Как определить фазу и ноль мультиметром
Продолжаем изучать возможности цифрового мультиметра и способы его применения в быту. В данной статье я расскажу, как с его помощью можно определить фазу и ноль.
Довольно часто, в процессе монтажа электрооборудования, например, при подключении светильников, установке розеток и выключателей или при диагностике неисправностей электросети, нужно найти какой из проводов заземление, фаза и ноль. Как это можно сделать самому, без специального оборудования, я писал ЗДЕСЬ, сейчас же мы сделаем это мультиметром.
Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.
По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа — ёмкость (человек).
Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.
Как найти фазу мультиметром
Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».
В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.
Как проверить мультиметром напряжение в розетке 220в
Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.
Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».
Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.
Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.
Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.
Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.
Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.
В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.
Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.
Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.
Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.
Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.
В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.
Как найти ноль мультиметром
Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).
Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.
Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.
Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита — УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.
Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.
Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.
Как определить фазу и ноль без приборов безопасно
Содержание:
Наиболее распространенные заблуждения
Приведем часто встречающиеся заблуждения, связанные с определением нулевого и фазного провода:
- на нулевую жилу не поступает напряжение. Это предположение полностью неверно, поскольку она является полноценным участником электроснабжения;
- при наличии заземления короткое замыкание не возникнет. Полностью абсурдное предположение. Да, у заземления потенциал намного ниже, чем у фазы, но «вывести» через себя все излишки оно не сможет. Собственно, это и не является функциональным назначением «земли», ее задача – удаление паразитных токов, к которым относятся и статические;
- знать, где в розетке фаза и ноль необязательно, поскольку на работе оборудования это не отразится. Такое утверждение не является абсолютно верным, поскольку существует оборудование, требующее для нормальной функциональности соблюдения полярности.
В качестве примера такого оборудования можно привести контролер, управляющий работой газового котла. При индикации ошибки «недостаточно напряжения» требуется поменять полярность.
Подобная проблема может возникнуть на генераторе импульсов, а также при подключении лабораторного измерительного оборудования;
- если в кабеле три жилы, и одна из них разноцветная, то она является заземлением. Никогда нельзя быть уверенным в этом, особенно учитывая, какая была неразбериха с ГОСТами в последнее десятилетие прошлого века. Поэтому лучше всегда проверять кабель.
Что такое фаза и ноль
Определение фазы потребуется, если при подключении новой розетки окажется, что вы не знаете, какой из проводой на выводе фазный, а какой нулевой
Фаза — проводник, по которому передаётся напряжение к потребителю.
Ноль — пустая фаза. Возвращает ток: создаёт непрерывную электрическую сеть при подключении устройств, а также выравнивает фазное напряжение.
Земля — провод без напряжения в трёхжильном кабеле. Осуществляет защитную функцию: удаляет статические, паразитные токи.
Для чего необходимо определить рабочую и пустую жилу
Многие приборы требуют соблюдения полярности для нормальной работы:
- терморегулятор;
- контролёр в системе газового котла;
- измерительное оборудование лабораторий;
- и другие.
Если подключить эти устройства без строгого следования правилам расположения проводов, никто не даст гарантии на срок службы и качество их работы.
Как определить ноль и фазу без приборов
Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:
- фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
- нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
- земля находится в изоляции желто — зеленого цвета в полоску.
Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:
- L — этой латинской буквой обозначается фаза;
- N — по этому знаку находят нулевой провод;
- PE — этим сочетанием букв всегда обозначалась земля.
Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.
Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.
Использование самодельной «контрольки»
Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.
Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).
Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.
Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.
Способы, которые мы не рекомендуем использовать
В интернете опубликовано много видео, как определить фазу, не пользуясь никаким специальным оборудованием. Например, при помощи сырой картошки или водопроводной воды. Мы хотим предупредить, что повторение таких сомнительных опытов может нанести существенный урон вашему здоровью.
Как определить ноль и фазу, причем сделать это с максимальной безопасностью, мы рассказали, поэтому нет необходимости в изобретении новых способов.
Альтернативные методы без использования приборов
Если ситуация складывается так, что ни индикаторной отвертки, ни мультиметра нет, а выяснить, какой контакт фазный, необходимо, используют визуальный способ определения контакта.
На кабеле часто встречается буквенное обозначение характеристик проводников. Так, за «фазой» закрепилась буква L, за «нулем» — N, а за «землей» — PE.
Иногда электрики при монтаже дополнительно маркируют фазный провод подвешенной биркой с обозначением. Но более простым решением считается цветовая маркировка проводов. Правильное подключение их (в соответствии со стандартом) впоследствии облегчает работу электрикам, позволяя быстро ориентироваться в проводке.
По цвету провода
Цвета изоляции проводов подбирают таким образом, чтобы они максимально отличались друг от друга:
- «Фаза» имеет часто белый, черный или коричневый цвет.
- «Нуль» — синий и его оттенки.
- «Земля» — желто-зеленый.
Но не всегда нормативы подключения проводников соблюдаются. Потому ради безопасности лучше проверить напряжение в проводах независимо от их визуальной маркировки.
О чем говорят цвета проводов
Определить нейтральный, заземленный или провод под напряжением возможно также по цветовой маркировке. Нулевую фазу, как правило, обозначают любыми оттенками синего цвета. Для заземляющего провода используют только зеленый и желтый цвет или их комбинация. А вот в случае с фазой дела обстают сложнее — для их окраски используют в различные цвета, кроме синего, желтого и зеленого. Он может быть белым, черным, коричневым, красным, оранжевым и т.д.
Этот метод определения не безопасен — цветовая маркировка не всегда соблюдается при монтаже. Электрик мог элементарно напутать. Поэтому лучше воспользоваться другими способами, ведь прикосновение к фазному проводу опасно для здоровья.
С помощью контрольной лампы
Этот способ считается самым рискованным, но выручает в ситуации, когда привычных тестеров нет под рукой. Проверяющему нужна лампа, закрученная в патрон, из которого отходят 2 провода. Для безопасного использования такого «прибора» лучше к концам проводов прикрепить щупы, а саму лампу обернуть защитным кожухом.
Одним отводом лампы нужно прикоснуться к металлической трубе (или другому заземляющему элементу), а вторым проверять контакт. Если лампа загорится, то диагностируемый контакт — «фаза».
Определить проводники можно и путем исключения:
- Поочередно прикасаются отводами лампы к двум из трех контактов, которые нужно идентифицировать. Если лампа горит, значит, на этот момент задействована пара «фаза» — «нуль».
- Чтобы определить фазный и нулевой проводники, одним из отводов тестера дотрагиваются до следующего из проверяемой тройки контакта. Лампочка тухнет при отсоединении от «фазы». Но случится это, только если в сети установлен защитный автомат. При его отсутствии индикатор горит даже в положении «земля» — «нуль».
- Для идентификации «земли», если не установлен защитный автомат, следует убрать заземление с кабеля и повторить тест. Теперь на этом проводнике лампа гореть не будет.
Собрать контрольную лампочку в домашних условиях несложно. Для этого понадобятся 2 проводника, соединенные с патроном, и сама лампочка, вкрученная в него.
В целях безопасности лампу лучше использовать неоновую, а на провода электрики рекомендуют закрепить щупы — это обезопасит и облегчит эксплуатацию «контрольки».
youtube.com/embed/BhfsDklAJCU?feature=oembed» frameborder=»0″ allowfullscreen=»allowfullscreen»>Поскольку метод с лампочкой является небезопасным, лучше его избегать.
Используем картошку
Понадобится:
- резистор на 1 МОм;
- 1 картофелина;
- 2 провода длиной по 50 см.
Один конец первого проводника подсоединяем к трубе, второй вставляем в разрезанную картошку. Другой проводник также вставляем одним концом в картофелину, а вторым «щупаем» жилы.
Ждём 5–10 минут.
Это довольно эффективный способ определить фазу и ноль без приборов
Фаза — появилось небольшое тёмное пятно. Ноль — нет никакой реакции.
В данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки
С помощью воды
Для определения полярности контактов по похожей методике опускают два провода в ёмкость с водой. Если вокруг одного образуются пузыри — это минус. Следовательно, вторая жила — плюс.
Этот способ также является опасным, при его использовании нужно соблюдать меры предосторожности
Применяя подручные средства для определения жилы под напряжением, необходимо быть крайне осторожным. При несоблюдении мер безопасности, можно получить удар током.
Определить фазу и ноль из двух проводов
В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.
Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.
Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.
Найти фазу, ноль и заземление из трех проводов:
В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.
Действуем методом исключения:
Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.
После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:- -Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.
– Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.
– Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.
Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются.
Видео: определение полярности без приборов
Советы от электрика
Владельцу, не обладающему широкими познаниями в области электротехники, важно прислушиваться к следующим рекомендациям опытных электриков:
- При использовании мультиметра необходимо детально изучить руководство по эксплуатации прибора, чтобы правильно вставить контакты щупов и настроить аппарат.
- Способ с контрольной лампой связан с повышенным риском поражения электрическим током, поэтому к нему не рекомендуется прибегать пользователю, у которого отсутствуют навыки электромонтажных работ.
- Не следует слепо полагаться на наличие маркировки или цветовое оформление изоляции проводов, без предварительной инструментальной проверки, поскольку не исключена вероятность ошибки при монтаже.
Правильно определённая принадлежность проводов позволит верно выполнить домашнюю проводку и подключить оборудование, обеспечив безопасность потребителя.
Полезные советы и общие рекомендации
Работа с электропроводкой требует внимательности и осторожности.
Электрики советуют:
- Не полагаться полностью на цветовую дифференциацию проводов или их маркировку, проверять контакты тестерами еще раз. Случаи нарушения норм электромонтажа нередки.
- По возможности избегать определения напряжение в проводниках с помощью «контрольки» или картофелины. Такие способы считаются экстремальными, и без опыта работы ими лучше не злоупотреблять.
- При эксплуатации мультиметра подробно изучить инструкцию перед применением. Обратить внимание на настройку прибора.
Монтаж проводки по стандартам облегчит дальнейшее подключение приемников и продлит срок службы всей электросети. Кроме того, выполнение необходимых норм по установке сделает потребление электроэнергии комфортным и безопасным.
Предыдущая
РазноеЭлектрическая энергия: что это такое, формулы, единица измерения
Следующая
РазноеОсциллограмма что это такое?
Формула фазового сдвига — Изучите формулу для расчета фазового сдвига
Формула фазового сдвига используется для нахождения фазового сдвига функции. Фазовый сдвиг — это сдвиг, когда график функции синуса и косинуса смещается влево или вправо от их обычного положения, или можно сказать, что при фазовом сдвиге функция сдвигается по горизонтали, насколько далеко от обычного положения. Как правило, функции смещены (π/2) от обычного положения. Давайте узнаем больше о формуле фазового сдвига вместе с решенными примерами в следующем разделе.
Хотите найти сложные математические решения за считанные секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.
Забронируйте бесплатный пробный урок
Формула фазового сдвига для синусоидальной кривой показана ниже, где выражены как горизонтальные, так и вертикальные сдвиги. Фазовый сдвиг может быть как положительным, так и отрицательным в зависимости от направления сдвига от начала координат. Формула фазового сдвига может быть выражена как
у = A sin(B(x + C)) + D
также F(x) = Asin(Bx − C)+D.
, где
- (C/B) представляет фазовый сдвиг.
- А – амплитуда.
- Пример 1: Выясните, каков фазовый сдвиг синуса, имеющего F(t)= 3 sin(4(x − 0,5)) + 2, используя формулу фазового сдвига.
Решение:Чтобы найти: фазовый сдвиг синусоидального сигнала
Используя формулу фазового сдвига,
y = A sin(B(x + C)) + D
Сравнивая данное уравнение с формулой фазового сдвига
Получаем
Амплитуда, A = 3 π/2
Вертикальный сдвиг, D = 2
Таким образом, фазовый сдвиг будет равен −0,5
, что соответствует сдвигу вправо на 0,5.
Ответ: Фазовый сдвиг данной синусоидальной функции на 0,5 вправо.
- Пример 2: Найдите фазовый сдвиг F(t)=3sin(4t+3) с помощью формулы фазового сдвига.
Решение:
Найти: Разность фаз синусоиды
Дано:
Амплитуда, А = 3 0
Используя формулу фазового сдвига,
F(x) = Asin(Bx−C) + D.
C/B представляет фазовый сдвиг
Фазовый сдвиг = -3/4
Ответ: Фазовый сдвиг данной синусоидальной функции равен -3/4.
перейти к слайдуперейти к слайду
Рабочие листы по математике и
наглядный учебный план
Использование формулы фазового сдвига в анализе цепей переменного тока
Ключевые выводы
● Узнайте о формуле фазового сдвига.
● Получите более полное представление о важности расчета фазового сдвига для анализа цепи переменного тока.
● Узнайте, как рассчитать фазовый сдвиг.
Различные фазы синусоиды.
В любой отрасли, включая область электроники, смещение является синонимом той или иной формы изменения. В некоторых случаях этот сдвиг вызван внешними силами и может быть даже непреднамеренным. В других случаях сдвиг является внутренним и, возможно, преднамеренным, частично из-за функциональных требований.
Что такое фаза и что такое фазовый сдвиг?
Мы определяем «фазу» как сигнал, имеющий ту же длину волны, тот же цикл и ту же частоту, что и другой, но при этом они представляют собой две (или более) формы волны, которые не точно выровнены. Фаза не является свойством отдельного радиочастотного сигнала; скорее, это касается отношения между этими двумя или более сигналами, которые также имеют одну и ту же частоту.
«Фазовый сдвиг» — это незначительное изменение между двумя формами волны. Как в электронике, так и в математике фазовый сдвиг — это задержка, присутствующая между этими двумя формами сигналов, имеющими одну и ту же частоту или период.
Например, положительный фазовый сдвиг на 90° составляет четверть полного цикла. В этом случае наша вторая волна опережает первую на 90°. Мы можем рассчитать фазовый сдвиг, используя временную задержку между ними и частоту сигналов.
Что такое формула фазового сдвига?
Во-первых, существует корреляция между синусоидальной волновой функцией и фазой. В области математики, а точнее, в тригонометрии, тригонометрическая синусоидальная функция генерирует гладкий волнообразный график. На этом графике чередуются минимальное и максимальное значения, и он повторяется каждые 360° (2 * пи радиан).
Note:
Pi radians = 180o
or
3.14159265359 * 57.295779513o = 180o
π rad = 180o
π = 3. 14159265359
A radian = 57.295779513o
1 рад = 180o/3,14159265359 = 57,295779513o
При 0o функция будет иметь нулевое значение, а при 90o она достигает максимального положительного значения. При 180° она стремится к нулю, а при 270° функция достигает максимального отрицательного значения. Однако на 360° он вернется к нулю, таким образом завершив полный цикл.
Любой угол больше 360° будет просто повторять предыдущий цикл. Кроме того, синусоида со сдвигом фазы будет начинаться и заканчиваться со значением, отличным от нуля, даже если во всех других аспектах она выглядит как стандартная синусоида. Это означает, что это s-образный сигнал, который является гладким и колеблется снизу, вверх или из стороны в сторону относительно нуля.
Вычисление фазового сдвига
Вычисление фазового сдвига включает сравнение двух сигналов, что также означает определение того, какая из этих двух волн является первой, а какая второй.
В области математики первая волна может быть исходной функцией, а вторичная функция, конечно же, будет второй волной. Чтобы дополнительно проиллюстрировать это, мы можем использовать следующий пример: здесь ваша первая функция y = sin(x), а ваша вторая функция y = cos(x). Хотя порядок двух волн не влияет на абсолютное значение фазового сдвига, он определяет, является фазовый сдвиг отрицательным или положительным.
Когда мы сравниваем осциллограммы, мы организуем их так, чтобы они читались слева направо с использованием одних и тех же единиц времени или угла оси X. Например, график для обоих может начинаться с 0 секунд; здесь мы найдем пик на второй волне и найдем эквивалентный пик на первой. Всякий раз, когда мы ищем соответствующий пик, мы остаемся в пределах одного полного цикла, чтобы избежать неточностей разности фаз.
Примечание. Чтобы найти разницу, найдите значения по оси X для обоих пиков и вычтите их. Например, если пик первой волны приходится на 0,005 секунды, а пик второй волны приходится на 0,003 секунды, тогда разница составляет 0,005 — 0,003 = 0,002 секунды.
Вычисление фазового сдвига Продолжение
Таким образом, при вычислении фазового сдвига вам понадобятся период и частота волн. Например, осциллятор может генерировать синусоиду частотой 100 Гц. Мы определяем период или продолжительность цикла, разделив частоту на 1. Таким образом, в этом случае 1 ÷ 100 = 0,01 секунды для периода или продолжительности цикла.
Формула фазового сдвига выглядит следующим образом:
ps = 360 × (td ÷ p)
ps = фазовый сдвиг в градусах период
Используя вышеприведенные примеры, формула будет иметь следующий результат:
360 × (0,002 ÷ 0,01) = фазовый сдвиг (пс) в 72 градуса
Поскольку результатом является положительное число, фазовый сдвиг тоже положителен. С учетом этого вторая волна отстает от первой на 72 градуса. Чтобы вычислить разность фаз в радианах, мы используем следующее:
2 × pi × (td ÷ p)
Using the example results in the following solution:
2 × 3.14159265359 × (0.002 ÷ 0.01)
or
6.28 × 0.2 = 1.256 радианы
Мы используем формулу фазового сдвига, чтобы определить взаимосвязь между двумя сигналами и их результирующий фазовый угол. Это дает возможность проводить измерения в любом месте вдоль горизонтальной нулевой оси, в которой каждая волна проходит с одним и тем же направлением наклона, как отрицательным, так и положительным. Это важно, поскольку дает возможность описать взаимосвязь между напряжением и синусоидой тока в одной и той же цепи. Это жизненно важный инструмент в силовых цепях переменного тока, который служит основой для анализа цепей переменного тока.
Части синусоиды.
Прежде чем беспокоиться об измерении фазового сдвига в цепях переменного тока, вы должны убедиться, что используете правильный набор программного обеспечения для проектирования, компоновки и анализа печатных плат. Allegro PCB Designer и полный набор инструментов проектирования Cadence помогут вам создавать проекты на основе проверенных моделей компонентов и анализировать все аспекты их функциональности. У вас также будет доступ к набору инструментов для проектирования MCAD и подготовки к производству. Наличие правильных инструментов может гарантировать, что ваш дизайн будет выполнен правильно с первого раза.
Если вы хотите узнать больше о том, как у Cadence есть решение для вас, обратитесь к нам и нашей команде экспертов.
Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты.