Site Loader

назначение и принцип действия, классификация (цифровой, механический)

Осциллограф применениеРазвитие промышленности не стоит на месте. Разрабатываются новейшие приборы, призванные значительно сократить время исследований. Одним из самых популярных типов контрольно-измерительной техники, позволяющим производить научные и производственные изыскания, является осциллограф.

Понятие и история создания

Под осциллографом принято понимать специализированный прибор, созданный для точного измерения, наблюдения и последующей записи параметров и характеристик электрического сигнала: временных и амплитудных. Подобные сигналы могут как подаваться на вход, так и регистрироваться непосредственно на дисплее или фиксироваться на фотоленту. Скачок современной науки сделал возможным исследование сигнала гигагерцовых частот.

Первая фиксация электрического колебательного процесса делалась на бумаге в ручном режиме. Начальные попытки по автоматизированию записи велись Жюлем Франсуа Жубером. Учёный в 1880 году представил к использованию полуавтоматический пошаговый метод регистрирования сигнала. Следующим шагом в развитии метода стал однограф Госпиталье, который стал полностью автоматическим.

Прибор осциллограф В начале 1885 года русским физиком Робертом Колли был спроектирован и создан осциллометр. Доработав творение Колли, французский физик А. Блондель изобрёл магнитно-электрический осциллоскоп, оснащённый бифилярным подвесом. Невозможность фиксировать процессы с высокой скоростью из-за подвижности регистрирующих частей с большой инерцией была устранена в 1897 году. Дадделл Уильям предложил использовать миниатюрное зеркальце в качестве измерительного элемента.

Во второй половине XX века появились ленточные многоканальные осциллографы с горизонтальной развёрткой. Цифровые модели пришли на смену устаревшим аналогам и заняли лидирующую позицию среди быстрейших аналого-цифровых преобразователей.

Развёрнутая классификация прибора

Современные осциллографы обладают весомым набором приложений для измерения, глубокой памятью, сенсорным ёмкостным дисплеем и способностью к скоростному обновлению сигналов на дисплее. Ознакомление с классификацией — неотъемлемый шаг в работе с техникой. Аппаратура подлежит внутреннему делению по назначению и логике работы:

  1. Стробирующий.
  2. Реального времени или аналоговый.
  3. Запоминающий: сходный с ЭЛТ аналоговый и цифровой.

Сфера применения осциллографа

В отдельную группу выделяются приборы с непрерывной развёрткой. Они позволяют регистрировать кривую на особой фотоленте. По числу лучей бывают двулучевые, однолучевые, трехлучевые и так далее. Вершиной автоматизации считается 16 лучей и более. Параметр влияет на синхронизацию данных.

Для техники с периодической развёрткой характерно следующее деление: стробоскопические, скоростные, обычные и универсальные, специальные запоминающие. Цифровым моделям свойственно сочетание нескольких параметров. Реже встречаются осциллографы, назначение которых совмещено с другим измерительным прибором. Их официальное название — скопметры.

Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Принцип работы осциллографа
    Входной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Важной деталью являются сигнальные выходы. Многоканальная аппаратура предназначена измерять параметры и вести одновременное наблюдение за несколькими поступающими в систему сигналами. На вход Y поступает и усиливается входной сигнал от каждого из присутствующих каналов.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

  1. Как использовать осциллограф Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке.
  2. Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту. Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом.
  3. Автоматическое развёртывание. В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Синхронизация с наблюдаемым сигналом

Получить заданное неподвижное изображение на дисплее позволяет особая двигательная траектория луча на экране в процессе развёртывания. Он должен перемещаться по одной и той же кривой линии. Обеспечением этого процесса занимается схема синхронизации, дающая старт развёртке на одинаковом фронте и уровне исследуемых сигналов.

В качестве примера допустимо рассмотрение ситуации исследования синусоидального сигнала при такой настройке схемы, что запуск развёртывания в нарастании синусоидов будет иметь значение ноль. В момент запускания узкий луч обрисует несколько схожих или одну единую волну, на что будет влиять настроенная заранее скорость. Отсутствие повторного запуска заставит дождаться очередного прохождения волны с нулевым значением при нарастающем фронте.

Без синхронизации с изучаемым сигналом картинка на дисплее будет выглядеть нечёткой, размазанной. Это вызвано одновременным отображением различных участков исследуемого сигнала на экране. Базовые настройки, доступные каждому оператору: тип запуска и его уровень.

Специфика выбора товара

Приобретая такую узкоспециализированную технику, следует учитывать ряд важных параметров. В первую очередь следует обратить внимание на следующие:

  • Разновидности моделей осциллограф
    Полосу пропускания. В среднем полоса должна быть на 5 пунктов выше значения частоты исследуемого сигнала. Для использования простого усилителя звуковых частот и цифровой схемы достаточным параметром будет 25 МГц. Научные изыскания и профессиональные исследования потребуют использование устройства с минимальной полосой пропускания около 150 МГц.
  • Тип питания. В случае проведения работ вдали от сети или на выезде рекомендуется приобрести модель с аккумулятором. В любой другой ситуации целесообразно использовать аппаратуру, работающую от сети.
  • Частота дискретизации. Пункт влияет на качество разрешения изображений на экранах, количество выборок сигнала за секунду. Для более точного изображения потребуется увеличение числа точек сигнала. Частота важна и для измерения однократных и переходных процессов.
  • Число каналов. Каналы влияют на количество отображаемых на дисплее независимых сигналов. Обеспечивают возможность анализировать и сравнивать несколько графиков одновременно. Работа с простыми техническими приборами не требует более 3 каналов. Более продвинутая аппаратура должна быть оснащена логическим анализатором и 16 каналами.

Применение и интересные факты

Являясь одним из важнейших аппаратов в радиоэлектронике и радиотехнике, он широко используется в лабораторных, прикладных и научно-исследовательских целях. Позволяет изучать, контролировать и измерять параметры электрических сигналов и радиоволн при воздействии разнообразных датчиков. Прибор позволяет:

  1. Принцип работы осциллографаОпределять частоту сигнала по измерению его временных характеристик.
  2. Измерять временные параметры для получения значения амплитуды напряжения.
  3. Выяснить постоянную и переменную классического сигнала.
  4. Изучать сдвиги фаз, происходящие при прохождении различных участков цепи.
  5. Исследовать внутренние механизмы, происходящие в электрической цепи.
  6. Наблюдать частоту колебания и особенности искажения сигнала.
  7. Вычислить соотношение шума и сигнала, стационарность шума и возможные изменения по временным параметрам.
  8. Наладить оперативный и периодический контроль качественных характеристик телевизионного тракта в системе телевещания.

Широко применение осциллографа в диагностике и ремонте автотранспорта. Благодаря своим характеристикам он способен выявить неисправные катализаторы, проверить функционирование исполнительных механизмов, кратко указать основные идентификационные сведения системы, считать код неисправностей, который сохраняет система, отследить изменения сигналов датчиков системы.

Универсальный осциллограф

Учёными выделено несколько занимательных фактов работы и создания фиксирующего прибора, популярного в электромеханической сфере любого производства. К ним относят:

  • Применение прибора осциллографаИменно экран одного из осциллографов был использован как дисплей первой видеоигры, визуализирующей игру в теннис. Игра Tennis For Two создавалась на работе аналоговых вычислительных машин. Управление основано на специальном игровом контроллере — Paddle.
  • Радиолюбителями используется тракт записи звука, установленный на звуковой карте компьютера в качестве прибора ввода измерения низких частот.
  • Часто встречается ошибочное написание прибора «осцелограф».
  • Квалифицированные любители радиоэлектроники, не являющиеся чайниками в мире электроники, занялись самостоятельным изготовлением приборов для процесса осциллографирования в качестве приставки к ПК или телевизору. Сейчас эта потребность не так актуальна. Освоенные технологии массового производства подобных товаров имеют низкую себестоимость.

Основа любой действующей научной лаборатории — качественная измерительная аппаратура и источники сигналов, токов, напряжений. Сегодня важнейшим контрольно-измерительным прибором для научных и производственных исследований является осциллограф.

Устройство осциллографа, его настройка, подключение и сферы применения

Принципиальная схема осциллографаДля ремонта электроники необходимы измерительные приборы. В основном используют мультиметр или старый добрый тестер, но для сложной диагностики неисправностей радиоэлектронной аппаратуры требуется более точный и чувствительный прибор — осциллограф. Им пользуются в основном профессиональные мастера электроники. Обывателю достаточно сложно разобраться в тонкостях его работы. Статья поможет понять принцип работы и полезные качества этого аппарата для диагностики электронной техники.

Что такое осциллограф и зачем он нужен

Осциллограф позволяет визуализировать электрические сигналы, импульсы и колебания. При диагностике неисправностей электронной аппаратуры очень важно видеть процессы, происходящие в электронной схеме, даже если они кратковременны и происходят в случайный момент. По осциллограмме можно видеть амплитуду электронного колебания и время любого его участка. С помощью осциллографа измеряют: фазы, частоты, коэффициенты модуляции электронных колебаний и многие иные необходимые измерения. Большой диапазон измеряемых частот, возможность отделения необходимого сигнала от помех делает его незаменимым прибором при ремонте сложной электронной техники. В общих чертах и понятным новичку языком принцип работы можно описать следующим образом.

Устройство осциллографа

Как работает осциллографОсновной элемент прибора — экран, разделённый на клетки. На него выводится визуализация электрического колебания. Масштаб клеток задаётся регулировками на корпусе осциллографа. Вертикальные клетки показывают напряжение подаваемого сигнала, а горизонтальные замеряют время. Градация клеток как по напряжению, так и по времени выставляется регуляторами на корпусе. Зная время одного импульса сигнала несложно рассчитать его частоту.

Усилитель сигнала

Прибор оснащён регулятором усиления электрического сигнала. По сути, функция изменяет масштабирование синусоиды на экране. Например, по вертикали экран размечен на 10 клеток, и предел усиления установлен на 1 вольт на клетку. В этом случае импульс напряжением в двадцать вольт будет не виден на экране. Нужно установить параметр усиления на большее количество вольт, отображаемое в одной клетке. Точно так же при низком напряжении увеличением усиления добиваются отчётливой визуализации осциллограммы.

Развёртка и её регулировка

Принцип настройки осциллографа по параметру развёртки идентичен настройке усиления, только производится она по горизонтальной оси. Клетки соответствуют миллисекундам. Изменяя их количество, соответствующее одной клетке, получаем нужное отображение синусоиды в необходимом масштабе. При необходимости изучить малый отрезок сигнала, значение развёртки уменьшают. Для изучения частотности и типа электронного импульса, оценки цикличности и других характеристик значение увеличивают.

Блок синхронизации

Синусоида графика прорисовывается на экране слева направо, до его окончания. Далее, прорисовка повторяется. Скорость построения графика высока и приводит к «бегущей» прорисовке или вообще к непонятной кривой. Это происходит по причине наслоения нового изображения на старый график с однозначным смещением. Регулировкой синхронизации осуществляется включение развёртки при достижении входным сигналом установленных значений.

Например, установив значение синхронизации в ноль вольт, при обработке синусоиды сигнала отображение начнётся после достижения напряжения на входе заданного показателя, а завершится в конце экрана. Потом визуализация начнётся с очередного нулевого показателя, и цикл будет повторяться. В результате становится видна стабильная картина, и все скачки сигнала становятся наглядно видны. Простейший блок синхронизации оснащён двумя настройками:

  • Регулятор «Фронт» — позволяет установить напряжение старта. Если, допустим, установить ноль, то прорисовка начнётся, когда синусоида будет падать до значения ноль.
  • Регулятор «Спад» — При установленном на ноль регуляторе прорисовка стартует, когда синусоида будет подниматься до значения ноль снизу.

В сложных моделях осциллографов существуют ещё ряд настроек синхронизации для более специфических измерений.

Блок питания

Блок питанияСлужит для подачи необходимого напряжения на электронные схемы самого осциллографа от сети 220 вольт.

Прибор может быть оснащён одним или несколькими сигнальными входами. Это зависит от модели. Несколько выходов необходимы для замера анализа и сравнения сразу нескольких электрических сигналов. Простейший осциллограф оснащён лишь одним сигнальным выходом и щупом заземления. Если к входу прибора ничего не подключено, то на экране посередине моделируется горизонтальная линия, называемая нулевой прямой. Если, к примеру, подключить сигнальный щуп к плюсу батарейки, а заземление к минусу, прямая линия подскочит вверх на количество клеток, соответствующее напряжению по шкале градации, выставленной на корпусе прибора. Поменяв щупы местами, линия опустится на то же количество клеток.

Зачем необходим осциллограф

Областей использования осциллографа очень много. Визуализация поведения электронного сигнала значительно упрощает определение неисправности, следовательно, ускоряет время, затрачиваемое на ремонт любого, даже очень сложного прибора. Осциллограф позволяет:

  1. Измерить напряжение и временной параметр электронного сигнала, определить частоту.
  2. Видеть амплитуду сигнала, понять его природу.
  3. Измерить сдвиг фаз.
  4. Выяснить соотношение полезного сигнала и помех, наводок, а также понять характеристики шумов.

При помощи осциллографа легче определить неисправность в приборе, а некоторые поломки диагностировать без него невозможно. Он делает огромное количество замеров в секунду, способен выявлять очень кратковременные сбои сигнала и фиксировать их, что невозможно сделать мультиметром.

Виды осциллографов

Разновидности приборов осциллографовПриборы разделяются на два больших вида: аналоговые, собранные по схемам с использованием электронно-лучевых трубок, и цифровые собранные с использованием жидкокристаллических дисплеев. А также существует разделение по количеству сигнальных входов. Это нужно для замера сразу нескольких показаний и их сравнения.

Аналоговые осциллографы

Это собранные по классической схеме осциллографы с применением лучевой трубки. Такие модели оснащены делителем, вертикальным усилителем, имеют синхронизацию и отклонение, и блок питания. Нижний порог измеряемой частоты 10 герц, верхний зависит установленного усилителя. В наше время аналоговые приборы вытесняются цифровыми моделями этого нужного агрегата.

Цифровые осциллографы

Эти приборы, собранные на основе микропроцессорных компонентов. Такие схемы осциллографов обладают значительно большим спектром технических возможностей. Состоят из делителя, усилителя, дешифратора аналогового сигнала в цифровой код, блока управления, памяти, а также из блока питания и ж. к. дисплея для визуализации измерений. Цифровые приборы компактны и могут быть нескольких типов:

  • Принцип работыЦифровые запоминающие приборы. Принцип действия несколько отличается от аналогового варианта. Входящий сигнал преобразовывается в цифровой вид и при необходимости запоминается. Скорость запоминания задаётся управляющим блоком. Оцифровка сигнала позволяет повысить стабильность отображения и запомнить информацию, сделать проще растяжение и масштабирование синусоиды. Ж. к. дисплей даёт возможность отображать дополнительные данные и управлять прибором. Существуют модели с цветным дисплеем, дающим возможность отличать сигналы от помех, шумов и других каналов, обозначать цветом интересующие места осциллограммы. Запомненные результаты измерений можно перенести в файле на компьютер или распечатать для дальнейшей обработки.
  • Цифровые люминофорные устройства. Приборы совмещают в себе все достоинства аналоговых и цифровых осциллографов, благодаря новейшей технологии построения графика сигнала на цифровом люминофоре. Это позволяет видеть на экране все нюансы модуляции сигнала, как на аналоговых типах прибора. При этом даёт возможность сохранения измерений в памяти и их анализа. А также возможно выводить графики с изменяемой интенсивностью, что очень облегчает определение неисправностей в импульсных электронных схемах и модулях. Например, становиться возможным расчёт глубины модуляции электрического сигнала при настройке напряжения на выходе импульсного блока питания, что приводит к нестабильной работе схемы или модуля. Люминофорные приборы мгновенно реагируют на изменения входного сигнала, отображают его с разной яркостью, имеют возможность сохранения и анализа измерений. Отлично совмещает в себе все преимущества цифровых и аналоговых устройств, а во многом и превосходят их.
  • Цифровые стробоскопические устройства. В таких типах приборов используется эффект последовательного стробирования сигнала. Приборы точены и чувствительны, позволяют исследовать периодические сигналы минимальной интенсивности, имеют широкую полосу пропускания. Позволяют выявлять дефекты очень сложных схем. Цена приборов очень высока, поэтому используется только профессионалами.

Портативные осциллографы

Как используется осциллографТехнологии идут вперёд, стационарные цифровые приборы приобретают меньшие габариты и размеры, осциллографы не исключение. Портативные модели этих приборов имеют небольшие размеры и массу, питаются от батареек или встроенного аккумулятора. При этом не уступают стационарным устройствам по функциональности и точности, имеют большое количество функций и возможностей применения в различных областях.

Виртуальные осциллографы

Виртуальные варианты прибора являются неплохой заменой обычных цифровых осциллографов. Их преимущества в низкой стоимости, лёгкости применения, небольших размерах, хорошем быстродействии. Недостатки: невозможность замера и постоянной визуализации величины сигнала. Могут применяться в любой радиотехнической сфере. Например, для обслуживания телекоммуникационных сетей, ремонта электронной техники и компьютеризированного оборудования, при диагностике любых схем и блоков, где необходимо тестирование и анализ неустойчивых, переходных электронных процессов.

Виртуальные приборы могут быть двух типов: ·

  • Собранный в отдельном блоке аппаратный модуль, подключаемый к компьютеру через USB порт.
  • Программное приложение для компьютера, работающее при помощи звуковой карты, к линейному входу которой подключается сигнальный щуп. Визуализация сигнала происходит на мониторе П. К. или ноутбука.

При выборе модели прибора нужно обязательно представлять, какие измерения будут им производиться.

Проверка осциллографа

Что за прибор осциллографВ инструкции по эксплуатации обязательно описан процесс калибровки (проверки) устройства. Практически любой осциллограф имеет сзади или сбоку корпуса специальный выход генератора прямоугольных импульсов. Его используют для калибровки прибора. При подключении сигнального щупа к калибровочному выходу на экране должна появиться пилообразная линия. Поставив воспроизведение луча в режим «Авто», нужно проверить работу всех функций, покрутив ручки. Яркость должна регулироваться, фокусировка — фокусировать, луч должен двигаться вверх, вниз при масштабировании. При настройке синхронизации осциллограмма должна останавливаться.

Самый же простой способ убедиться в работоспособности прибора — это коснуться пальцами щупа. Луч должен реагировать на прикосновение.

Основные функции работы и возможности осциллографа, описанные выше? наверняка помогут начинающим. Многие вопросы, возникающие в процессе использования агрегата, можно понять лишь с опытом. Прибор достаточно сложен, но изучив его, легко решаются задачи диагностики и ремонта фактически любых электронных схем.

Использование осциллографа. Видео урок. | Электроника для всех

В нагрузку к статье про использование осциллографа снял видео урок.


И часть вторая, про использование

А вот обещанные во втором ролике фотки экранов двух осциллов:

З.Ы.
Хочу дополнить текстовую версию статьи фотоинструкцией где у какого осциллографа что. Чтобы не путались, но увы у меня нет фотографий морд разных брутальных советских осциллов в хорошем разрешении. А то у меня тока гламурные RIGOL да GW Instek , а по яндуху что то не особо нагугливается качествненых картинок.

Может накидаете мне четких хороших фотографий своих осциллов. Интересует вид морды в фас, чтобы все надписи были хорошо видны и читаемы.

Фотки которые уже не нужны:
С1-19Б есть, спасибо Вschepan
C1-26 есть, спасибо RsM
С1-49 есть. Мой первый осцил 🙂
С1-55 есть, спасибо Sanchez
C1-65 есть, спасибо DoT
C1-67 есть, спасибо Maddev
C1-68 есть, спасибо IIIaman и Magnum
C1-69 есть, спасибо Tarai
С1-73 и 074 есть, спасибо tesla.myopenid.com
C1-83 есть, спасибо Magnum
C1-84 есть, спасибо RaZen
С1-94 есть, спасибо Shaienn и CS
С1-96 есть, спасибо Сергей
C1-97 есть, спасибо Шура Люберецкий
С1-99 есть, спасибо Brick85
C1-112 есть, спасибо Павло и SWG
C1-114/1 есть, спасибо MfO
C1-117 есть, спасибо Stalker46
C1-188A есть, спасибо notFreeUser
GW Instek GOS-635G есть, мой.
h413 есть, спасибо Vgachich
С8-17 есть, спасибо notFreeUser
C9-7 есть, спасибо Anderer
СУРА есть, спасибо hexFF
Trio-2017 есть, спасибо Андрей
ОМЛ-3М есть, спасибо Сергей

Все секреты осциллографа | Амперка / Блог

Осциллограф является одним из основных инструментов, предназначенным для тестирования электронных схем. Этот измерительный прибор отображает форму электрических сигналов, показывает изменение напряжения с течением времени и позволяет понять, что же на самом деле происходит в схеме. Многие из параметров, измеряемых осциллографом, невозможно получить, используя обычный мультиметр. Базовый принцип, лежащий в основе любых осциллографов, один и тот же, но существует целый ряд отличий в способах обработки сигнала. Эти отличия и формируют различные категории осциллографов.

Осциллограмма на экране прибора с цифровым люминофором

Наиболее общее деление можно произвести, выделив аналоговые и цифровые приборы. Последние, в свою очередь, делятся на цифровые осциллографы, цифровые запоминающие осциллографы, осциллографы с цифровым люминофором и цифровые стробоскопические осциллографы.

Аналоговый осциллограф

Первоначально все осциллографы были исключительно аналоговыми. Как следует из их названия, они используют аналоговые методы для создания изображения на экране. Обычно они используют электронно-лучевую трубку, где напряжение подаваемое на оси X и Y заставляет точку двигаться по экрану. По горизонтали мы имеем зависимость от времени, в то время как по вертикали отображение пропорционально входному сигналу. По существу, сигнал усиливается и подается на электроды, отклоняющие электроны по оси Y электронно-лучевой трубки с использованием аналоговой технологии.

Аналоговый осциллограф

Хотя эта технология в настоящее время уже несколько устарела, в некоторых приборах она все еще используется, так как позволяет наблюдать на экране даже высокочастотный сигнал без искажений, связанных с его оцифровкой, присущих исключительно цифровым приборам.

Цифровые осциллографы

Концепция цифрового осциллографа несколько отличается от его аналогового собрата. Вместо того, чтобы обрабатывать сигналы в аналоговом виде, этот тип осциллографа преобразует сигнал в цифровой формат с помощью аналого-цифрового преобразователя, а затем уже обрабатывает результат в цифровой форме. Аппаратное и программное обеспечение для цифровой обработки сигналов становится все более мощным, что позволяет обрабатывать сигналы более гибко и создает множество дополнительных возможностей, которые включаются в современные приборы. Обновления ПО и добавление функциональности могут быть произведены просто обновлением прошивки осциллографа.

Существует несколько различных типов цифровых осциллографов:

  • Цифровой осциллограф/Цифровой запоминающий осциллограф. Граница между этими двумя типами осциллографов сильно размылась в последние годы. Первоначально, запоминающие осциллографы имели дополнительную память, позволяющую хранить сигналов. Теперь большинство приборов имеют память, которая уже включена в стандартную поставку, отличаясь только размером этой памяти. В результате, оба названия часто используются для описания одного и того же инструмента, и поэтому сейчас это, практически, синонимы. Цифровые или цифровые запоминающие осциллографы в настоящее время являются основным типом использующихся осциллографов, которые содержат все основные функции.

Цифровой запоминающий осциллограф

  • Осциллограф с цифровым люминофором. Осциллограф с цифровым люминофором является весьма универсальным прибором, который использует параллельную архитектуру обработки, чтобы иметь возможность захватить и отобразить сигналы в специальном виде, который нельзя создать при помощи обычного цифрового осциллографа. Эти приборы записывают очень большое число «снимков сигнала» в единицу времени, что позволяет искать в сигналах редкие явления.

Осциллограф с цифровым люминофором

  • Цифровой стробоскопический осциллограф. Эти осциллографы используются для анализа очень высокочастотных сигналов. Они предназначены для наблюдения за повторяющимися сигналами, частота которых выше, чем частота дискретизации осциллографа. Они производят выборку различных точек сигнала из его нескольких последовательных периодов, и, затем в процессе обработки, воссоздают исходную форму волны. Таким образом, эти осциллографы могут иметь возможность отображать сигналы на частотах 50 ГГц и более.
  • Комбинированный осциллограф. Этот тип приборов позволяет работать как во временной области, отображая форму сигнала, а также в частотной области — отображая его спектр. Такой вид осциллографов очень полезен для разработки устройств, работающих с приемо-передающим оборудованием в радиочастотном диапазоне. Но особенно ценен он для поиска проблем в областях, где сигналы могут приводить к нежелательным или необычным явлениям в их спектрах. В результате, эти осциллографы находят все большую популярность в области систем сотовой связи, Wi-Fi, и при разработке/обслуживании многих других современных беспроводных систем связи и передачи данных.

Осциллограф с анализатором спектра

  • Осциллограф смешанных сигналов. Этот тип осциллографов сочетает в себе функции цифрового осциллографа и логического анализатора. Это позволяет в проводить глубокие исследования работы цифровых схем. Цифровые схемы, в том числе под управлением микроконтроллеров становятся все более сложными, поэтому постоянно растет необходимость в более глубоком анализе сигналов в этих системах, используя большую функциональность. Осциллограф смешанных сигналов позволяет анализировать логические переходы и состояния одновременно с отображением формы сигнала.

Осциллограф смешанных сигналов

Подробно о применении осциллографов, их важных характеристиках, а также о том, как выбрать подходящий прибор можно почитать в статьях:

Зачем нужен осциллограф
Как выбрать осциллограф

Обзор осциллографа от Амперки:
Карманный осциллограф DSO Nano v3

— Гостевая статья от автора блога Роботоша Андрея Антонова

  • Вконтакте
  • Facebook
  • Twitter

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *