1 А = 1000 мА или 1000000 мкА. Приборы, служащие для измерения токов, называют соответственно амперметрами, миллиамперметрами, микроамперметрами. Их включают в элетрическую цепь последовательно с потребителем тока, т.е. в разрыв внешней цепи. На схемах эти приборы изображают кружками с присвоенным им буквами внутри: А (амперметр), (миллиамперметр) и мА (микроампер) мкА., а рядом пишут РА, что означает измеритель тока. Измерительный прибор рассчитан на ток не больше некоторого предельного для данного прибора. Прибор нельзя включать в цепь, в которой течет ток, превышающий это значение, иначе он может испортиться.

Амперметр (миллиамперметр, кроамперметр) включают в электрическую цепь последовательно с потребителем тока.

У вас может возникнуть вопрос: как оценить переменный ток, направление и величина которого непрерывно изменяются? Переменный ток обычно оценивают по его действующему значению. Это такое значение тока, которое соответствует постоянному току, производящему такую же работу. Действующее значение переменного тока составляет примерно 0,7 амплитудного, т. е. максимального значения.

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Говоря о проводниках, мы имеем в виду вещества, материалы и прежде всего металлы, относительно хорошо проводящие ток. Однако не все вещества, называемые проводниками, одинаково хорошо проводят электрический ток, т. е. они, как говорят, обладают неодинаковой проводимостью тока. Объясняется это тем, что при своем движении свободные электроны сталкиваются с атомами и молекулами вещества, причем в одних веществах атомы и молекулы сильнее мешают движению электронов, а в других — меньше. Говоря иными словами, одни вещества оказывают электрическому току большее сопротивление, а другие — меньшее. Из всех материалов, широко применяемых в электротехнике и радиотехнике, наименьшее сопротивление электрическому току оказывает медь. Поэтому — то электрические провода и делают чаще всего из меди. Еще меньшее сопротивление имеет серебро, но это довольно дорогой металл. Железо, алюминий и разные металлические сплавы обладают большим сопротивлением, т. е. худшей электропроводимостью. Сопротивление проводника зависит не только от свойств его материала, но и от размера самого проводника. Толстый проводник обладает меньшим сопротивлением, чем тонкий из такого же материала; короткий проводник имеет меньшее сопротивление, длинный — большее, так же как широкая и короткая труба оказывает меньшее препятствие движению воды, чем тонкая и длинная. Кроме того, сопротивление металлического проводника зависит от его температуры: чем ниже температура проводника, тем меньше его сопротивление. За единицу электрического сопротивления принят ом (пишут Ом) — по имени немецкого физика Г. Ома. Сопротивление 1 Ом — сравнительно небольшая электрическая величина. Такое сопротивление току оказывает, например, отрезок медного провода диаметром 0,15 мм и длиной 1 м. Сопротивление нити накала лампочки карманного электрического фонаря около 10 Ом, нагревательного элемента электроплитки — несколько десятков ом. В радиотехнике чаще приходится иметь дело с большими, чем ом или несколько десятков ом, сопротивлениями. Сопротивление высокоомного телефона, например, больше 2000 Ом; сопротивление полупроводникового диода, включенного в не пропускающем ток направлении, несколько сотен тысяч ом. Знаете, какое сопротивление электрическому току оказывает ваше тело? От 1000 до 20000 Ом. А сопротивленце резисторов — специальных деталей, о которых я буду еще говорить в этой беседе, могут быть до нескольких миллионов ом и больше. Эти детали, как вы уже знаете, на схемах обозначают в виде прямоугольников. В математических формулах сопротивление обозначают латинской буквой (R). Такую же букву ставят и возле графических обозначений резисторов на схемах. Для выражения больших сопротивлений резисторов используют более крупные единицы: килоом (сокращенно пишут кОм), равный 1000 Ом, и мегаом (сокращенно пишут МОм), равный 1000000 Ом, или 1000 кОм. Сопротивления проводников, электрических цепей, резисторов или других деталей измеряют специальными приборами, именуемыми омметрами. На схемах омметр обозначают кружком с греческой буквой ? (омега) внутри.

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ

За единицу электрического напряжения, электродвижущей силы (ЭДС) принят вольт (в честь итальянского физика А. Вольта). В формулах напряжение обозначают латинской буквой U (читается «у»), а саму единицу напряжения — вольт — буквой В. Например, пишут: U = 4,5 В; U = 220 В. Единица вольт характеризует напряжение на концах проводника, участке электрической цепи или полюсах источника тока. Напряжение 1 В — это такая электрическая величина, которая в проводнике сопротивлением 1 Ом создает ток, равный 1 А. Батарея 3336Л, предназначенная для плоского карманного электрического фонаря, как вы уже знаете, состоит из трех элементов, соединенных последовательно. На этикетке батареи можно прочитать, что ее напряжение 4,5 В. Значит, напряжение каждого из элементов батареи 1,5 В. Напряжение батареи «Крона» 9 В, а напряжение электроосветительной сети может быть 127 или 220 В. Напряжение измеряют (вольтметром), подключая прибор одноименными зажимами к полюсам источника тока или параллельно участку цепи, резистору или другой нагрузке, на которой необходимо измерить действующее на ней напряжение На схемах вольтметр обозначают латинской буквой V.

Вольтметр подключают параллельно нагрузке или источнику тока, питающего электрическую цепь.

в кружке, а рядом — PU. Для оценки напряжения применяют и более крупную единицу — киловольт (пишут кВ), соответствующую 1000 В, а также более мелкие единицы — милливольт (пишут мВ), равный 0,001 В, и микровольт (пишут мкВ), равный 0,001 мВ. Эти напряжения измеряют соответственно кило — вольтметрами, милливольтметрами и микровольтметрами. Такие приборы, как и вольтметры, подключают параллельно источникам тока или участкам цепей, на которых надо измерить напряжение. Выясним теперь, в чем разница понятий «напряжение» и «электродвижущая сила». Электродвижущей силой называют напряжение, действующее между полюсами источника тока, пока к нему не подключена внешняя цепь-нагрузка, например лампочка накаливания или резистор. Как только будет подключена внешняя цепь и в ней возникнет ток, напряжение между полюсами источника тока станет меньше. Так, например, новый не бывший еще в употреблении гальванический элемент имеет ЭДС не менее 1,5 В. При подключении к нему нагрузки напряжение на его полюсах становится равным примерно 1,3-1,4 в. По мере расходования энергии элемента на питание внешней цепи его напряжение постепенно уменьшается. Элемент считается разрядившимся и, следовательно, негодным для дальнейшего применения, когда напряжение снижается до 0,7 В, хотя, если отключить внешнюю цепь, его ЭДС будет больше этого напряжения. А как оценивают переменное напряжение? Когда говорят о переменном напряжении, например о напряжении электроосветительной сети, то имеют в виду его действующее значение, составляющее примерно, как и действующее значение переменного тока, 0,7 амплитудного значения напряжения.

ЗАКОН ОМА

На рис. показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов: источника напряжения — батареи GB, потребителя тока — нагрузки R, которой может быть, например, нить накала электрической лампы или резистор, и проводников, соединяющих источник напряжения с нагрузкой. Между прочим, если эту цепь дополнить выключателем, то получится полная схема карманного электрического фонаря.

Простейшая электрическая цепь постоянного тока.

Нагрузка R, обладающая определенным сопротивлением, является участком цепи. Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи. Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:
I = U/R,
где I — ток, выраженный в амперах, А; U — напряжение в вольтах, В; R — сопротивление в омах, Ом. Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома), для участка электрической цепи
. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома.

Первый пример: На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи.
Решение: I = U/R = 25 / 5 = 5 А.
Второй пример: На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.

Третий пример: Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10кОм = 10000Ом). Следовательно, U = IR = 0,02 х 10000 = 200 В. На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В, Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом. Это, подчеркиваю, сопротивление накаленной нити лампочки. А сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

В связи с этим приведу еще один пример: Напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.

Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

Закон Ома и производные от него расчетные формулы, достаточно легко запомнить, если пользоваться вот этой графической схемой, т. н. треугольник закона Ома:

Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в треугольнике означает знак деления (по аналогии дробной черты), а вертикальная линия в треугольнике означает знак умножения.

Теперь рассмотрим такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Разберем такой пример. У нас имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В? Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом, как это показано на рис..

Добавочный резистор, включенный в цепь, ограничивает ток в этой цепи.

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, т.е. 30 Ом — сопротивление нити лампочки Н плюс 25 Ом — сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, т.е. почти такой же, на который рассчитана нить накала лампочки. Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи. Можно включать амперметр в любую точку цепи, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.

Добавочный резистор, включаемый в цепь последовательно с нагрузкой (как, например, на рис. выше), можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, Здесь U — падение напряжения, В; I — ток в цепи, A; R — сопротивление добавочного резистора, Ом. Применительно к нашему примеру резистор R ( на рис.) погасил избыток напряжения: U = IR = 0,08 х 25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где R — искомое сопротивление добавочного резистора, Ом; U-напряжение, которое необходимо погасить, В; I — ток в цепи, А. Для нашего примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, и таким образом регулировать ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, т.е. резистором, сопротивление которого можно изменять (см. рис. ниже).

Регулирование тока в цепи с помощью переменного резистора.

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом, С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть, однако, и другой способ подключения нагрузки к источнику тока с избыточным напряжением — тоже с помощью переменного резистора, но включенного потенциометром, т.е. делителем напряжения, как показано на рис..

Регулирование напряжения на нагрузке R2 с помощью переменного резистора включенного в электрическую цепь потенциометром.

Здесь R1 — резистор, включенный потенциометром, a R2 — нагрузка, которой может быть та же лампочка накаливания или какой — то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет). По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 — лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение. Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением. Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех Случаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком — то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ

В цепи переменного тока на значение тока влияет не только сопротивление проводника, включенного в цепь, но и его индуктивность. Поэтому в цепях переменного тока различают так называемое омическое или активное сопротивление, определяемое свойствами материала проводника, и индуктивное сопротивление, определяемое индуктивностью проводника. Прямой проводник обладает сравнительно небольшой индуктивностью. Но если этот проводник свернуть в катушку, его индуктивность увеличится. При этом увеличится и сопротивление, оказываемое им переменному току, — ток в цепи уменьшится. С увеличением частоты тока индуктивное сопротивление катушки тоже увеличивается. Запомни: сопротивление катушки индуктивности переменному току возрастает с увеличением ее индуктивности и частоты проходящего по ней тока. Это свойство катушки используют в различных цепях приемников, когда требуется ограничить ток высокой частоты или выделить колебания высокой частоты, в выпрямителях переменного тока и во многих других случаях, с которыми вам придется постоянно сталкиваться на практике. Единицей индуктивности является генри (Гн). Индуктивностью 1Гн обладает такая катушка, у которой при изменении тока в ней на 1 А в течение 1 с развивается ЭДС самоиндукции, рав;ная 1 В. Этой единицей пользуются для определения индуктивности катушек, которые включают в цепи токов звуковой частоты. Индуктивность катушек, используемых в колебательных контурах, измеряют в тысячных долях генри, называемых миллигенри (мГн), или еще в тысячу раз меньшей единицей — микрогенри (мкГн).

МОЩНОСТЬ И РАБОТА ТОКА

На нагрев нити накала электрической или электронной лампы, электропаяльника, электроплитки или иного прибора затрачивается некоторое количество электроэнергии. Эту энергию, отдаваемую источником тока (или получаемую от него нагрузкой) в течение 1 с, называют мощностью тока. За единицу мощности тока принят ватт (Вт). Ватт — это мощность, которую развивает постоянный ток 1А при напряжении 1В. В формулах мощность тока обозначают латинской буквой Р (читается «пэ»). Электрическую мощность в ваттах получают умножением напряжения в вольтах на ток в амперах, т.е. P = UI. Если, например, источник постоянного тока напряжением 4,5 В создает в цепи ток 0,1 А, то мощность тока будет: р = 4,5 х 0,1 = 0,45 Вт. Пользуясь этой формулой, можно, например, подсчитать мощность, потребляемую лампочкой карманного фонаря, если 3,5 В умножить на 0,28 А. Получим около 1 Вт. Изменив эту формулу так: I = P/U, можно узнать ток, протекающий через электрический прибор, если известны потребляемая им мощность и подводимое к нему напряжение. Каков, например, ток, идущий через электрический паяльник, если известно, что при напряжении 220 В он потребляет мощность 40 Вт? I = P/I = 40/220 = 0,18 А. Если известны ток и сопротивление цепи, но неизвестно напряжение, мощность можно подсчитать по такой формуле: P = I2R. Когда же известны напряжение, действующее в цепи, и сопротивление этой цепи, то для подсчета мощности используют такую формулу: Р = U2/R. Но ватт — сравнительно небольшая единица мощности. Когда приходится иметь дело с электрическими устройствами, приборами или машинами, потребляющими токи в десятки, сотни ампер, используют единицу мощности киловатт (пишут кВт), равную 1000 Вт. Мощности электродвигателей заводских станков, например, могут составлять от нескольких единиц до десятков киловатт. Количественный расход электроэнергии оценивают ватт — секундой, характеризующей единицу энергии — джоуль. Расход электроэнергии определяют умножением мощности, потребляемой прибором, на время его работы в секундах. Если, например, лампочка электрического фонарика (ее мощность, как мы уже знаем, около 1 Вт) горела 25 с, значит, расход энергии составил 25 ватт — секунд. Однако ватт — секунда величина очень малая. Поэтому на практике используют более крупные единицы расхода электроэнергии: ватт — час, гектоватт — час и киловатт — час. Чтобы расход энергии был выражен в ватт — часах или киловатт — часах, нужно соответственно мощность в ваттах или киловаттах умножить на время в часах. Если, например, прибор потребляет мощность 0,5 кВт в течение 2 ч, то расход энергии составит 0,5 Х 2 = 1 кВт ч; 1 кВт ч энергии будет также израсходован, если цепь будет потреблять (или расходовать) мощность 2 кВт в течение получаса, 4 кВт в течение четверти часа и т.д. Электрический счетчик, установленный в доме или квартире, где вы живете, учитывает расход электроэнергии в киловатт — часах. Умножив показания счетчика на стоимость 1 кВт-ч (сумма в коп.), вы узнаете, на какую сумму израсходовано энергии за неделю, месяц. При работе с гальваническими элементами или батареями говорят об их электрической емкости в ампер — часах, которая выражается произведением значения разрядного тока на длительность работы в часах. Начальная емкость батареи 3336Л, например 0,5 Ач. Подсчитай: сколько времени будет батарея непрерывно работать, если разряжать ее током 0,28 А (ток лампочки фонаря)? Примерно один и три четверти часа. Если же эту батарею разряжать более интенсивно, например, током 0,5 А, она будет работать меньше 1 ч. Таким образом, зная емкость гальванического элемента или батареи и токи, потребляемые их нагрузками, можно подсчитать примерное время, в течение которого будут работать эти химические источники тока. Начальная емкость, а также рекомендуемый разрядный ток или сопротивление внешней цепи, определяющее разрядный ток элемента или батареи, указывают иногда на их этикетках или в справочной литературе.

В этом уроке я попытался систематизировать и выложить максимум необходимой для начинающего радиолюбителя информации по основам электротехники, без которых дальше нет смысла, что то, продолжать изучать. Урок, получился пожалуй самый продолжительный, но и самый важный. Советую отнестись к этому уроку более серьезно, обязательно заучить выделенные определения, если что то, непонятно, перечитывайте несколько раз, что бы вникнуть в суть сказанного. В качестве практической работы, можете поэксперементировать со схемами изображенными на рисунках, т. е. с батарейками лампочками и переменным резистором. Это пойдет вам на пользу. А вообще, в этом уроке, конечно же, весь упор нужно сделать не на практику, а на усвоение теории.

 

Переходим к следующему уроку !

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

В.С. ЛУКМАНОВ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ТЕОРИЯ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХЦЕПЕЙ

УФА 2005

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Уфимский государственный авиационный технический университет

В.С. Лукманов

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Часть I

ТЕОРИЯ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХЦЕПЕЙ

Допущено Научно-методическим советом

Министерства образования и науки РФ по электротехнике и электронике в качестве учебного пособия

по теоретическим основам электротехники для студентов вузов, обучающихся по направлению подготовки

140600 «Электротехника, электромеханика, электротехнологии» специальности 140601 – «Электромеханика»;

по направлению подготовки 140200 «Электроэнергетика» специальности 140205 – «Электроэнергетические системы и сети»

УФА 2005

1

УДК 621.3 (07) ББК 31.2 (Я7)

Л84

Л84 Лукманов В.С. Теоретические основы электротехники. Часть I.

Теория линейных электрических цепей: Учебное пособие /В.С.Лукманов; Уфимск. гос. авиац.техн. ун-т. – Уфа: УГАТУ, 2005. – 120 с. ISBN 5-86911-543-4

Пособие соответствует государственному образовательному стандарту дисциплины «Теоретические основы электротехники» направления подготовки 140600 «Электротехника, электромеханика, электротехнологии» специальности 140601 – «Электромеханика»; направления подготовки 140200 «Электроэнерге- тика» специальности 140205 – «Электроэнергетические системы и сети».

Представлен материал по первой части дисциплины «Теоретические ос- новы электротехники», который охватывает следующие темы: законы электро- техники, методы расчета линейных электрических цепей, комплексный метод расчета цепей при синусоидальных воздействиях, резонансные явления в ли- нейных электрических цепях, электрические цепи с взаимной индукцией, мето- ды расчета трехфазных цепей, расчет цепей при периодических несинусои- дальных воздействиях.

Предназначено для студентов вузов электротехнических специальностей, изучающих теоретические основы электротехники как по очной, так и по заоч- ной системам обучения.

Табл. 1. Ил. 93. Библиогр.: 12.

Рецензенты: д-р техн. наук, проф. МЭИ(ГУ) Гусев Г.Г., канд. техн. наук, доцент МЭИ(ГУ) Шакирзянов Ф.Н.

ББК 31.2 (Я7)

ISBN 5-86911-543-4

© В.С.Лукманов, 2005

2

ОГЛАВЛЕНИЕ.

Введение…………………………………..……………………………

6

Глава 1. Линейные электрические цепи постоянного тока …………

8

1.1. Определения…………………………………….………

8

1.2. Источники электрической энергии……………………

9

1.3.Основные преобразования схем, используемые при анализе электрических цепей……. 12

1.4.Законы электрических цепей………………………..… 14

1.5.Расчет электрической цепи по законам Кирхгофа…… 16

1.6.Метод контурных токов……………………………….. 18

1.7.Метод узловых потенциалов………………………….. 21

1.8.Принцип наложения и метод наложения……………… 23

1.9.Метод эквивалентного генератора …………………… 25

1.10.Передача энергии от активного двухполюсника нагрузке…….…………………………………………… 30

1.11.Метод пропорциональных величин…………………… 31

1.12.Теорема о линейных соотношениях…………………… 32

1.13.Теорема компенсации………………………………….. 33

1.14.Энергетический баланс в электрических цепях……… 34

Глава 2. Электрические цепи однофазного синусоидального тока .. 35

2.1.Синусоидальный ток и основные характеризующие его величины……………………..…………………….. 35

2.2.Действующее и среднее значения синусоидально из- меняющейся величины…..………………………….. 36

2.3.Коэффициент амплитуды и коэффициент формы…… 37

2.4.Изображение синусоидальных токов, напряжений, ЭДС с помощью вращающихся векторов.

Векторная диаграмма….……………………………….. 38

2.5.Активное сопротивление в цепи синусоидального тока……………………………………………………… 38

2.6.Индуктивность в цепи синусоидального тока……….. 39

2.7.Емкость в цепи синусоидального тока……………….. 40

2.8.Установившийся синусоидальный ток в цепи с по-

следовательным соединением участков R, L, C…… 41

2.9.Установившийся синусоидальный ток в цепи с па- раллельным соединением участков G, L и C………. 43

3

Глава 3. Комплексный метод расчета электрических цепей при ус- тановившемся синусоидальном токе…………………….. 46

3.1.Комплексные числа……………………………………. 46

3.2.Изображение синусоидально изменяющихся величин на комплексной плоскости…………………………….. 48

3.3.Выражение для производной………….………………. 49

3.4.Выражение для интеграла……………………………… 50

3.5.Алгебраизация уравнений……………………………… 51

3.6.Закон Ома для цепи синусоидального тока. Ком-

плексное сопротивление………………………….. 52

3.7.Комплексная проводимость…………………………… 53

3.8.Треугольник сопротивлений и треугольник проводи-

мостей.………………………………………… 53

3.9.Законы Кирхгофа в комплексной форме……………… 54

3.10.Активная, реактивная и полная мощности…………… 54

3.11.Расчет сложных электрических цепей комплексным методом……….………………………………………… 57

Глава 4. Резонансные явления в линейных электрических цепях.…. 61

4.1.Резонанс напряжений………………………………….. 61

4.2.Резонанс токов………………………………………….. 68

4.3.Резонанс в разветвленных цепях……………………… 71

4.4.Резонанс в цепях без потерь (чисто реактивные цепи)…………………………………………………….. 72

Глава 5. Расчет электрических цепей при наличии в них магнитос-

 

вязанных катушек………………………………….

74

5.1.Определения. Физическая модель…………………….. 74

5.2.Расчет последовательного соединения двух магни-

тосвязанных катушек…………………………….

76

5.3. Расчет разветвленных цепей при наличии в них маг-

 

нитосвязанных катушек ……………………………

77

5.4.«Развязывание» магнитосвязанных цепей…………… 80

5.5.Трансформатор с линейными характеристиками……. 81

Глава 6. Расчёт трёхфазных цепей…………….……………………… 86

6.1.Трехфазная система ЭДС…………….………………… 86

6.2.Общие положения и допущения при расчете трех-

фазных цепей….…………………………………… 87

4

6.3.Расчет соединения звезда — звезда с нулевым прово-

дом………………………………………………… 87

6.4.Расчет соединения звезда — звезда без нулевого про-

вода………………………………………………….. 90

6.5.Расчет соединения треугольник — треугольник………. 92

6.6.Активная, реактивная и полная мощности трёхфаз-

ной цепи…………………………………………

93

6.7. Измерение активной мощности в трёхфазной цепи.… 93

Глава 7. Расчет электрических цепей при несинусоидальных пе- риодических ЭДС, напряжениях и токах………………… 96

7.1.Алгоритм расчета………………………………………. 96

7.2.Представление периодической несинусоидальной функции в виде ряда Фурье………………………….… 97

7.3.Гармонический состав кривой в некоторых случаях симметрии………………………………………………. 98

7.4.Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении………………….. 99

7.5.Действующее значение периодических несинусои-

дальных токов, напряжений, ЭДС………..

101

7.6.Определение мощности в электрических цепях с периодическими токами, напряжениями, ЭДС……… 101

Глоссарий………………………………………………………..……. 103 Список литературы……….………………………………………….. 118

5

ВВЕДЕНИЕ

Курс «Теоретические основы электротехники» занимает основ- ное место среди общетехнических дисциплин, определяющих теоре- тический уровень профессиональной подготовки инженеров- электриков.

Предмет курса составляют электромагнитные явления и их при- кладное применение для создания, передачи и распределения элек- трической энергии с помощью универсального носителя – электро- магнитного поля – для решения проблем электротехники, электроме- ханики, электротехнологии. Курс ТОЭ как базовый курс обеспечива- ет комплексную подготовку будущего специалиста: формирует про- фессиональную подготовку, развивает творческие способности, учит формулировать и решать на высоком и перспективном научном уров- не проблемы приобретаемой специальности, творчески применять и самостоятельно повышать свои знания.

Содержанием дисциплины «Теоретические основы электротех- ники» являются теоретические аспекты практического использования электротехники.

Основная задача курса ТОЭ состоит в изучении одной из форм материи – электромагнитного поля и его проявлений в различных ус- тройствах техники, усвоении современных методов моделирования электромагнитных процессов, методов анализа, синтеза и расчета электрических цепей, электрических и магнитных полей, знание ко-

торых необходимо для понимания и успешного решения инженерных проблем будущей специальности. Изучение теоретической электро-

техники способствует выработке развитых представлений о методах применения теории электромагнитных явлений и методологии курса ТОЭ в специальных дисциплинах.

В современной теоретической электротехнике различают четыре основные задачи: анализ, синтез, диакоптику и диагностику.

Задача анализа сводится к расчету токов, напряжений для за- данной электрической цепи. Синтез представляет собой обратную за- дачу – нахождение такой электрической цепи, процессы в которой будут протекать по заданному закону. Задача диакоптики связана с исследованием электрических цепей по частям. И, наконец, задача диагностики сводится к определению параметров реально сущест- вующих цепей по экспериментальным данным при сохранении цело-

6

стности объектов диагностирования в процессе проведения экспери- ментов.

Далее подробно рассматривается задача анализа, тогда как о за- дачах синтеза, диакоптики и диагностики даются лишь общие поня- тия.

Вкурсе ТОЭ можно выделить три основных раздела: теорию линейных электрических цепей, теорию нелинейных электрических цепей, теорию электромагнитного поля.

Впервом разделе – «Теория линейных электрических цепей» излагаются законы и свойства линейных электрических цепей, мето- ды расчета установившихся и переходных процессов в таких цепях,

особенности расчета цепей при синусоидальных и несинусоидальных гармонических воздействиях.

Во втором разделе – «Теория нелинейных электрических цепей»

излагаются свойства нелинейных электрических и магнитных цепей и методы расчета происходящих в них процессов. Эти вопросы имеют

большое значение в связи с широким использованием нелинейных цепей в современных технических устройствах.

Последний раздел – «Теория электромагнитного поля» – посвя- щен изучению расчета электромагнитного поля. Это связано с тем, что многие электротехнические задачи могут быть детально проана- лизированы только при помощи теории электромагнитного поля.

Впособии представлен материал части первого раздела курса «Теоретические основы электротехники» который охватывает сле- дующие темы: законы электротехники, методы расчета электриче- ских цепей, комплексный метод расчета цепей при синусоидальных воздействиях, резонансные явления в электрических цепях, электри- ческие цепи со взаимной индукцией, методы расчета трехфазных це- пей, расчет цепей при периодических несинусоидальных воздействи- ях.

7

Глава 1. ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

1.1. Определения

Электрическая цепь – совокупность устройств и объектов, об- разующих путь для электрического тока, электромагнитные про- цессы в которых могут быть описаны с помощью понятий об элек- тродвижущей силе, электрическом токе и электрическом напряже-

нии (ГОСТ Р52002-2003).

Схема электрической цепи – графическое изображение элек- трической цепи, содержащее условные обозначения ее элементов, показывающее соединения этих элементов (ГОСТ Р52002-2003).

Схему составляют из идеализированных элементов, которые по-

зволяют осуществлять математическое моделирование физических явлений, происходящих в реальной электрической цепи.

Ветвь — участок электрической цепи, по которому протекает один и тот же ток (ГОСТ Р52002-2003).

Узел – место соединения ветвей электрической цепи (ГОСТ Р52002-2003).

Контур – любой замкнутый путь, образованный ветвями и уз- лами.

Независимый контур – контур, отличающийся от предыдущих хотя бы одной ветвью.

Различают линейные и нелинейные электрические цепи.

Линейная электрическая цепь – это такая электрическая цепь, у которой электрические напряжения и электрические токи или (и) электрические токи и магнитные потокосцепления, или (и) электри-

ческие заряды и электрические напряжения связаны друг с другом линейными зависимостями (ГОСТ Р52002-2003).

Нелинейная электрическая цепь – это такая цепь, у которой электрические напряжения и электрические токи или (и) электриче- ские токи и магнитные потокосцепления, или (и) электрические за- ряды и электрические напряжения связаны друг с другом нелинейны- ми зависимостями (ГОСТ Р52002-2003).

Далее, если не оговорено особо, рассматриваются линейные электрические цепи.

8

1.2. Источники электрической энергии

Любой источник электрической энергии можно представить в виде источника электродвижущей силы (ЭДС) либо в виде источника тока.

Идеальный источник ЭДС – это такой источник электрической энергии, электрическое напряжение на выводах которого не зависит от электрического тока в нем (ГОСТ Р52002-2003) (рис. 1.1).

 

I

 

U

 

 

 

+

U

Rвн = 0

Е

Е = U

 

 

Е

 

 

 

 

 

 

I

 

 

 

Рис. 1.1

Идеальный источник тока – это такой источник, электриче- ская энергия, электрический ток которого не зависит от напряже-

ния на его выводах (ГОСТ Р52002-2003) (рис. 1.2).

 

I

 

 

I

 

 

 

 

+

 

 

 

Rвн = ∞,

U

 

Gвн = 0

J

 

J

I = J

 

 

 

 

 

 

 

 

 

 

 

U

Рис. 1.2

При анализе электрических цепей любой источник электриче- ской энергии может быть заменен как идеальным, так и реальным источником.

9

Лекции по теоретическим основам электротехники и электроники

Для кого предназначен этот сайт

Данный курс ТОЭ или теоретических основ электротехники предназначен как для студентов высших учебных заведений, так и и просто для интересующихся электрофизикой, общей электротехникой и электроникой.

Откуда взялись эти методические указания.

Лекции по электротехники были собраны в процессе проведения учебных занятий у студентов электротехнических и неэлектротехнических специальностей. Можно сказать, что данные лекции были выстраданы кровью и потом студентами. Было прочитано и переработано огромное количество книг, проведено множество консультаций с докторами и кандидатами технических и педагогических наук по методике подачи материала.

Сложно ли понять и изучить электротехнику?

Вообще электротехника и ТОЭ – это достаточно сложный предмет. Для многих студентов это как сопромат. Все знают, что что-то можно посчитать, но не знают как это сделать. Наскоком электротехника дается немногим. Остальные тратят много времени на зубрежку или на вникание, переосмысление и понимание каждой темы.

Библия для электриков и электроников.

Если вам покажется мало этих лекций (материалов по электротехники), то основным талмудом или библией для электриков является, конечно же следующая книга Л.А. Бессонов «Теоретические основы электротехники» в трех томах. Каждый томом книги настолько большой, что им можно легко убить человека… Начинающим этот учебник Бессонова врят ли подойдет. Данным учебником легко и просто пользоваться только в тех случаях, когда вы хотите освежить в памяти некоторую область знаний. Например, нужно рассчитать токи по законам Кирхгофа. Ищем в книге такую главу, читаем, вспоминаем, смотрим пример и рассчитываем свою задачу.

Когда я только изучал курс теоретических основ электротехники и читал материалы учебника “Теоретические основы электротехники” Бессонова, то понимал что и как нужно делать примерно после десятого — пятнадцатого вдумчивого прочтения. В некоторых случаях приходилось еще и консультироваться с кем-нибудь для уяснения важных моментов.

ТОЭ для чайников. Существует ли бесплатная таблетка?

Многие в интернете ищут книгу «ТОЭ для чайников»… Если такая книга и существует, то врят ли многие ее поймут после первого прочтения. На 100% утверждать не возьмусь, но практика показывает именно это.

Курсовики, РГР и экзамены по ТОЭ или по электротехники – это отдельная тема для разговора. Для студентов данный вид проверки знаний можно сравнить разве что со штурмом хорошо укрепленной крепости в одиночку…

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *