Способы определения мощности тока
Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.
Измерение тока рекомендуется делать в следующих случаях:
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
- Работоспособность теплого пола в квартире также проверяется измерением тока.
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
Порядок измерения силы тока мультиметром:
- Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
- Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
- Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
- Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.
- Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
- Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
- Отключить питание цепи и отсоединить мультиметр.
- Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Источник: electrosam.ru
Методы измерения мощности в электрических цепях
Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.
Общие сведения
При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.
Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.
Мощность потребителя
Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду).
Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ©) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.
Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина).(18) электронов.
Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.
Электрическое напряжение
Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.
Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).
При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.
Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.
Сопротивление электрической цепи
Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:
- Проводниками.
- Полупроводниками.
- Диэлектриками.
К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.
Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.
В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.
Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.
Методы измерения
Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.
При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.
Косвенный способ
Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.
Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:
- Для участка электрической цепи: P = I * I * R = U * U / R.
- Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).
Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.
Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.
Прямое определение величины
Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.
Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.
По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:
Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.
При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.
Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.
Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.
Источник: proagregat.com
Измерение электрической мощности и энергии
Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.
Измерение мощности в цепи постоянного тока
Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.
Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:
А при большом значении R такую схему:
Измерение мощности в однофазных цепях переменного тока
Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная . Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.
Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:
Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.
Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.
Измерение мощности в трехфазных цепях переменного тока
Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:
Uл – напряжение линейное, I- фазный ток.
Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:
При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:
Общей энергией потребляемой из сети будет сумма показаний ваттметров:
Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):
Сумму их показаний можно выразить следующим выражением:
При симметричной нагрузке применима такая же формула как и для полной энергии:
Где φ – сдвиг между током и напряжением (угол фазового сдвига).
Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:
Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.
Процесс измерения активной и реактивной мощности
Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.
Источник: elenergi.ru
Особенности переменного тока
Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.
Нормы мощности в сети переменного тока
Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.
Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.
Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.
Характеристики
Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.
Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.
Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.
Виды мощностей
Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.
Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.
Активная мощность
Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.
Реактивная мощность
Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.
Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.
Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.
Полная мощность
Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.
Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.
Комплексная мощность
Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.
Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.
Как узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
В однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.
В трехфазной цепи
В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.
Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.
Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.
Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.
В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.
Источник: rusenergetics.ru
ИЗМЕРЕНИЕ МОЩНОСТИ В ЦЕПЯХ ПОСТОЯННОГО ТОКА
Измерение мощности постоянного тока, определяемой формулой
где U и І — соответственно напряжение тока и ток, производится либо косвенным методом — по показаниям вольтметра и амперметра, либо прямым методом — по показаниям ваттметра.
Сущность косвенного метода измерения мощности заключается в измерении с помощью вольтметра и амперметра напряжения U и тока І цепи и последующем вычислении в соответствии с выражением (2). На рис. 1 приведены две возможные схемы включения вольтметра и амперметра в цепь при измерении мощности, потребляемой нагрузкой RH, Для схемы 1,а мощность, потребляемая схемой, равна:
где ІН и ІВ — токи, протекающие соответственно через нагрузку и вольтметр; РН и РВ — мощность, потребляемая соответственно нагрузкой и вольтметром.
Таким образом, для данной схемы включения рассчитанное значение мощности Р будет больше действительного значения мощности, потребляемой нагрузкой РН, на величину РВ= UIB. При этом погрешность определения мощности, потребляемой нагрузкой, будет тем меньше, чем меньше ток ІВ по сравнению с ІН, т. е. чем больше входное сопротивление вольтметра (RВ).
Потребляемая схемой (рис. 1, б) мощность равна:
т. е. определяемая расчетом мощность будет больше действительной мощности нагрузки PH на величину потери мощности в амперметре Pa=IHRа. Погрешность определения потребляемой нагрузкой мощности будет тем меньше, чем меньше сопротивление амперметра по сравнению с сопротивлением нагрузки.
Анализ показывает, что погрешность измерения мощности будет минимальной при включении измерительных приборов по схеме, приведенной на рис. 1,а, если выполняется условие
(3)
При включении приборов по схеме, показанной на рис. 1, б, погрешность измерения будет минимальной при условии
(4)
При точных измерениях упомянутую погрешность можно учесть, если известно сопротивление измерительных приборов.
Для известного сопротивления нагрузки RH потребляемая им мощность Ра определяется путем измерения тока Iн, протекающего через него, или падения напряжения на нем Un. Расчет мощности производится в соответствии с выражениями:
Рассмотренные методы определения мощности, потребляемой нагрузкой, применяются и при измерении мощности генераторов постоянного тока.
Измерение мощности в цепи постоянного тока прямым методом в основном производится с помощью ваттметров электродинамической системы.
Измерительный механизм ваттметра электродинамической системы, состоящей из неподвижной и расположенной внутри нее подвижной катушек, включается в цепь постоянного тока по схеме, приведенной на рис. 2. Неподвижная (токовая) катушка включается последовательно с нагрузкой, а подвижная — параллельно нагрузке. Добавочное сопротивление Rд, включаемое последовательно с подвижной катушкой, предназначено для расширения предела измерения прибора по напряжению. В результате взаимодействия магнитных полей катушек создается вращающий момент:
где I1 и I2 — токи, протекающие соответственно через неподвижную и подвижную катушку; f (α) — функция, учитывающая изменение вращающего момента в зависимости от угла поворота а подвижной катушки (обусловлена изменением взаимной индукции между катушками).
Противодействующий момент создается токопроводящими пружинами подвижной катушки
где W — удельный противодействующий момент пружин.
Рис. 2 | При равенстве вращающего и противодействующего моментов подвижная катушка повернется на некоторый угол а, определяемый из выражения Так как то |
Здесь R2 — сопротивление подвижной катушки; — постоянная величина; Р = IHU — мощность, потребляемая нагрузкой.
Для того чтобы шкала прибора была равномерной, необходимо обеспечить постоянство функции f (α). Это достигается путем соответствующего выбора размеров и формы катушек и их начального взаимного положения.
При включении ваттметра в цепь постоянного тока необходимо соблюдать полярность соединения катушек. Для этого два из четырех зажимов прибора, соответствующих «началу» подвижной и неподвижной катушек, обозначаются звездочками (*) или знаком плюс (+). Эти зажимы должны быть подключены к положительному полюсу источника питания (к генератору — генераторные зажимы), а не к нагрузке.
На рис. 3 приведены две схемы включения ваттметра в цепь постоянного тока. При включении прибора по схеме, показанной на рис. 3, а, на подвижную катушку подается напряжение источника питания UИ которое больше напряжения на сопротивлении нагрузки Uна величину падения напряжения на неподвижной катушке, т. е. показание ваттметра будет больше действительного значения мощности нагрузки. При этом погрешность измерения мощности будет тем меньше, чем меньше сопротивление токовой катушки по сравнению с сопротивлением нагрузки. При включении прибора по схеме, показанной на рис. 3, б, ток, протекающий через нагрузку, будет меньше тока в токовой катушке на величину тока, протекающего через подвижную катушку, т. е. показание прибора будет больше действительного значения мощности, потребляемой нагрузкой. Погрешность измерения мощности, потребляемой нагрузкой, при этом будет тем меньше, чем больше сопротивление подвижной катушки с последовательно включенным добавочным сопротивлением Rд сопротивления нагрузки Rн.
Как при косвенном, так и при прямом методе измерения мощности результат измерения отличается от действительного значения потребляемой мощности нагрузкой на некоторую систематическую погрешность. Величина систематической погрешности определяется схемой включения ваттметра и сопротивлением его катушек.
Погрешность измерения мощности при включении ваттметра по схеме, показанной на рис. 3, а, будет минимальной, если выполняется условие (3), причем в этом случае за Ra принимается сопротивление неподвижной катушки, а за RB — сопротивление подвижной катушки с последовательно включенным добавочным сопротивлением Rд. При включении ваттметра по схеме (рис. 3, б) погрешность будет минимальной при выполнении условия (4).
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8776 — | 7506 — или читать все.
Источник: studopedia.ru
Работа и мощность тока
Когда ток проходит по однородному участку цепи, электрическое поле совершает работу. За время Δt по цепи протечет заряд Δq = I Δt.
Определение 1Электрическое поле на выделенном участке совершит работу
∆A=(φ1-φ2)∆q=∆φ12I∆t=UI∆t,
где U = Δφ12 обозначает напряжение. Эту работу называют работой электрического тока.
Интерпретация закона сохранения энергии. Закон Джоуля-Ленца
Закон Ома для однородного участка цепи при сопротивлении R отражает формула:
RI=U
Умножим обе части выражения на IΔt и получим соотношение:
RI2∆t=UI∆t=∆A.
Полученный результат является выражением закона сохранения энергии для однородного участка цепи.
Определение 2Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
∆Q=∆A=RI2∆t
Данный закон называется законом Джоуля-Ленца.
Закон носит название сразу двух известных физиков, поскольку экспериментальным путем был установлен ими обоими в независимости друг от друга.
Определение 3Мощность электрического тока есть отношение работы тока ΔA к интервалу времени Δt, за которое эта работа была произведена.
Можно сказать проще: мощность – это работа, выполненная в единицу времени. Запишем формулу, связывающую работу тока и его мощность:
P=∆A∆t=UI=I2R=U2R
Работу электрического тока выражают в джоулях (Дж), мощность тока измеряется в ваттах (Вт), время – в секундах (с): 1 Вт=1 Дж1 с. Измерение мощности тока происходит при помощи ваттметра, а работа находится расчетно как результат перемножения силы тока, напряжения и времени протекания тока по цепи: A=IUt.
Следующей разберем полную цепь постоянного тока, включающую в себя источник с электродвижущей силой δ и внутренним сопротивлением rи внешний однородный участок с сопротивлением R.
Определение 4Закон Ома для полной цепи выглядит так:
(R+r)I=δ
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать заданиеПеремножим обе части выражения с Δq=IΔt и получим соотношение, которое будет служить выражением закона сохранения энергии для полной цепи постоянного тока:
RI2∆t+rI2∆t=δI∆t=∆Aст
Левая часть выражения содержит ΔQ=RI2Δt (тепло, которое выделяется на внешнем участке цепи за время Δt) и ΔQист=rI2Δt (тепло, которое выделяется внутри источника за такое же время).
Выражение δIΔt является равным работе сторонних сил ΔAст, которые действуют внутри источника.
Определение 5При протекании электрического тока по замкнутой цепи происходит преобразование работы сторонних сил ΔAст в тепло, которое выделяется во внешней цепи (ΔQ) и внутри источника (ΔQист).
∆Q+Qист=∆Aст=δI∆t
Необходимо отметить следующий факт: в указанное соотношение не включена работа электрического поля. Когда ток проходит по замкнутой цепи, электрическое поле работы не совершает; значит тепло производится лишь посредством сторонних сил, которые действуют внутри источника. Электрическое поле здесь выполняет перераспределение тепла между различными участками цепи.
Внешней цепью может служить не только проводник с сопротивлением R, но и какое-то устройство, которое потребляет мощность, к примеру, электродвигатель постоянного тока. Тогда R необходимо расценивать как эквивалентное сопротивление нагрузки. Энергия, которая выделится во внешней цепи, имеет возможность частично или полностью преобразоваться как в тепло, так и в иные виды энергии, к примеру, в механическую работу, совершаемую электродвигателем. Таким образом, тема использования энергии источника тока имеет важное практическое значение.
Коэффициент полезного действия источника
Полная мощность источника (или работа, которая производится посредством сторонних сил за единицу времени) составляет:
Pист=δI=δ2R+r
Внешняя цепь выделяет мощность:
P=RI2=δI-rI2=δ2R(R+r)2
Определение 6Отношение η=PPист равное η=PPист=1-rδI=RR+r, носит название коэффициента полезного действия источника.
На рис. 1.11.1 изображена зависимость мощности источника Pист, полезной мощности P, которая выделяется во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной δ, и внутренним сопротивлением r. Ток в цепи имеет возможность меняться в пределах от I=0 (при R=∞) до I=Iкз=δr (при R = 0).
Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока.
Изображенные графики показывают, что максимальная мощность во внешней цепи Pmax, составляющая Pmax=δ24r, может быть достигнута при R=r. При этом ток в цепи есть Imax=12Iкз=δ2r; коэффициент полезного действия источника составляет 50%. Максимальное значение КПД будет достигнуто при I→0, т. е. при R→∞. При коротком замыкании полезная мощность P=0 и вся мощность выделятся внутри источника, что с большой вероятностью может обернуться его перегревом и разрушением. КПД источника в этом случае обратится в нуль.
Определение сила тока в физике
: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.
Для электропроводки в квартире сила тока играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения .
Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.
Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.
Единицы измерения мощности электрического тока.
Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.
Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле P = А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.
На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.
Приборы для измерения электрического тока.
Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:
- Амперметр — хорошо всем знакомый с практических уроков физики в школе (рисунок 1). Но в быту и профессионалами они не используются из-за непрактичности.
- Мультиметр — это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал .
- Тестер — то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
- Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.
Как правильно измерять силу тока.
Для того что бы измерить силу для потребителей , необходимо один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме аккумулятора или проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.
Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.
Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети, измерительное устройство переводится в режим измерения переменного тока с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в .
Все работы необходимо проводить только после снятия напряжения.
После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.
Согласитесь, что выше описанные методы очень не удобны и да же опасны!
Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.
Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.
Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.
Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!
Похожие материалы:
Электрическим током называют направленное движение заряженных частиц в определённом направлении по проводнику.
Ток в проводнике
Для того чтобы ток возник в проводнике, необходимо, чтобы в какой-то среде были свободные электрические заряды. Двигаться эти заряды заставляет некая сила F, равная величине заряда q, умноженной на напряжённость поля Е.
Направление движения положительных зарядов принимают за направление тока.
Электрическое поле существует, если разность потенциалов между любыми двумя точками проводника, находящегося в этом поле, не равна нулю.
Однако, в таком поле направленное движение электрических зарядов приведёт к тому, что потенциалы на концах проводника станут одинаковыми. Движение зарядов прекратится. Следовательно, исчезнет и электрическое поле. Чтобы поддержать существование электрического поля, необходимо устройство, которое называют источником тока. Источником тока могут быть батареи, аккумуляторы, электрогенераторы, солнечные батареи.
Постоянный и переменный ток
Постоянный ток
Постоянным называют ток, направление и величина которого не меняются с течением времени. График постоянного тока относительно оси времени представляет собой прямую линию.
Электрическое поле, с помощью которого создаётся постоянный ток в проводнике, называют стационарным.
Простейший источник постоянного тока – химический элемент (аккумулятор или гальванический элемент). Направление тока в таком источнике самопроизвольно меняться не может.
Переменный ток
Переменным называется ток, величина и направление которого, в отличие от постоянного тока, с течением времени меняются по определённой закономерности. Причём, эти изменения повторяются через определённые периоды времени.
Если построить график переменного тока, то мы увидим, что он имеет форму синусоиды.
Временной промежуток, в течение которого происходит полный цикл изменения тока, называется периодом . А число полных периодов в 1 секунду, называют частотой переменного тока . Максимальное значение тока во время полного периода называется амплитудным значением тока . Значение тока в любой выбранный момент времени называют мгновенным значением тока .
Источниками переменного тока являются генераторы переменного тока.
Для освещения и промышленных целей переменный ток вырабатывают мощными генераторами, которые приводятся в движение двигателями внутреннего сгорания, паровыми или водяными турбинами.
Сила тока
Силой тока называют величину, равную заряду, который протекает через поперечное сечение проводника в единицу времени.
В международной системе единиц (СИ) сила тока измеряется в амперах.
Для участка цепи сила тока по закону Ампера прямо пропорциональна напряжению U, приложенному к участку цепи, и обратно пропорциональна сопротивлению проводника этого участка R.
Эта формула справедлива для постоянного тока.
Силу тока измеряют с помощью специального прибора – амперметра.
Напряжение в сети переменного тока изменяется по гармоническому закону
U = U m cos ωt
Переменный электрический ток в проводнике возникает под действием переменного электрического поля. Частота и фаза колебаний переменного тока совпадают с частотой и фазой колебаний напряжения.
Мгновенное значение силы переменного тока выражается формулой
i = I m cos ωt
где i – мгновенное значение силы тока
I m — амплитудное значение силы тока
ω – угловая частота
ω = 2πf
f – частота переменного тока
Амплитудное значение силы тока равно I m = U m /R
Действующим значением силы переменного тока называется такое его значение, при котором средняя мощность в проводнике в цепи переменного тока равна мощности в этом же проводнике в цепи постоянного тока.
I Д = 1,44 I m
Практически всё электрооборудование промышленных предприятий, бытовые приборы питаются от сетей переменного тока.
Начиная с этого урока, мы начинаем повторение полученных нами знаний в восьмом классе об электрическом токе, а также углубим эти знания.
Определение. Электрический ток — направленное упорядоченное движение заряженных частиц.
Упомянутые частицы могут быть совершенно разными: электронами, ионами (как положительными, так и отрицательными). Даже обычное макротело (например, шарик), которому придан некоторый заряд и некоторая скорость, своим движением производит ток. Важно также понимать, что то самое упорядоченное движение не обязано распространяться на все частицы. Каждая частица может двигаться хаотически, однако в целом вся масса этих частиц смещается в определенном направлении, и именно это смещение обуславливает наличие тока (рис. 1):
Рис. 1. Модель движения заряженных частиц (наличие хаотических скоростей каждой отдельной частицы и общая скорость смещения всех частиц одновременно (скорость, определяющая ток))
Для простоты мы будем изучать так называемый постоянный ток , то есть тот ток, при котором заряженные частицы не меняют ни модуля скорости, ни ее направления.
Ток имеет три основных действия (свойства):
Главной физической величиной, характеризующей ток, является сила тока.
Определение. Сила тока — физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, к промежутку времени, за который этот заряд прошел. Обозначение: . Единица измерения: А — ампер (в честь французского физика Андре-Мари Ампера, рис. 2)
Иначе говоря, сила тока определяет скорость прохождения зарядов сквозь проводник.
Рис. 2. Андре-Мари Ампер ()
Прибором для измерения силы тока является амперметр (рис. 3). Это электрический прибор, который необходимо подключить в цепь последовательно тому участку, силу тока на котором необходимо измерить.
Рис. 3. Внешний вид амперметра ()
Рис. 4. Обозначение амперметра на электрической схеме
Рассмотрим случай протекания постоянного тока в цилиндрическом проводнике (рис. 5) и выведем формулу определяющую скорость упорядоченного движения электронов (а именно они движутся в металлах).
Рис. 5. Схема протекания тока в проводнике
Запишем определение силы тока:
За время поперечное сечение успели пересечь все те электроны, находящиеся в пространстве проводника, ограниченном длиной (расстояние, которое прошли электроны за время ). Поэтому можно посчитать как:
Здесь: — заряд одного электрона; — концентрация электронов в проводнике.
Подставив это равенство в определение силы тока:
и учтя, что
Получаем формулу:
То есть сила тока и скорость движения электронов — прямо пропорциональные величины.
Для определения концентрации электронов необходимо применить формулы из курса молекулярной физики. Если сделать предположение, что на каждый атом вещества проводника приходится один электрон, то тогда справедливо:
Зная, что
Подставив
То есть при нашем допущении концентрация свободных электронов зависит только от материала проводника (плотности и молярной массы).
Для оценки порядка искомой скорости направленного движения электронов рассмотрим ток в 1 А, текущий по медному проводнику сечением 1 . Согласно формулам:
То есть, как можно убедиться, скорость движения электронов чрезвычайно мала. Быстрота же срабатывания всех электрических приборов, в частности, ламп, обусловлена тем, что двигаться начинают все электроны по всему объёму проводника практически одновременно.
На следующем уроке мы рассмотрим условия, наличие которых обязательно для существования тока.
Список литературы
- Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) — М.: Мнемозина, 2012.
- Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. — М.: Илекса, 2005.
- Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. — М.: 2010.
- Physics.ru ().
- Mugo.narod.ru ().
- Электрический ток. Сила и плотность тока ().
Домашнее задание
- Стр. 101: № 775. Физика. Задачник. 10-11 классы. Рымкевич А.П. — М.: Дрофа, 2013. ()
- Движутся ли заряженные частицы в проводнике, по которому не течет ток?
- Какие действия тока можно наблюдать, пропуская ток через морскую воду?
- При какой силе тока за 4 с сквозь поперечное сечение проводника проходит 32 Кл?
- *Возможен ли электрический ток в отсутствии электрического поля?
Мощность тока — Студопедия
Наряду с работой тока очень важно отметить мощность тока, так как эта характеристика является ключевой в бытовом использовании электроэнергии (на всех бытовых приборах указано приемлемое напряжение его мощность).
Определение.Мощность – это работа, выполненная за единицу времени (скорость выполнения током работы):
Единица измерения мощности – ватт:
И теперь, используя наши знания о работе тока, мы без труда найдем формулу для мощности тока:
Или же, если использовать другие виды формулы для работы:
1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль.[3] Таким образом, ватт является производной единицей измерения и связан с другими единицами СИ следующими соотношениями:
Вт = Дж / с = кг·м²/с³
Вт = H·м/с
Вт = В·А
Кроме механической (определение которой приведено выше), различают ещё тепловую и электрическую мощность.
Закон Джоуля-Ленца:
в интегральной форме: Q = I2 × R × t;
в дифференциальной форме: Руд = × Е2= .
Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна
По определению I= q/t. откуда q= I t. Следовательно
Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил
Данное Соотношение выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника
где S — поперечное сечение проводника, — его длина. Используя (1.13) и соотношение , получим
Но — плотность тока, а , тогда
с учетом закона Ома в дифференциальной форме , окончательно получаем
Формула выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.
Определение единицы измерения мощности тока. Электрическая мощность
Автопроизводители из разных стран измеряют мощность своих автомобилей в различных единицах. Зачем? Ответ вы узнаете ниже
Читая статью про автомобили, будьте уверены, вы всегда будете встречаться с этими данными. С какими? С данными мощности автомобилей. Мощность двигателя автомобиля это один из важнейших показателей, актуальный в любое время, в любой ситуации. Как с практической, так и с теоретической точек зрения.
Всегда актуальны. По статистике одна из самых интересующих читателей частей информации о новинках кроется именно в мощности двигателей автомобилей. Таким образом на подсознательном уровне люди сравнивают модели, их преимущества и слабые стороны относительно друг друга лишь по одному параметру- мощности мотора.
Мощность как суть является мерой того, насколько быстро и как далеко двигатель при помощи физической работы может передвинуть машину вперед с помощью крутящего момента. В машиностроении этот явление обобщено понятием количества «работы», которую силовой агрегат автомобиля должен совершить для того чтобы продвинуть машину вперед. В качестве меры измерения такая работа получила с течением времени множество различных единиц. С некоторыми из них мы сегодня познакомимся поближе.
Киловатты (кВт)С технической стороны вопроса, эта форма измерения является наиболее универсальным методом вычисления мощности. Ей пользуются инженеры по всему миру.
Ватт- это единица измерения входящая в систему СИ (Международную систему единиц), означает, то, какая мощность потребуется для выполнения работы в 1Дж за единицу времени.
В основном используется профессионалами, как более «правильный» с точки зрения фундаментальной науки показатель мощности. Как единица измерения в автомобильной сфере используется в основном в Южном полушарии, так исторически сложилось.
Метод измерения мощности в киловаттах на автомобилях в основном происходит путем нахождения величины крутящего момента, передаваемого от колес на динамометрическом стенде, затем для подсчетов применяется данное уравнение:
Киловатты, стали современной мерой фиксации выходной мощности автомобилей и возможно в будущем они станут общепринятой мировой мерой. По крайней мере, если посмотреть на любые официальные данные предлагаемые автопроизводителями вы обязательно увидите единицы кВт мощности двигателей внутреннего сгорания наравне с лошадиными силами.
Более того, с начинающимся ажиотажем вокруг автомобилей с электрическими двигателями, вхождение в обиход этой формы измерения станет еще более оправданной, ведь количество произведенной электродвигателем работы измеряются с помощью кВт⋅ч (киловатт-часов), которые определяют, как долго электродвигатель может производить определенное количество энергии, к примеру, для движения автомобиля.
Лошадиные силы (л.с.)
Введенная в обиход «маэстро» и по совместительству создателем продуктивных паровых двигателей — мистером Джеймсом Уаттом — это единица мощности, основанная на лошадиных силах каким-то образом жива и по сей день, пронеся подсчеты гениального инженера сквозь столетия. Она является основной единицей измерения мощности автомобилей во многих странах, в том числе и в России, используется не только в качестве измерения мощности двигателя внутреннего сгорания в официальных документах к моделям автомобилей, но и для расчетов налогообложения в автомобильной сфере, например, подсчет транспортного налога.
Так что же такое лошадиная сила (л.с.)? Как она появилась и как ее высчитывают? Как ее появление было связано с лошадьми?
Шотландия, изобретатель Джеймс Уатт довел до ума свое первое паровое устройство, которое могло бы помочь сотням промышленникам и ремесленникам в их будничном труде. И вроде бы двигатель был всем хорош, но как объяснить это обывателям? Ответ напрашивался сам собой, нужно было сравнить работу самого распространенного на тот момент «силового устройства» (лошади) с работой новой машины. Сказано сделано, Уатт засел за подсчеты.
ПОДСЧЕТЫ И СРАВНЕНИЕ ЕДИНИЦ ИЗМЕРЕНИЯ
В большинстве стран Европы лошадиная сила определяется как 75 кгс·м/с, мощность, затрачиваемая при равномерном вертикальном поднимании груза массой в 75 кг со скоростью 1 метр в секунду при ускорении свободного падения 9.8 м/с.
В Международной метрической системе СИ официально измеряется в ваттах. 1 л.с. (метрическая лошадиная сила) равна 735 Вт или 0.73 кВт.
В свою очередь 1 кВт равен 1.35 л.с.
Более того, в системе измерения в Соединенном Королевстве, а также в США лошадиные силы (horsepower, hp) приравнивают к 745 Вт, из-за чего есть небольшое расхождение с европейскими «лошадками». Таким образом 1 л.с. в США равна 1.0138 л.с. из Европы.
К примеру, мощность 3.8 литрового двигателя Nissan GT- R составляет 570 л.с. , в киловаттах она будет равна 419 , в hp 577 единицам.
Смотрите также:
Как Джеймс Уатт ввел в обиход свои паровые машины и понятие «лошадиная сила»
Сейчас точно никто не знает, насколько сильны были лошади, учувствовавшие в экспериментах Уатта, были ли они в расцвете сил или это были старые клячи. Однако сохранилось несколько легенд.
По одной из которых некий пивовар, первый покупатель парового агрегата Уатта, вероятно, чтобы сбить цену на машину изобретателя решил провести состязание. Лошадь в пивоваренном производстве привадила в действие водяной насос, взамен нее пивовар и хотел приобрести паровую машину.
Для того чтобы наверняка победить, не чистый на руку промышленник выбрал для соревнования самую сильную лошадь и путем манипуляций с кнутом и другими инструментами повышения производительности труда выжал из бедной животины максимальный КПД. В ответ на вызов Джеймс Уатт применив свою машину превысил выполненную лошадью работу по некоторым данным в 1.5 раза, что послужило принятием за образчик именно металлическое устройство, работавшее на водяном пару.
Вторая легенда наоборот, рассказывает нам, что сам Уатт немного «подкрутил» расчёты в свою пользу. Понадобилось это ему для того, чтобы убедить несговорчивых владельцев угольных шахт для переходя с тягловых лошадей на паровые машины. В 18 веке уголь их шахт поднимали при помощи лошадей веревкой через систему блоков. Подсчитав производительность среднестатистической лошади, Уатт применил коэффициент, умножив полученное число на 1.5, за счет чего его машина с легкостью выигрывала в производительности у любой лошади, совершавшей ту же работу.
Поскольку лошадиная сила значительно распространилась по всему Земному шару ввиду простоты подсчетов и понятности для пользователей, появились различные виды (определения) лошадиных сил: метрическая лошадиная сила, механическая лошадиная сила, котловая л.с., электрическая л.с. и водяная лошадиная сила .
Возможно в некоторых статьях и новостях, как в зарубежных, так и в отечественных вы не раз сталкивались с непонятными сокращениями, к примеру: nhp, rhp, bhp, shp, ihp, whp . Что они обозначают?
Nhp или rhp, Nominal horsepower, rated horsepower — полезная мощность, использовалась для оценки мощности паровых двигателей.
Bhp, Brake horsepower — эффективная мощность в л.с., мощность «снимаемая» с коленчатого вала двигателя внутреннего сгорания, не учитывает потери мощности от КПП и трансмиссии автомобиля.
Shp, Shaft horsepower — мощность двигателя на валу, это мощность, подводимая к валу винта, на вал турбины или на выходной вал автомобильной коробки передач. Брутто
Ihp, Indicated horsepower — индикаторная мощность в л.с., это теоретическая мощность поршневого двигателя, определяемая суммой мощности с коленчатого вала, эффективной мощности, и энергии расходуемой на трение.
Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.
Выглядит она так:
P, W, N=A/t, (Вт=Дж/с).
В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.
Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.
Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.
Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:
P=F*s/t, где F=А*s,
Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.
Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных сил ах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.
Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.
При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.
В общем случае электрическая мощность определяется формулой:
где I — сила тока, U-напряжение
Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.
Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.
В цепях переменного тока , помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.
Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.
Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность , даже если они имеют одинаковое предназначение.
Мощность — это физическая величина , характеризующая скорость работы.
Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:
Т. е. мощность — это работа в единицу времени.
Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].
1 Вт — это работа в 1 Дж, совершенная за 1 с.
Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:
Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.
Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:
Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:
Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.
Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.
Примеры решения задач.
Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.
Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?
Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Энциклопедичный YouTube
1 / 5
✪ Урок 363. Мощность в цепи переменного тока
✪ Активная, реактивная и полная мощность. Что это такое, на примере наглядной аналогии.
✪ Работа и мощность электрического тока. Работа тока | Физика 8 класс #19 | Инфоурок
✪ В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ
✪ Ватт Джоуль и Лошадиная сила
Субтитры
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности , удобно обратиться к теории комплексных чисел . Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом.{2}}}} .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина для значений φ {\displaystyle \varphi } от 0 до плюс 90° является положительной величиной. Величина sin φ {\displaystyle \sin \varphi } для значений φ {\displaystyle \varphi } от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = U I sin φ {\displaystyle Q=UI\sin \varphi } , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор , являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности .
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Полная мощность
Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А ; международное: V·A ) .
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I {\displaystyle I} в цепи и напряжения U {\displaystyle U} на её зажимах: S = U ⋅ I {\displaystyle S=U\cdot I} ; связана с активной и реактивной мощностями соотношением: S = P 2 + Q 2 , {\displaystyle S={\sqrt {P^{2}+Q^{2}}},} где P {\displaystyle P} — активная мощность, Q {\displaystyle Q} — реактивная мощность (при индуктивной нагрузке Q > 0 {\displaystyle Q>0} , а при ёмкостной Q ).{*}}},} где U ˙ {\displaystyle {\dot {U}}} — комплексное напряжение, I ˙ {\displaystyle {\dot {I}}} — комплексный ток, Z {\displaystyle \mathbb {Z} } — импеданс, * — оператор комплексного сопряжения .
Модуль комплексной мощности | S ˙ | {\displaystyle \left|{\dot {S}}\right|} равен полной мощности S {\displaystyle S} . Действительная часть R e (S ˙) {\displaystyle \mathrm {Re} ({\dot {S}})} равна активной мощности P {\displaystyle P} , а мнимая I m (S ˙) {\displaystyle \mathrm {Im} ({\dot {S}})} — реактивной мощности Q {\displaystyle Q} с корректным знаком в зависимости от характера нагрузки.Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Электрический прибор | Мощность,Вт |
---|---|
лампочка фонарика | 1 |
сетевой роутер, хаб | 10…20 |
системный блок ПК | 100…1700 |
системный блок сервера | 200…1500 |
монитор для ПК ЭЛТ | 15…200 |
монитор для ПК ЖК | 2…40 |
лампа люминесцентная бытовая | 5…30 |
лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…700 |
Электропылесос | 100… 3000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатель шахтной подъемной машины | 1 000 000…5 000 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
В 1882 году Британская научная ассоциация приняла решения начать использовать новую единицу измерения под названием «ватт». Для чего она используется сегодня, чему равна и по какой формуле ее можно вычислить? Давайте найдем ответы на все эти вопросы.
Ватт — единица измерения чего?
Начиная с того судьбоносного года, когда британцы ввели традицию использования ватта, постепенно во всем мире стали переходить на него, взамен устаревших и непрактичных лошадиных сил. С появлением системы СИ он был внесен в нее и стал использоваться повсеместно.
Итак, какая физическая величина имеет единицу измерения «ватт»? Вспомним уроки физики: правильный ответ на этот вопрос — мощность.
Свое название ватт получил в честь своего «отца» — шотландца Джеймса Ватта. В сокращении данная единица пишется всегда с большой буквы — Вт (W — согласно международном нормам системы СИ), а полностью — с маленькой «ватт» (watt).
Являясь не основной, а производной единицей (согласно стандарту СИ), рассматриваемая единица находится в зависимости от метра, килограмма и секунды. На практике это означает, что один ватт — это мощность, при которой совершается один джоуль работы за одну секунду времени. То есть, получается следующая зависимость: 1Вт = 1Дж/1с = 1Н х м/с = кг х м 2 /с 3 = кг х м 2 х с -3.
Кроме перечисленных выше, ватт связан с несистемными единицами. Например, с калорией. Так 1 Вт = 859,845227858985 кал/час. Данное соотношение важно, когда речь идет о вычислении количество теплоты, вырабатываемой электрическим обогревателем.
Формула
Итак, ватт — единица измерения мощности. Давайте же рассмотрим, по какой формуле ее можно вычислять.
Как уже было сказано выше, мощность зависит от работы и времени. Получается следующая формула: Р = A/t (мощность равна частному от деления работы на время).
Зная, что формула работы равна: А = F х S (где F — сила, S — расстояние), можно использовать эти данные.
В результате получаем формулу: Р = F х S /t. А поскольку S /t — это скорость (V), то мощность допустимо вычислять и так: Р = F х V
Взаимозависимость ампера, ватта, вольта
Единица измерения, которую мы рассматриваем, находится в прямой связи с такими величинами как напряжение (измеряется в вольтах) и сила тока (измеряется в амперах).
1 ватт — это мощность постоянного электрического тока при напряжении в 1 В и силе в 1А.
В виде формулы это выглядит таким образом: Р = І х U.
Ватты, киловатты, мегаватты и микроватты
Узнав, что ватт — единица измерения мощности, от каких величин она зависит и по каким формулам ее проще вычислять, стоит обратить внимание на такие понятия как киловатт, мегаватт и микроватт.
Поскольку Вт — величина весьма скромная (такова мощность передатчика любого мобильного телефона), в сфере электроэнергетики чаще принято применять киловатт (кВт).
Судя по стандартной для системы СИ приставке «кило», можно сделать вывод, что 1 кВт = 1000 Вт = 10 3 Вт. Поэтому для перевода ватт в киловатты нужно просто их количество делить на тысячу или наоборот, в случае, если киловатты переводятся в ватты.
К примеру, обычный легковой автомобиль имеет мощность в 60 000 ватт. Чтобы перевести это в киловатты, нужно разделить 60 000 на 1000 и в результате получится 60 кВт.
Киловатты являются общепринятой единицей для измерения мощности электроэнергии. При этом иногда применяется большая кратная единица ватта. Речь идет о мегаватте — МВт. Он равен 1 000 000 ватт (10 6) или 1000 киловатт (10 3).
К примеру, британский электропоезд Eurostar обладает мощностью в 12 мегаватт. То есть, это 12 000 000 ватт. Не удивительно, что он является самым быстрым в Великобритании.
Несмотря на скромные размеры иногда эта единица оказывается слишком большой для измерения мощности определенных предметов, поэтому наравне с кратными в системе Си выделяются и дольные единицы ватта. Наиболее часто используемой из них является микроватт (мкВт — пишется со строчной буквы, чтобы не путать с мегаваттом). Он равен одной миллионной части ватта (10 -6). Обычно данная единица применяется при расчете мощности работы электрокардиографов.
Помимо трех вышеперечисленных, существует еще около двух десятков других кратных и дольных единиц ватта. Однако чаще всего они используются в теоретических расчетах, а не на практике.
Ватт-час
Рассматривая особенности ватта (единицы измерения мощности), давайте обратим внимание на ватт-час (Вт·ч). Этот термин используется для измерения такой величины, как энергия (иногда в ватт-часах измеряется работа).
1 ватт-час равен количеству работы, выполненной на протяжении одного часа при мощности в 1 ватт.
Поскольку рассматриваемая единица довольно небольшая, для измерения электричества чаще применяется киловатт-час (кВт·ч). Он равен 1000 ватт-часов или 3600 Вт·с.
Обратите внимание, что мощность вырабатываемой на электростанциях энергии измеряется в киловаттах (иногда мегаваттах), но для потребителей ее количество исчисляется в киловатт-часах (реже в мегаватт-часах, если речь идет о мегаполисах или огромных предприятиях).
Обратите внимание, что помимо киловатт-часа и мегаватт-часа, ватт-час имеет точно такие же кратные и дольные единицы, как и обычный ватт.
Какой прибор называется ваттметром
Сравнив определение ватта (единица измерения мощности) и ватт-часа (единица энергии или работы), обратите внимание на такой прибор как ваттметр (ваттметр, wattmeter). Он применяется для измерения активной мощности электрического тока.
Классический прибор такого рода состоит из четырех контактов, два из которых используются для включения ваттметра в электрическую цепь последовательно с той его частью, потребляемая мощность которой измеряется на данный момент. Остальные два контакта подключаются параллельно к ней.
Ваттметры обычно создаются на основе электродинамических механизмов.
Понятие мощности является физической величиной. Она представляет собой соотношение работы, производимой в определенный промежуток времени и сам временной промежуток. С помощью работы может быть измерено изменение энергии. Поэтому, мощность показывает, с какой скоростью преобразуется энергия в какой-либо системе.
Все эти понятия в полной мере относятся и к электрической мощности. Здесь учитывается работа (U), затрачиваемая на перемещение 1-го кулона. Электрический ток (I) учитывает число кулонов, перемещенных в течение одной секунды.
Виды электрической мощности
Исходя из зависимости мощности от силы тока и напряжения, следует вывод, что она может получиться от большого тока и малого напряжения и, наоборот, при малом токе и значительном напряжении. Этот эффект применяется при трансформаторных преобразованиях, когда электроэнергия передается на дальние расстояния.
Электрическая мощность может быть . В первом случае происходит безвозвратное преобразование данной мощности в другой вид энергии. Для ее измерения применяется , представляющий собой произведение вольта и ампера. При мощности, из-за появления индуктивности, возникает явление самоиндукции. В результате, электрическая энергия частично возвращается в сеть. При этом, значения тока и напряжения смещаются, вызывая общее отрицательное влияние на электросети. Данный вид мощности измеряется в вольт-амперах реактивных, состоящих из произведения рабочего тока и падения напряжения.
Единица измерения мощности
Мощность является одной из основных единиц, применяемых в электротехнике. Основной единицей измерения служит ватт, отражающий работу в течение определенного времени. На производстве и в бытовых условиях, чаще всего, мощность измеряется в , каждый из которых содержит 1000 ватт. Для измерения большого количества мощности используются мегаватты. Как правило, они применяются на различных видах электростанций, вырабатывающих электроэнергию.
Мощность потребителей указывается на специальных табличках или в техническом паспорте устройства. Зная заранее величину этого параметра, можно вычислить и другие показатели электрической сети — напряжение и величину потребляемого тока.
Как определить мощность тока
Как определить мощность электродвигателя
Как устроен электродвигатель
В основе работы мотора лежит принцип электромагнитной индукции. Прибор состоит из двух частей. Неподвижная часть — статор для двигателей переменного тока или индуктор для двигателей постоянного тока. Подвижная часть — ротор для двигателей переменного тока или якорь для двигателей постоянного тока. Производители выпускают моторы разных технических характеристик и комплектаций, но подвижная и неподвижная часть остаются без изменений.
Что такое мощность электродвигателя
Мощность электродвигателя характеризует скорость преобразования электрической энергии, ее принято измерять в ваттах. Чтобы понять, как это работает, нам понадобится две величины: сила тока и напряжение. Сила тока — количество тока, которое проходит через поперечное сечение за какой-то отрезок времени, ее принято измерять в амперах. Напряжение — величина, равная работе по перемещению заряда между двумя точками цепи, ее принято измерять в вольтах.
Если говорить простыми словами, силу тока и напряжение можно сравнить с водой. Сила тока — скорость, с которой течет вода по трубам. Напряжение видно на примере двух емкостей, соединенные между собой трубкой. Если вы поставите одну емкость выше другой, вода будет вытекать до тех пор, пока уровни в обеих емкостях не сравняются. Именно перепад высот и будет напряжением. После того, как вы поставите заглушку между двумя емкостями, течение воды (ток) остановится, но напряжение останется.
Для расчета мощности используется формула N = A/t, где:
N — мощность;
А — работа;
t — время.
Расчет мощности электродвигателя
Производители указывают на электрооборудовани все технические параметры. «Зачем тогда делать какой-то расчет?», — скажете вы. Но дело в том, что заявленная мощность — это не фактическая мощность электродвигателя, а максимально допустимая мощность электропотока. Так что, если на вашей технике или инструменте указана мощность, к примеру, в 1000 Вт, это совсем не то, о чем вы думаете.
Три способа определить мощность электродвигателя
Для расчета мощности существует не один десяток способов. Мы не будем говорить о каждом из них, остановившись лишь на самым простых и доступных.
Первый способ. Расчет по таблицам
Для этого способа расчета вам понадобится линейка или штангенциркуль. С их помощью измерьте диаметр вала вашего электродвигателя, длину мотора (выступающие части вала не учитывайте) и расстояние до оси. С использованием полученных цифр вы сможете определить мощность электродвигателя по таблицам технических характеристик двигателей. Найти такие таблицы не составит труда — они есть в открытом доступе в сети интернет. Открыв таблицу, определите серию электродвигателя и, соответственно, его технические характеристики.
Второй способ. Расчет по счетчику
Указанный способ считается самым простым, вам не понадобятся ни дополнительное оборудование, ни расчеты. Перед тем, как приступить к измерению мощности электродвигателя, выключите все электроприборы из сети. Включите испытуемый электродвигатель и запустите его в работу на 5-7 минут. Если в вашем доме установлен современный счетчик, он покажет нагрузку в киловаттах.
Третий способ. Расчет по габаритам
Для этого способа вам понадобится линейка или штангенциркуль. Измерьте диаметр сердечника с внутренней стороны и длину (учитывайте длину отверстий вентиляции). Определите частоту сети и синхронную частоту вращения вала. Умножьте диаметр сердечника в сантиметрах на синхронную частоту вращения вала, полученное значение умножьте на 3,14, поделите на частоту сети, умноженную на 120.
Работа и мощность тока
Практическая работа № 8.
«Работа и мощность тока».
I) Прочитайте § 106 учебника (Мякишев Г. Я. Физика. 10 класс: учеб. для общеобразоват. учреждений — М.: Просвещение, 2012).
II) Составьте конспект параграфа 57 по плану:
Дайте характеристику физической величины работа тока по плану:
Дайте характеристику физической величины мощность тока по плану:
Дайте характеристику закона Джоуля — Ленца по плану:
Формулировка;
Математическая запись;
Границы применимости;
Пример проявления (применения).
III) Прочитайте задачу № 802 (Рымкевич, А.П. Физика. Задачник. 10 – 11 классы.: пособие для общеобразоват. учреждений – 17-е изд. — М.: Дрофа, 2013).
IV) Разберите и перепишите в тетрадь решение первой части задачи № 806:
3, 5 В – это напряжение, под которым работает лампочка от карманного фонарика; 0,28 А – это сила тока в лампочке.
Дано: Решение:
U = 3,5 В U U 3,5
I = 0,28 А I = — закон Ома для участка цепи; R = = = 12,5;
Найти: R I 0,28
R, Р — ? В
[R] = = Ом
А
Р = I . U = 3,5 . 0,28 = 0,98;
[Р] = В . А = Дж . А = Дж . А = Дж = Вт
Кл А . с с
Ответ: Сопротивление лампы 12,5 Ом, мощность лампы 0,98 Вт.
V) Решите вторую часть задачи № 802.
VI) Объясните, почему при одинаковой силе тока сетевая лампа выделяет мощность больше, чем лампочка от карманного фонарика.
Практическая работа № 8
DOC / 30 Кб
Подробный расчет токов и мощности в соответствии с типом нагрузки
Расчет токов и мощности
Анализ токов и мощности являются ключевыми факторами при любом проектировании или перепроектировании установки, они позволят подобрать источник (источники) в соответствии с цель установки, предполагаемое использование цепей и приемников, которые будут поставляться.
Детальный расчет токов и мощности в соответствии с типом нагрузкиПотребляемый ток Ia соответствует номинальному току, потребляемому приемником независимо от коэффициента использования и коэффициента совпадения, но с учетом аспектов эффективности ( η коэффициент ), коэффициент смещения или фазовый сдвиг ( cos φ ) для двигателей или других индуктивных или емкостных нагрузок.
Для нелинейных (или искажающих) нагрузок необходимо вычислить квадратичную сумму основного тока и гармонических токов , чтобы получить действительный среднеквадратичный ток .
Разобьем расчет мощности на несколько частей, чтобы легко проследить:
- Чисто резистивная нагрузка
- Неискажающая нагрузка, которая не является чисто резистивной
- Расчет тока
- Перегрузки на проводниках в соответствии с к общему гармоническому искажению
- Искажающая нагрузка, которая не является чисто резистивной
1.Чисто резистивная нагрузка
Ток , потребляемый Ia чисто резистивной нагрузки, рассчитывается простым применением формул. Для однофазного:
и для трехфазного:
Но будьте осторожны, очень немногие нагрузки являются полностью резистивными. Лампы накаливания уступают место решениям, предлагающим более высокие уровни производительности, но, с другой стороны, менее «чистым» с электрической точки зрения.
Вернуться к расчетам токов и мощности ↑
2.Нагрузка без искажений, которая не является чисто резистивной
Номинальная мощность (Pn) двигателя соответствует механической мощности на его валу. Фактическая потребляемая мощность (Па) соответствует активной мощности, передаваемой по линии.
Зависит от КПД двигателя:
Потребляемый ток (Ia) рассчитывается по следующим формулам. Для однофазного:
и для трехфазного:
Где:
- Ia — потребляемый среднеквадратичный ток (в А)
- Pn — номинальная мощность (в Вт; это полезная мощность)
- U — напряжение между фазами в трехфазном и между фазой и нейтралью в однофазном (В)
- η — КПД
- cosφ — коэффициент смещения
Go назад к расчетам токов и мощности ↑
3.Расчет тока, потребляемого несколькими приемниками
Пример, описанный ниже, показывает, что расчет тока и мощности должен выполняться в соответствии с точными математическими правилами, чтобы четко различать различные компоненты.
Пример асинхронных двигателей
Группа цепей состоит из двух трехфазных асинхронных двигателей M 1 и M 2 , подключенных к одной панели (питание от сети: 400 В переменного тока — 50 Гц).Номинальная мощность двигателей соответственно: Pn 1 = 22 кВт и Pn 2 = 37 кВт .
Коэффициенты смещения: cosφ 1 = 0,92 для M 1 и cosφ 2 = 0,72 для M 2 КПД составляет η 1 = 0,91 и 901 = 0,93 соответственно.
Расчет потребляемой мощности:
В этом случае реактивная мощность может быть рассчитана путем определения значения tanφ из cosφ .связь с касательной задается формулой:
Расчет реактивной мощности :
Расчет полной мощности :
Расчет общего потребления тока для M1, M2, M1 + M2 и соответствующий коэффициент мощности:
Активную мощность (в Вт) и реактивную мощность (в ВАр) можно сложить вместе алгебраически , тогда как полную мощность и токи можно сложить только вместе геометрически .
Вернуться к расчетам токов и мощности ↑
Представление результатов
Все анализы мощности должны показывать, как в таблице ниже, по крайней мере, для каждой группы:
- Активная мощность цепей, которая соответствует ( ближайший КПД) к подаваемой энергии,
- Реактивная мощность , чтобы можно было подобрать размер компенсирующих устройств (конденсаторов),
- Полная мощность , чтобы можно было определить мощность источника, и
- Потребляемый ток чтобы можно было рассчитать устройства шинопровода и защиты.
M 1 | M 2 | M 1 + M 2 (Всего т) | ||||||||||||||||||||||||||||||||||
Активная мощность: P [кВт] 10008 | 9 9 = 24,18Па 2 = 39,78 | P t = 63,96 | ||||||||||||||||||||||||||||||||||
Реактивная мощность: Q [кВАр] | Q 1 = 10,30 2 902 902 Q10 Q т = 48.65 | |||||||||||||||||||||||||||||||||||
Полная мощность: S [кВА] | S 1 = 26,28 | S 2 = 55,26 | S t = 80,36 | 0|||||||||||||||||||||||||||||||||
Потребляемый ток: 9 A Потребляемый ток | Ia 1 = 38 | Ia 2 = 80 | Ia t = 116 | |||||||||||||||||||||||||||||||||
cosφ | 0,92 | 0,721 | назад | 0,72 | 902 902 902 902 | назад и расчет мощности ↑ 4.Перегрузки на проводниках в соответствии с полным гармоническим искажениемТок, циркулирующий в каждой фазе, равен квадратичной сумме основного тока (называемого 1-м порядком гармоники) и всех гармонических токов (следующих порядков): THDi (Total Harmonic Distortion) выражает отношение между долей всех гармонических токов и общим током в процентах. I 1 — действующее значение основной гармоники, а в I n — среднеквадратичное значение гармоники n-го порядка.Принцип заключается в применении коэффициента уменьшения тока, который можно рассчитать на основе THDi. Для допустимого значения THDi , равного 33% , теоретически ток должен быть уменьшен в каждой фазе на коэффициент K: Если коэффициент не применяется, ток будет увеличен на: Это остается приемлемым и объясняет, почему стандарт не рекомендует какое-либо снижение номинальных характеристик или увеличение поперечного сечения до 33% THDi. Более 33%.стандарт рекомендует увеличить ток IB , что приведет к необходимому завышению номинального диаметра нейтрального проводника. Для фазных проводов также может потребоваться снижение тока или увеличение размеров многожильных кабелей. Следует отметить , что стандарт рекомендует коэффициент уменьшения 0,84 . что на самом деле соответствует пессимистическому THDi 65% . В отношении нейтрального проводника считается, что если все гармоники имеют 3-й порядок и его кратные, они будут сложены вместе, и тогда ток из-за гармоник в нейтрали будет I N = 3 × I ph , что может быть выражено с использованием эквивалентного обозначения: THDn = 3 THDi . Устройства с нелинейной нагрузкой не потребляют ток, который является отражением приложенного напряжения . Это приводит к ненужному потреблению энергии: искажающей мощности, которая генерирует дополнительный ток, последствия которого нельзя упускать из виду.Но этот ток никогда не выражается напрямую, потому что он включает довольно сложный математический расчет , преобразование Фурье, чтобы определить его относительную общую часть (THDi: полное гармоническое искажение) или порядок значений по порядку: ih 2 , ih 3 , ih 4 , ih 5 ,..ih № . При отсутствии точных измерений трудно точно узнать уровень тока, соответствующий каждому порядку гармоник. Поэтому предпочтительно просто увеличить поперечное сечение нейтрального проводника в качестве меры предосторожности, поскольку известно, что основные 3 гармоники порядка -го порядка и их кратные составляющие складываются в нейтрали. и адаптировать защиту этого проводника.
В принципе, нейтраль должна быть того же поперечного сечения, что и фазный провод во всех однофазных цепях. В трехфазных цепях с поперечным сечением более 16 мм 2 [25 мм 2 алюминий]. Сечение нейтрали можно уменьшить до сечения / 2. Однако это уменьшение недопустимо, если:
Если эта сумма превышает 33%, поперечное сечение активных проводников многожильных кабелей выбирается путем увеличения тока In на фиксированный коэффициент умножения, равный 1.65. У одножильных кабелей увеличивается только сечение нейтрали. На практике увеличение тока Ia в нейтрали компенсируется увеличением ее поперечного сечения. Когда нейтраль нагружена, к допустимому току кабелей 3 или 1 применяется понижающий коэффициент 0,86 . Коэффициент уменьшения тока K N или, скорее, его обратная величина, которая будет использоваться для увеличения размера нейтрального проводника, тогда будет: При общем гармоническом искажении порядка 3 rd 65% ток фазные провода должны быть увеличены на 119% , а в нейтральном проводе — на 163% .Если THDi достигнет 100%, 1 / кН теоретически достигнет 2,12 . Это значение было бы невозможно достичь, так как это означало бы, что гармоника полностью заменила основную. Теоретический предел перегрузки по току для нейтрали по отношению к фазам составляет: Эти расчеты показывают, что гармонические токи, прежде всего, не должны игнорироваться как с точки зрения «скрытой» потребляемой мощности , так и с точки зрения определение размеров проводов, которые могут быть перегружены.Относительная сложность расчетов приводит к использованию общих значений снижения номинальных характеристик, которые обычно охватывают большинство случаев, так же как программное обеспечение используется в других местах. Вернуться к расчетам токов и мощности ↑ Пример следования стандартам для определения устройства защиты с нейтралью, перегруженной гармоникамиДля цепи 3P + N, рассчитанной на 170 А, с системой TNS, всего 3-го порядка гармонические искажения более 33%. При выборе размеров фазных кабелей коэффициент уменьшения 0.84 (нагруженная нейтраль, см. Выше) должен быть включен.
Поэтому следует выбирать автоматический выключатель, способный выдерживать ток, который может пересекать нейтраль: In device ≥ IB нейтраль ⇒ In = 250 A Но устройство должно быть настроено в соответствии с током, который может течь по фазам: Ir ≥ IB фазы ⇒ Ir ≥ 170 A (и <206 A, предел кабеля) A 250 A автоматический выключатель без защиты с обрывом нейтрали, установлен на 0.7 поэтому подходит для этого приложения . Вернуться к расчетам токов и мощности ↑ 5. Искажающая нагрузка, не являющаяся чисто резистивнойПотребляемый ток (Ia) определяется по следующим формулам: где:
Вернуться к расчетам токов и мощности ↑ Пример люминесцентного светильника и электронного балластаНоминальная активная мощность, потребляемая светильником составляет 9 Вт , а измеренная полная мощность 16 ВА .Измеренный коэффициент смещения составляет cosφ = 0,845 , а коэффициент мощности PF = 0,56 . Измеренный потребляемый ток Ia составляет 0,07 A . Поскольку cosφ и коэффициент мощности различны, невозможно рассчитать значение tanφ или реактивной мощности Q (VAR) для рассматриваемого приемника. Измеренные cosφ и мощность Q, которые должны быть рассчитаны, могут быть рассчитаны только для части реактивной мощности, связанной с синусоидальной составляющей сигнала, фактически для тока основной гармоники при 50 Гц: 0.045 А, в данном случае . Мощности относительно этой линейной и синусоидальной части нагрузки можно рассчитать следующим образом:
Следовательно, не вся потребляемая полная мощность равна линейно, поскольку существует значительная разница между измеренной полной полной мощностью S (16 ВА) и расчетной теоретической синусоидальной мощностью (10.3 ВА). Также видно, что синусоидальная активная мощность устройства 8,7 Вт очень похожа на измеренную полную активную мощность 9 Вт. Следовательно, можно сделать вывод, что большая часть мощности S (16-10,3 = 5,7 ВА ) потребляется без выработки активной мощности. Люминесцентный светильник и электронный балласт в этом примере потребляют непроизводительную мощность в виде гармонических токов. Общее гармоническое искажение легко вычислить и представить в виде коэффициента. Спектральное разложение сигнала, выполненное на этом светильнике, показывает, что основная гармоника имеет 3-й порядок (34 мА) , но все следующие гармоники нечетного порядка присутствуют и затухают. Основная цель приведенного выше примера — продемонстрировать, что информация об активной мощности (в Вт) только для нелинейного приемника очень неадекватна. cosφ не имеет реального значения и не имеет значения , поскольку он применим только к основному сигналу.Только информация о полной мощности и коэффициенте мощности (PF или? \.,) Действительно может количественно определить и определить мощность, которая должна подаваться источником. В приведенном примере видно, что активная мощность приблизительно 9 Вт соответствует потребляемой мощности 16 ВА . Многие современные устройства (лампочки, компьютерное оборудование, бытовая техника и электронное оборудование) обладают этой особенностью потребления нелинейных токов. Для бытового использования, где выставляется счет только за мощность в Вт (sic), экономия энергии, показанная для этих продуктов, является привлекательной.На практике потребляемые токи выше, чем кажется, и распределитель энергии тратит впустую энергию.
Важно: в отличие от линейных нагрузок (стр.29), для нелинейных нагрузок активные мощности (в Вт) могут складываться алгебраически, полные мощности должны складываться только геометрически , а также токи, которые должны быть в том же порядке. Реактивные мощности Q не должны суммироваться, за исключением определенной относительной части мощности, связанной с синусоидальным основным сигналом, и части, связанной с гармоническими сигналами. Вернуться к расчетам токов и мощности ↑ Ссылка // Баланс мощности и выбор решений по источникам питания Legrand Как рассчитать токовую нагрузку на силовую панель печатной платы | БлогЗахария Петерсон| & nbsp Создано: 21 января 2021 г. & nbsp | & nbsp Обновлено: 22 января 2021 г. Самолетыявляются неотъемлемой частью вашей печатной платы, но насколько они должны быть большими и какой ток может с комфортом переносить большой самолет? По правде говоря, разработчик может гибко регулировать свои ограничения, чтобы приспособиться к большим токам в плоскостях питания печатных плат, но размер плоскости питания ограничивает максимальную допустимую токовую нагрузку на плоскость питания печатной платы.Когда вам нужно обеспечить высокую надежность, стандарты IPC — хорошее место для начала определения размеров вашей платы питания, чтобы ваша плата оставалась прохладной. Общие сведения о допустимой нагрузке на плоскость питания печатной платыПлоскости питания и заземленияслужат в вашей печатной плате для нескольких целей, помимо передачи тока к компонентам и от них. Они являются неотъемлемой частью целостности питания постоянного и переменного тока и часто требуют такого же внимания к деталям, как и остальная часть компоновки вашей печатной платы. Поскольку все проводники имеют некоторое сопротивление постоянному току, они будут рассеивать некоторую мощность в виде тепла, когда по ним протекает некоторый ток.Как и у любого другого проводника, размер медной плоскости будет определять его сопротивление постоянному току, которое будет определять, сколько мощности рассеивается в виде тепла в плоскости питания. Точно так же, как при попытке определить минимальную ширину дорожек, существует минимальный размер плоскости мощности для заданного необходимого постоянного тока или максимальная пропускная способность плоскости питания печатной платы для данного размера плоскости. Зачем нужны большие самолеты?С точки зрения сопротивления постоянному току и рассеиваемой мощности есть две причины использовать более мощные плоскости:
Из соображений переменного тока и электромагнитных помех также желательны физически большие плоскости, поскольку они обеспечивают большую межплоскостную емкость для развязки в высокоскоростных платах и обеспечивают некоторую изоляцию от электромагнитных помех. Однако, поскольку основная задача силовой панели PCB во многих энергосистемах заключается в передаче высокого тока по плате, первое, с чего нужно начать проектирование, — это определить максимальный ток, который ваш самолет может выдерживать, не перегреваясь. Расчет токовой нагрузки на электрическую плоскостьЛучшее место для начала расчета допустимой токовой нагрузки силовой панели — использовать стандарт IPC 2221. Для высоковольтных конструкций этот стандарт охватывает несколько аспектов надежности конструкции, но считается менее консервативным, чем соответствующий стандарт IPC 2152. Этот расчет покажет вам рост температуры, который вы можете ожидать для данного размера плоскости и тока, или его можно использовать для определения размера плоскости для данной температуры и тока.Большинство калькуляторов, которые вы найдете в Интернете, используют второй подход. Входные данные для этого расчета:
Сначала рассчитайте минимальную требуемую площадь, используя желаемые значения тока и превышения температуры: Формула площади поперечного сечения силовой панели из IPC 2221.Затем вычислите ширину поперечного сечения плоскости по площади, используя вес меди. Толщина медного рубанка 1 гр. / Кв. ft. вес составляет 0,35 мм, поэтому вы можете использовать его для расчета размаха вашего самолета. Лучшие инструменты проектирования помогут вам оценить свои результаты с помощью имитатора после макета, чтобы определить области, где сила тока и температура слишком высоки. Если хотите, вы можете переключить его, чтобы получить предел тока для допустимого повышения температуры. Сначала вам нужно решить указанное выше уравнение для тока.Затем возьмите площадь поперечного сечения вашего самолета и указанное вами повышение температуры и вставьте их в решенное уравнение. Теперь у вас есть максимальный предел тока для вашего силового самолета. Проектирование для более высоких температур или токовЕсли вам нужен сильный отвод тепла от платы, например, в системе питания или автомобильной системе, можно использовать подложку с керамическим или металлическим сердечником. Эти подложки будут рассеивать больше тепла от платы, поэтому вы можете ожидать, что ваша система будет работать при более низкой постоянной температуре во время работы.Вы можете удалить охлаждающий вентилятор или радиатор из системы, в зависимости от того, где будет установлена плата. Другой простой вариант — просто использовать несколько плоскостей питания на нескольких уровнях. В качестве примера из моего недавнего проекта мы сделали объединительную плату 6U, которая должна была передавать до 100 А от пары блоков питания с возможностью горячей замены на несколько дочерних плат на разных разъемах. Такая плата уже довольно большая, но плоские секции в одной области платы могут выдерживать только ~ 20 А без повышения температуры платы до неприемлемого уровня.Решение? Используйте несколько плоскостей питания на разных слоях! Параллельная работа плоскостей питания эквивалентна использованию более толстой меди и увеличит общую допустимую нагрузку на плоскость питания на печатной плате. Аналогичный пример показан ниже, где две плоскости питания с разными напряжениями используются для передачи большого тока. Плоскость низкого напряжения / низкого тока отображается бордовым цветом, а плоскость высокого напряжения / высокого тока — зеленым. Если вы творчески подходите к проекту распределения мощности, вы можете разделить токи между разными плоскостями, чтобы температура в одной плоскости не становилась слишком высокой. Параллельно соединенные плоскости могут нести разные напряжения и токи, которые ниже допустимой токовой нагрузки плоскости питания печатной платы.После того, как вы определили допустимую токовую нагрузку на силовую панель, вы можете исследовать распределение постоянного тока в моделировании постоянного тока с помощью инструмента PDNA. В этих статьях Марк Харрис предоставляет два отличных руководства: Если вы разрабатываете силовую электронику и хотите обеспечить надежность своей следующей системы, используйте полный набор инструментов проектирования и компоновки печатных плат в Altium Designer® для вашего следующего проекта.Обновленный редактор правил проектирования в последней версии Altium Designer позволяет определять стандарты IPC в качестве правил проектирования и помогает создавать технологичные макеты. Вы также можете использовать инструменты проектирования высокого напряжения и расширение PDN Analyzer, чтобы убедиться, что вы не превысили допустимый ток плоскости питания печатной платы при создании макета печатной платы. Определение мощности и размера выборкиОпределение мощности и размера выборки Определение мощности и размера выборки Автор: Лиза Салливан, доктор философии Профессор биосатистики Школа общественного здравоохранения Бостонского университета Критически важным аспектом любого исследования является определение подходящего размера выборки для ответа на исследовательский вопрос.В этом модуле основное внимание уделяется формулам, которые можно использовать для оценки размера выборки, необходимого для получения оценки доверительного интервала с заданным пределом погрешности (точности) или для гарантии того, что проверка гипотезы имеет высокую вероятность обнаружения значимой разницы в параметр. Исследования должны быть разработаны таким образом, чтобы включать достаточное количество участников для адекватного ответа на вопрос исследования. Исследования, в которых участвует либо недостаточное количество участников, либо чрезмерно большое количество участников, расточительны с точки зрения времени участников и исследователей, ресурсов для проведения оценок, аналитических усилий и т. Д.Эти ситуации также можно рассматривать как неэтичные, поскольку участники могли подвергнуться риску в рамках исследования, которое не смогло ответить на важный вопрос. Исследования, которые намного больше, чем они должны быть, чтобы ответить на вопросы исследования, также расточительны. Формулы, представленные здесь, позволяют оценить необходимый размер (а) выборки на основе статистических критериев. Однако во многих исследованиях размер выборки определяется финансовыми или логистическими ограничениями. Например, предположим, что предлагается исследование для оценки нового скринингового теста на синдром Дауна.Предположим, что скрининговый тест основан на анализе пробы крови, взятой у женщины на ранних сроках беременности. Чтобы оценить свойства скринингового теста (например, чувствительность и специфичность), каждой беременной женщине будет предложено сдать образец крови и, в дополнение, пройти амниоцентез. Амниоцентез включен в качестве золотого стандарта, и его план состоит в том, чтобы сравнить результаты скринингового теста с результатами амниоцентеза. Предположим, что сбор и обработка образца крови стоит 250 долларов на участника, а амниоцентез — 900 долларов на участника.Одни только эти финансовые ограничения могут существенно ограничить число женщин, которые могут быть зачислены. Так же, как важно учитывать статистическую и клиническую значимость при интерпретации результатов статистического анализа, важно также взвесить как статистические, так и логистические вопросы при определении размера выборки для исследования. После завершения этого модуля студент сможет:
Модуль доверительных интервалов предоставляет методы оценки доверительных интервалов для различных параметров (например, μ, p, (μ 1 — μ 2 ), μ d , (p 1 -p 2 ) )).Доверительные интервалы для каждого параметра имеют следующий общий вид: Оценка вбалла + Погрешность В модуле доверительных интервалов мы вывели формулу доверительного интервала для μ как На практике мы используем стандартное отклонение выборки для оценки стандартного отклонения генеральной совокупности. Обратите внимание, что существует альтернативная формула для оценки среднего значения непрерывного результата в одной генеральной совокупности, и она используется, когда размер выборки невелик (n <30).Он включает значение из распределения t, в отличие от значения из стандартного нормального распределения, чтобы отразить желаемый уровень достоверности. При вычислении размера выборки мы используем формулу для большой выборки, показанную здесь. [Примечание: размер результирующей выборки может быть небольшим, и на этапе анализа необходимо использовать соответствующую формулу доверительного интервала.] Точечная оценка среднего для генеральной совокупности является выборочным средним, а предел погрешности составляет .При планировании исследований мы хотим определить размер выборки, необходимый для обеспечения того, чтобы предел погрешности был достаточно малым, чтобы быть информативным.Например, предположим, что мы хотим оценить средний вес студенток колледжа. Мы проводим исследование и получаем 95% доверительный интервал следующим образом: 125 + 40 фунтов, или от 85 до 165 фунтов. Предел погрешности настолько велик, что доверительный интервал неинформативен. Чтобы быть информативным, исследователь может захотеть, чтобы предел погрешности составлял не более 5 или 10 фунтов (это означает, что 95% доверительный интервал будет иметь ширину (от нижнего предела до верхнего предела) 10 или 20 фунтов). Чтобы определить необходимый размер выборки , исследователь должен указать желаемую погрешность .Важно отметить, что это не статистическая проблема, а клиническая или практическая. Например, предположим, что мы хотим оценить средний вес при рождении младенцев, рожденных матерями, которые курят сигареты во время беременности. Вес при рождении у младенцев явно имеет гораздо более ограниченный диапазон, чем у студенток колледжа. Следовательно, мы, вероятно, захотим создать доверительный интервал для среднего веса при рождении, который имеет погрешность, не превышающую 1–2 фунта. Предел погрешности в доверительном интервале одной выборки для μ можно записать следующим образом: . Наша цель — определить размер выборки n, который гарантирует, что предел погрешности « E » не превышает указанного значения. Мы можем взять приведенную выше формулу и с помощью алгебры найти n : Сначала умножьте обе части уравнения на квадратный корень из n . Затем вычтите квадратный корень из n из числителя и знаменателя в правой части уравнения (поскольку любое число, деленное само на себя, равно 1). Остается: Теперь разделите обе части на «E» и вычеркните «E» из числителя и знаменателя в левой части.Остается: Наконец, возведите обе части уравнения в квадрат, чтобы получить: Эта формула генерирует размер выборки n , необходимый для обеспечения того, чтобы предел погрешности E не превышал заданного значения. Чтобы найти n , мы должны ввести « Z », « σ», «» и « E ».
Иногда трудно оценить σ . Когда мы используем приведенную выше формулу размера выборки (или одну из других формул, которые мы представим в следующих разделах), мы планируем исследование для оценки неизвестного среднего значения конкретной переменной результата в популяции.Маловероятно, что мы узнаем стандартное отклонение этой переменной. При вычислении размера выборки исследователи часто используют значение стандартного отклонения от предыдущего исследования или исследования, проведенного в другой, но сопоставимой совокупности. Расчет размера выборки не является применением статистических выводов, и поэтому разумно использовать соответствующую оценку стандартного отклонения. Оценка может быть получена из другого исследования, о котором сообщалось в литературе; некоторые исследователи проводят небольшое пилотное исследование для оценки стандартного отклонения.Пилотное исследование обычно включает небольшое количество участников (например, n = 10), которые выбираются по удобству, а не методом случайной выборки. Данные участников пилотного исследования можно использовать для вычисления стандартного отклонения выборки, которое служит хорошей оценкой для σ в формуле размера выборки. Независимо от того, как получается оценка изменчивости результата, она всегда должна быть консервативной (т.е. настолько большой, насколько это разумно), чтобы размер результирующей выборки не был слишком маленьким. Формула дает минимальный размер выборки, чтобы гарантировать, что предел ошибки в доверительном интервале не превысит E . Планируя исследования, исследователи также должны учитывать выбытие или отказ от последующего наблюдения. Приведенная выше формула дает количество участников, необходимое с полными данными, чтобы гарантировать, что предел ошибки в доверительном интервале не превышает E . Мы проиллюстрируем, как устраняется истощение при планировании исследований, на примерах в следующих разделах. В исследованиях, в которых планируется оценить среднее значение переменной непрерывного результата в одной популяции, ниже приводится формула для определения размера выборки: , где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), σ — стандартное отклонение переменной результата, а E — желаемое погрешность.Приведенная выше формула генерирует минимальное количество субъектов, необходимое для обеспечения того, чтобы предел погрешности доверительного интервала для μ не превышал E . Пример 1: Исследователь хочет оценить среднее систолическое артериальное давление у детей с врожденным пороком сердца в возрасте от 3 до 5 лет. Сколько детей должно быть включено в исследование? Исследователь планирует использовать 95% доверительный интервал (так Z = 1,96) и хочет погрешность в 5 единиц.Стандартное отклонение систолического артериального давления неизвестно, но исследователи провели поиск литературы и обнаружили, что стандартное отклонение систолического артериального давления у детей с другими пороками сердца составляет от 15 до 20. Чтобы оценить размер выборки, мы рассматриваем больший стандарт отклонение, чтобы получить наиболее консервативный (самый большой) размер выборки. Чтобы гарантировать, что 95% -ный доверительный интервал оценки среднего систолического артериального давления у детей в возрасте от 3 до 5 лет с врожденным пороком сердца находится в пределах 5 единиц от истинного среднего значения, необходима выборка размером 62.[ Примечание : Мы всегда округляем в большую сторону; формулы размера выборки всегда генерируют минимальное количество субъектов, необходимое для обеспечения указанной точности.] Если бы мы приняли стандартное отклонение, равное 15, размер выборки был бы n = 35. Поскольку оценки стандартного отклонения были получены из исследований детей с другими пороками сердца, было бы целесообразно использовать большее стандартное отклонение и запланировать исследование с 62 детьми. Выбор меньшего размера выборки потенциально может дать оценку доверительного интервала с большей погрешностью. Исследователь хочет оценить средний вес при рождении доношенных детей (примерно 40 недель беременности) от матерей в возрасте 19 лет и младше. Средний вес новорожденных, рожденных доношенными от матерей в возрасте 20 лет и старше, составляет 3 510 граммов со стандартным отклонением 385 граммов. Сколько женщин в возрасте 19 лет и младше должны быть включены в исследование, чтобы гарантировать, что оценка среднего веса при рождении их младенцев с доверительным интервалом 95% имеет предел погрешности, не превышающий 100 граммов? Прежде чем смотреть на ответ, попробуйте выполнить расчет. Ответ В исследованиях, в которых план состоит в оценке доли успехов по дихотомической переменной результата (да / нет) в одной популяции, формула для определения размера выборки: , где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), а E — желаемый предел погрешности. p — доля успехов в популяции.Здесь мы планируем исследование, чтобы получить 95% доверительный интервал для неизвестной доли населения, p . Уравнение для определения размера выборки для определения p, кажется, требует знания p, но, очевидно, это круговой аргумент, потому что, если бы мы знали долю успехов в популяции, то в исследовании не было бы необходимости! Что нам действительно нужно, так это приблизительное значение p или ожидаемое значение. Диапазон p составляет от 0 до 1, и, следовательно, диапазон p (1-p) составляет от 0 до 1.Значение p, которое максимизирует p (1-p), равно p = 0,5. Следовательно, если нет информации для приближения p, то p = 0,5 можно использовать для получения наиболее консервативного или наибольшего размера выборки. Пример 2: Исследователь хочет оценить долю первокурсников в его университете, которые в настоящее время курят сигареты (т. Е. Распространенность курения). Сколько первокурсников должно быть вовлечено в исследование, чтобы гарантировать, что оценка доли курящих первокурсников с доверительным интервалом 95% находится в пределах 5% от истинной доли? Поскольку у нас нет информации о доле курящих первокурсников, мы используем 0.5 для оценки размера выборки следующим образом: Чтобы гарантировать, что оценка 95% доверительного интервала доли курящих первокурсников находится в пределах 5% от истинной доли, необходима выборка размером 385. Предположим, что подобное исследование было проведено 2 года назад и обнаружило, что распространенность курения среди первокурсников составляет 27%. Если исследователь считает, что это разумная оценка распространенности через 2 года, ее можно использовать для планирования следующего исследования.Используя эту оценку p, какой размер выборки необходим (при условии, что снова будет использоваться 95% доверительный интервал и нам нужен такой же уровень точности)? Ответ Пример 3: Исследователь хочет оценить распространенность рака груди среди женщин в возрасте от 40 до 45 лет, живущих в Бостоне. Сколько женщин должно быть вовлечено в исследование, чтобы оценка была точной? Национальные данные показывают, что к 40 годам у 1 из 235 женщин диагностируется рак груди.Это соответствует доле 0,0043 (0,43%) или 43 на 10 000 женщин. Предположим, исследователь хочет, чтобы оценка была в пределах 10 на 10 000 женщин с достоверностью 95%. Размер выборки рассчитывается следующим образом: Выборка размером n = 16 448 гарантирует, что оценка распространенности рака груди с доверительным интервалом 95% находится в пределах 0,10 (или в пределах 10 женщин на 10 000) от его истинного значения. Это ситуация, когда исследователи могут решить, что выборка такого размера невозможна.Предположим, что исследователи думали, что выборка размером 5000 будет разумной с практической точки зрения. Насколько точно мы можем оценить распространенность на выборке размером n = 5000? Напомним, что формула доверительного интервала для оценки распространенности: . Предполагая, что распространенность рака груди в выборке будет близка к той, которая основана на национальных данных, мы ожидаем, что предел погрешности будет примерно равен следующему: Таким образом, при n = 5000 женщин можно ожидать, что 95% доверительный интервал будет иметь погрешность, равную 0.0018 (или 18 на 10 000). Исследователи должны решить, будет ли это достаточно точным, чтобы ответить на исследовательский вопрос. Обратите внимание, что вышеизложенное основано на предположении, что распространенность рака груди в Бостоне аналогична общенациональной. Это может быть, а может и не быть разумным предположением. Фактически, цель настоящего исследования — оценить распространенность в Бостоне. Исследовательская группа при участии клинических исследователей и биостатистов должна тщательно оценить последствия выбора выборки размером n = 5000, n = 16 448 или любого промежуточного размера. В исследованиях, в которых планируется оценить разницу средних значений между двумя независимыми популяциями, формула для определения размеров выборки, требуемой в каждой группе сравнения, приведена ниже: , где n i — это размер выборки, необходимый в каждой группе (i = 1,2), Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться, а E — желаемый предел погрешности. σ снова отражает стандартное отклонение переменной результата.Вспомните из модуля по доверительным интервалам, что, когда мы генерировали оценку доверительного интервала для разницы в средних, мы использовали Sp, объединенную оценку общего стандартного отклонения, как меру изменчивости в результате (на основе объединения данных). , где Sp вычисляется следующим образом: Если доступны данные о вариабельности результата в каждой группе сравнения, то Sp можно вычислить и использовать в формуле размера выборки. Однако чаще всего данные о вариабельности исходов доступны только по одной группе, часто не получавшей лечения (например,g., плацебо-контроль) или группу, не подвергавшуюся воздействию. При планировании клинического испытания нового препарата или процедуры часто доступны данные из других испытаний, в которых принимали участие плацебо или активная контрольная группа (т. Е. Стандартное лекарство или лечение, назначенное для исследуемого состояния). Стандартное отклонение переменной результата, измеренной у пациентов, отнесенных к группе плацебо, контрольной или неэкспонированной группе, можно использовать для планирования будущего исследования, как показано ниже. Обратите внимание, что формула размера выборки генерирует оценки размера выборки для выборок равного размера.Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы. Пример 4: Исследователь хочет запланировать клиническое испытание для оценки эффективности нового препарата, предназначенного для повышения холестерина ЛПВП («хорошего» холестерина). План состоит в том, чтобы зарегистрировать участников и случайным образом распределить их для приема нового препарата или плацебо. Холестерин ЛПВП будет измеряться у каждого участника через 12 недель назначенного лечения.Основываясь на предыдущем опыте проведения подобных исследований, исследователь ожидает, что 10% всех участников будут потеряны для последующего наблюдения или выбывают из исследования в течение 12 недель. Будет рассчитан 95% доверительный интервал для количественной оценки разницы в средних уровнях ЛПВП между пациентами, принимающими новый препарат, по сравнению с плацебо. Исследователь хотел бы, чтобы погрешность была не более 3 единиц. Сколько пациентов следует включить в исследование? Размеры выборки рассчитываются следующим образом: Основной проблемой является определение вариабельности интересующего результата (σ), в данном случае стандартного отклонения холестерина ЛПВП.Чтобы спланировать это исследование, мы можем использовать данные Фрамингемского исследования сердца. У участников, которые присутствовали на седьмом обследовании исследования потомства и не лечились от высокого холестерина, стандартное отклонение холестерина ЛПВП составляет 17,1. Мы будем использовать это значение и другие входные данные для вычисления размеров выборки следующим образом: Образцы размера n 1 = 250 и n 2 = 250 гарантируют, что 95% доверительный интервал для разницы средних уровней ЛПВП будет иметь погрешность не более 3 единиц.Опять же, эти размеры выборки относятся к количеству участников с полными данными. Исследователи предположили, что процент отсева (или отсева) составляет 10% (в обеих группах). Чтобы гарантировать, что общий размер выборки 500 доступен через 12 недель, исследователь должен набрать больше участников, чтобы учесть их выбывание. N (число для включения) * (% оставшихся) = желаемый размер выборки Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся) N = 500/0.90 = 556 Если они ожидают 10% отсева, исследователи должны зарегистрировать 556 участников. Это обеспечит N = 500 с полными данными в конце испытания. Пример 5: Исследователь хочет сравнить две диеты у детей, страдающих ожирением. Одна диета — это диета с низким содержанием жиров, а другая — с низким содержанием углеводов. План состоит в том, чтобы набрать детей и взвесить их в начале исследования. Затем каждому ребенку будет случайным образом назначена диета с низким содержанием жиров или углеводов.Каждый ребенок будет соблюдать назначенную диету в течение 8 недель, после чего они снова будут взвешиваться. Количество потерянных фунтов будет подсчитано для каждого ребенка. Основываясь на данных, полученных в результате испытаний диеты у взрослых, исследователь ожидает, что 20% всех детей не завершат исследование. Для количественной оценки разницы в потерянном весе между двумя диетами будет рассчитан 95% доверительный интервал, и исследователь хотел бы, чтобы погрешность составляла не более 3 фунтов. Сколько детей следует включить в исследование? Размеры выборки рассчитываются следующим образом: Опять же, проблема заключается в определении изменчивости интересующего результата (σ), здесь стандартное отклонение в фунтах, потерянных за 8 недель.Чтобы спланировать это исследование, исследователи используют данные опубликованного исследования взрослых. Предположим, что в одном из таких исследований сравнивали одни и те же диеты у взрослых и участвовали по 100 участников в каждой диетической группе. В исследовании сообщалось о стандартном отклонении веса, потерянном за 8 недель на диете с низким содержанием жиров на 8,4 фунта, и о стандартном отклонении веса, потерянном за 8 недель на диете с низким содержанием углеводов, в размере 7,7 фунтов. Эти данные можно использовать для оценки общего стандартного отклонения потери веса следующим образом: Теперь мы используем это значение и другие входные данные для вычисления размеров выборки: Образцы размера n 1 = 56 и n 2 = 56 гарантируют, что 95% доверительный интервал для разницы в потерянном весе между диетами будет иметь погрешность не более 3 фунтов.Опять же, эти размеры выборки относятся к количеству детей с полными данными. Исследователи ожидают 20% отсева. Чтобы гарантировать, что общий размер выборки 112 будет доступен через 8 недель, исследователь должен набрать больше участников, чтобы учесть их выбытие. N (число для включения) * (% оставшихся) = желаемый размер выборки Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся) N = 112 / 0,80 = 140 В исследованиях, в которых планируется оценить среднюю разницу непрерывного результата на основе сопоставленных данных, ниже приводится формула для определения размера выборки: , где Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например,g., Z = 1,96 для 95%), E — желаемый предел погрешности, а σ d — стандартное отклонение баллов разницы. Чрезвычайно важно, чтобы стандартное отклонение разницы баллов (например, разница, основанная на измерениях с течением времени или разница между согласованными парами) использовалось здесь для надлежащей оценки размера выборки. В исследованиях, в которых планируется оценить разницу в пропорциях между двумя независимыми популяциями (т.д., для оценки разницы рисков) формула для определения размеров выборки, требуемой в каждой группе сравнения: , где n i — размер выборки, необходимый в каждой группе (i = 1,2), Z — значение из стандартного нормального распределения, отражающее уровень достоверности, который будет использоваться (например, Z = 1,96 для 95%), и E — желаемая погрешность. p 1 и p 2 — это доли успехов в каждой группе сравнения. Опять же, здесь мы планируем исследование для получения 95% доверительного интервала для разницы в неизвестных пропорциях, а формула для оценки необходимых размеров выборки требует p 1 и p 2 .Чтобы оценить размер выборки, нам нужны приблизительные значения p 1 и p 2 . Значения p 1 и p 2 , которые максимизируют размер выборки, равны p 1 = p 2 = 0,5. Таким образом, если нет доступной информации для приближения p 1 и p 2 , то можно использовать 0,5 для создания наиболее консервативных или наибольших размеров выборки. Подобно ситуации для двух независимых выборок и непрерывного результата в верхней части этой страницы, может быть случай, когда доступны данные о доле успешных результатов в одной группе, обычно необработанной (например.g., плацебо-контроль) или группу, не подвергавшуюся воздействию. В таком случае известная пропорция может использоваться как для p 1 , так и для p 2 в приведенной выше формуле. Приведенная выше формула генерирует оценки размера выборки для выборок равного размера. Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы. Заинтересованные читатели могут увидеть Флейсс для более подробной информации. 4 Пример 6: Исследователь хочет оценить влияние курения во время беременности на преждевременные роды.Нормальная беременность длится примерно 40 недель, а преждевременные роды — это те, которые происходят до 37 недель. В отчете Национальной статистики естественного движения населения за 2005 год указывается, что примерно 12% младенцев рождаются преждевременно в Соединенных Штатах. 5 Исследователь планирует собрать данные посредством обзора медицинских карт и создать 95% доверительный интервал для разницы в долях детей, рожденных недоношенными женщинами, которые курили во время беременности, по сравнению с теми, кто этого не сделал. Сколько женщин должно быть включено в исследование, чтобы гарантировать, что 95% доверительный интервал для разницы в пропорциях имеет погрешность не более 4%? Размеры выборки (т.е., количество женщин, которые курили и не курили во время беременности), можно вычислить по формуле, показанной выше. Национальные данные показывают, что 12% младенцев рождаются преждевременно. Мы будем использовать эту оценку для обеих групп при вычислении размера выборки. Образцы размера n 1 = 508 женщин, которые курили во время беременности, и n 2 = 508 женщин, которые не курили во время беременности, гарантируют, что 95% -ный доверительный интервал для разницы в пропорциях преждевременных родов будет иметь запас погрешность не более 4%. Здесь проблема истощения? Ответ В модуле проверки гипотез для средних и пропорций мы ввели методы для средних, пропорций, различий в средних и различий в пропорциях. Хотя каждый тест включал детали, которые были специфичны для интересующего результата (например, непрерывный или дихотомический) и для количества групп сравнения (одна, две, более двух), для каждого теста были общие элементы.Например, в каждой проверке гипотезы можно совершить две ошибки. Первая называется ошибкой типа I и относится к ситуации, когда мы неправильно отклоняем H 0 , хотя на самом деле это правда. На первом этапе любой проверки гипотезы мы выбираем уровень значимости, α, и α = P (ошибка типа I) = P (отклонить H 0 | H 0 верно). Поскольку мы намеренно выбираем небольшое значение для α, мы контролируем вероятность совершения ошибки типа I. Второй тип ошибок называется ошибкой типа II, и он определяется как вероятность того, что мы не отклоним H 0 , когда оно ложно.Вероятность ошибки типа II обозначается β, а β = P (ошибка типа II) = P (Не отклонять H 0 | H 0 ложно). При проверке гипотез мы обычно сосредотачиваемся на мощности, которая определяется как вероятность того, что мы отклоняем H 0 , когда оно ложно, то есть мощность = 1- β = P (Отклонить H 0 | H 0 ложно ). Мощность — это вероятность того, что тест правильно отклонит ложную нулевую гипотезу. Хороший тест — это тест с низкой вероятностью совершения ошибки типа I (т.е., малое α) и высокое увеличение (то есть малое β, высокое увеличение). Здесь мы представляем формулы для определения размера выборки, необходимого для обеспечения высокой мощности теста. Вычисления размера выборки зависят от уровня значимости, aα, желаемой мощности теста (эквивалентно 1-β), изменчивости результата и величины эффекта. Величина эффекта — это разница в интересующем параметре, которая представляет собой клинически значимое различие. Подобно пределу погрешности в приложениях с доверительным интервалом, величина эффекта определяется на основе клинических или практических критериев, а не статистических критериев. Понятие статистической мощности может быть трудным для понимания. Прежде чем представить формулы для определения размеров выборки, необходимых для обеспечения высокой мощности в тесте, мы сначала обсудим мощность с концептуальной точки зрения. Предположим, мы хотим проверить следующие гипотезы при aα = 0,05: H 0 : μ = 90 по сравнению с H 1 : μ ≠ 90. Чтобы проверить гипотезы, предположим, что мы выбрали выборку размером n = 100. В этом примере предположим, что стандартное отклонение результата составляет σ = 20.Мы вычисляем выборочное среднее, а затем должны решить, предоставляет ли выборочное среднее доказательства в поддержку альтернативной гипотезы или нет. Это делается путем вычисления статистики теста и сравнения статистики теста с соответствующим критическим значением. Если нулевая гипотеза верна (μ = 90), то мы, вероятно, выберем образец, среднее значение которого близко к значению 90. Однако также можно выбрать образец, среднее значение которого намного больше или намного меньше 90. Напомним из Центральной предельной теоремы (см. Стр. 11 в модуле Вероятность), что для больших n (здесь n = 100 достаточно велико) распределение выборочных средних приблизительно нормально со средним значением .и Если нулевая гипотеза верна, можно наблюдать любое среднее значение выборки, показанное на рисунке ниже; все возможно под H 0 : μ = 90. Когда мы устанавливаем правило принятия решения для нашей проверки гипотезы, мы определяем критические значения на основе α = 0,05 и двустороннего теста. Когда мы запускаем проверку гипотез, мы обычно стандартизируем данные (например, конвертируем в Z или t), а критические значения — это соответствующие значения из распределения вероятностей, используемого в тесте. Чтобы облегчить интерпретацию, мы продолжим это обсуждение вместо Z. Критические значения для двустороннего теста с α = 0,05 равны 86.06 и 93,92 (эти значения соответствуют -1,96 и 1,96 соответственно по шкале Z), поэтому правило принятия решения следующее: Отклонить H 0 , если < 86,06 или если > 93,92. Область отклонения показана в хвостах рисунка ниже. Область отклонения для теста H 0 : μ = 90 по сравнению с H 1 : μ ≠ 90 при α = 0,05 . Области в двух хвостах кривой представляют вероятность ошибки типа I, α = 0.05. Эта концепция обсуждалась в модуле по проверке гипотез. Теперь предположим, что альтернативная гипотеза H 1 верна (т. Е. Μ ≠ 90) и что истинное среднее на самом деле составляет 94. На рисунке ниже показаны распределения выборочного среднего при нулевой и альтернативной гипотезах. значения выборочного среднего показаны по горизонтальной оси. Распределение ниже H 0 : μ = 90 и ниже H 1 : μ = 94 Если истинное среднее значение равно 94, то альтернативная гипотеза верна.В нашем тесте мы выбрали α = 0,05 и отклонили H 0 , если наблюдаемое среднее значение выборки превышает 93,92 (на данный момент фокусируясь на верхнем хвосте области отклонения). Критическое значение (93,92) указано вертикальной линией. Вероятность ошибки типа II обозначается β, а β = P (Не отклонять H 0 | H 0 является ложным), то есть вероятность не отклонить нулевую гипотезу, если нулевая гипотеза верна. β показано на рисунке выше как область под крайней правой кривой (H 1 ) слева от вертикальной линии (где мы не отклоняем H 0 ).Мощность определяется как 1- β = P (отклонение H 0 | H 0 неверно) и показано на рисунке как площадь под крайней правой кривой (H 1 ) справа от вертикальной линии ( где мы отклоняем H 0 ). Обратите внимание, что β и мощность связаны с α, изменчивостью результата и величиной эффекта. Из рисунка выше мы можем видеть, что произойдет с β и мощностью, если мы увеличим α. Предположим, например, что мы увеличиваем α до α = 0,10. Верхнее критическое значение будет 92.56 вместо 93,92. Вертикальная линия сместится влево, увеличивая α, уменьшая β и увеличивая мощность. Хотя лучший тест — это тест с более высокой мощностью, не рекомендуется увеличивать α как средство увеличения мощности. Тем не менее, существует прямая зависимость между α и мощностью (с увеличением α увеличивается и мощность). β и мощность также связаны с изменчивостью результата и величиной эффекта. Величина эффекта — это разница в интересующем параметре (например, μ), которая представляет собой клинически значимое различие.На приведенном выше рисунке графически отображаются α, β и степень, когда разница в среднем под нулевым значением по сравнению с альтернативной гипотезой составляет 4 единицы (то есть 90 против 94). На рисунке ниже показаны те же компоненты для ситуации, когда среднее значение согласно альтернативной гипотезе равно 98. Рисунок — Распределение под H 0 : μ = 90 и под H 1 : μ = 98. Обратите внимание на то, что мощность намного выше, когда разница между средним значением H 0 больше по сравнению с H 1 (т.е.э., 90 против 98). Статистический тест с большей вероятностью отклонит нулевую гипотезу в пользу альтернативы, если истинное среднее значение равно 98, чем если истинное среднее значение равно 94. Также обратите внимание на то, что в этом случае существует небольшое перекрытие в распределениях при нулевой и альтернативной гипотезах. . Если наблюдается выборочное среднее значение 97 или выше, очень маловероятно, что оно получено из распределения, среднее значение которого равно 90. На предыдущем рисунке для H 0 : μ = 90 и H 1 : μ = 94, если мы Наблюдая, например, выборочное среднее значение 93, было бы не так ясно, было ли оно получено из распределения, среднее значение которого равно 90, или того, которое имеет среднее значение 94. При разработке исследований большинство людей рассматривают степень вероятности 80% или 90% (так же, как мы обычно используем 95% в качестве уровня достоверности для оценок доверительного интервала). Входные данные для формул размера выборки включают желаемую мощность, уровень значимости и размер эффекта. Величина эффекта выбрана так, чтобы представить клинически значимой или практически важной разницы в интересующем параметре, как мы проиллюстрируем. Формулы, которые мы представляем ниже, определяют минимальный размер выборки, чтобы гарантировать, что проверка гипотезы будет иметь указанную вероятность отклонения нулевой гипотезы, если она ложна (т.е., указанная мощность). Планируя исследования, исследователи снова должны учитывать выбывание или потерю для последующего наблюдения. Формулы, показанные ниже, определяют необходимое количество участников с полными данными, и мы проиллюстрируем, как отсев участников решается при планировании исследований. В исследованиях, в которых планируется провести проверку гипотезы, сравнивая среднее значение переменной непрерывного результата в одной популяции с известным средним значением, представляют интерес гипотезы: H 0 : μ = μ 0 и H 1 : μ ≠ μ 0 где μ 0 — известное среднее значение (например,г., исторический контроль). Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже: , где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него. Например, если α = 0,05, то 1- α / 2 = 0,975 и Z = 1,960. 1- β — это выбранная мощность, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β ниже него. Оценка размера выборки для проверки гипотез часто основана на достижении 80% или 90% мощности.Значения Z 1-β для этих популярных сценариев приведены ниже:
ES — это размер эффекта , определяемый следующим образом: , где μ 0 — среднее значение для H 0 , μ 1 — среднее значение для H 1 , а σ — стандартное отклонение интересующего результата.Числитель величины эффекта, абсолютное значение разницы средних | μ 1 — μ 0 |, представляет собой то, что считается клинически значимым или практически важным различием в средствах. Подобно проблеме, с которой мы столкнулись при планировании исследований для оценки доверительных интервалов, иногда бывает трудно оценить стандартное отклонение. При вычислении размера выборки исследователи часто используют значение стандартного отклонения от предыдущего исследования или исследования, выполненного в другой, но сопоставимой совокупности.Независимо от того, как получается оценка изменчивости результата, она всегда должна быть консервативной (т.е. настолько большой, насколько это разумно), чтобы размер результирующей выборки не был слишком маленьким. Пример 7: Исследователь предполагает, что у людей, не страдающих диабетом, уровень глюкозы в крови натощак, фактор риска ишемической болезни сердца, выше у тех, кто пьет не менее 2 чашек кофе в день. Планируется перекрестное исследование для оценки среднего уровня глюкозы в крови натощак у людей, которые пьют не менее двух чашек кофе в день.Средний уровень глюкозы в крови натощак у людей, не страдающих диабетом, составляет 95,0 мг / дл со стандартным отклонением 9,8 мг / дл. 7 Если средний уровень глюкозы в крови у людей, выпивающих не менее 2 чашек кофе в день, составляет 100 мг / дл, это будет иметь клиническое значение. Сколько пациентов должно быть включено в исследование, чтобы убедиться, что мощность теста составляет 80% для выявления этой разницы? Будет использоваться двусторонний тест с уровнем значимости 5%. Размер эффекта рассчитывается как: . Размер эффекта представляет собой значимую разницу в среднем по генеральной совокупности — здесь 95 против 100 или 0,51 единицы стандартного отклонения. Теперь мы заменим размер эффекта и соответствующие значения Z на выбранные α и мощность, чтобы вычислить размер выборки. Таким образом, выборка размером n = 31 гарантирует, что двусторонний тест с α = 0,05 будет иметь 80% -ную мощность для обнаружения разницы в 5 мг / дл в средних уровнях глюкозы в крови натощак. В запланированном исследовании участников попросят голодать в течение ночи и сдать образец крови для анализа уровня глюкозы.Основываясь на предыдущем опыте, исследователи предполагают, что 10% участников не будут голодать или откажутся соблюдать протокол исследования. Таким образом, в исследование будут включены в общей сложности 35 участников, чтобы обеспечить доступность 31 для анализа (см. Ниже). N (число для включения) * (%, соблюдающие протокол) = желаемый размер выборки Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся) N = 31 / 0,90 = 35. В исследованиях, в которых планируется провести проверку гипотезы, сравнивая долю успехов в переменной дихотомического результата в одной популяции с известной долей, представляют интерес гипотезы: против , где p 0 — известная пропорция (например,г., исторический контроль). Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже: , где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него. 1- β — выбранная мощность, а Z 1-β — значение из стандартного нормального распределения, при котором 1- β ниже, а ES — величина эффекта, определяемая следующим образом: , где p 0 — пропорция согласно H 0 , а p 1 — пропорция согласно H 1 .Числитель величины эффекта, абсолютное значение разницы в пропорциях | p 1 -p 0 |, снова представляет то, что считается клинически значимым или практически важным различием в пропорциях.
Пример 8: Недавний отчет Фрамингемского исследования сердца показал, что 26% людей, не страдающих сердечно-сосудистыми заболеваниями, имели повышенный уровень холестерина ЛПНП, определяемый как ЛПНП> 159 мг / дл. 9 Исследователь предполагает, что более высокая доля пациентов с сердечно-сосудистыми заболеваниями в анамнезе будет иметь повышенный холестерин ЛПНП.Сколько пациентов следует обследовать, чтобы убедиться, что мощность теста составляет 90%, чтобы обнаружить разницу в 5% в пропорции с повышенным холестерином ЛПНП? Будет использоваться двусторонний тест с уровнем значимости 5%. Сначала вычисляем размер эффекта: Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки. Выборка размера n = 869 обеспечит двусторонний тест с α = 0.05 имеет 90% -ную мощность для обнаружения 5% -ной разницы в доле пациентов с сердечно-сосудистыми заболеваниями в анамнезе, у которых повышен уровень холестерина ЛПНП. Производитель медицинского оборудования производит имплантируемые стенты. В процессе производства приблизительно 10% стентов считаются дефектными. Производитель хочет проверить, не превышает ли доля дефектных стентов 10%. Если в результате процесса образуется более 15% дефектных стентов, необходимо предпринять корректирующие действия.Поэтому производитель хочет, чтобы тест имел мощность 90%, чтобы обнаружить разницу в пропорциях такой величины. Сколько стентов необходимо оценить? Для расчетов используйте двусторонний тест с уровнем значимости 5%. (Проведите вычисления самостоятельно, прежде чем смотреть ответ.) Ответ В исследованиях, в которых планируется провести проверку гипотезы, сравнивая средние значения непрерывной переменной результата в двух независимых популяциях, представляют интерес гипотезы: против , где μ 1 и μ 2 — средние значения в двух сравниваемых популяциях.Формула для определения размеров выборки, чтобы гарантировать, что тест имеет заданную мощность: , где n i — размер выборки, необходимый в каждой группе (i = 1,2), α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, содержащего 1- α / 2 под ним, а 1- β — выбранная степень, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β под ним. ES — размер эффекта, определяемый как: где | μ 1 — μ 2 | — абсолютное значение разницы средних значений между двумя группами, ожидаемая согласно альтернативной гипотезе, H 1 .σ — стандартное отклонение интересующего результата. Напомним из модуля по проверке гипотез, когда мы выполняли тесты гипотез, сравнивая средние значения двух независимых групп, мы использовали Sp, объединенную оценку общего стандартного отклонения, как меру изменчивости результата. Sp рассчитывается следующим образом: Если доступны данные о вариабельности результата в каждой группе сравнения, то Sp можно вычислить и использовать для генерации размеров выборки.Однако чаще всего данные о вариабельности исходов доступны только по одной группе, обычно необработанной (например, плацебо-контроль) или группе, не подвергавшейся воздействию. При планировании клинического испытания нового препарата или процедуры часто доступны данные из других испытаний, которые могли включать плацебо или активную контрольную группу (т. Е. Стандартное лекарство или лечение, назначенное для исследуемого состояния). Стандартное отклонение переменной результата, измеренное у пациентов, отнесенных к группе плацебо, контрольной или неэкспонированной группе, можно использовать для планирования будущего исследования, как показано. Также обратите внимание, что приведенная выше формула генерирует оценки размера выборки для выборок равного размера. Если планируется исследование, в котором будет назначено разное количество пациентов или разное количество пациентов будет составлять группы сравнения, тогда можно использовать альтернативные формулы (более подробную информацию см. В Howell 3 ). Пример 9: Исследователь планирует клиническое испытание для оценки эффективности нового препарата, предназначенного для снижения систолического артериального давления.План состоит в том, чтобы зарегистрировать участников и случайным образом распределить их для приема нового препарата или плацебо. Систолическое артериальное давление будет измеряться у каждого участника через 12 недель назначенного лечения. Основываясь на предыдущем опыте проведения аналогичных испытаний, исследователь ожидает, что 10% всех участников будут потеряны для последующего наблюдения или выбыли из исследования. Если новый препарат показывает снижение среднего систолического артериального давления на 5 единиц, это будет представлять собой клинически значимое снижение. Сколько пациентов следует включить в исследование, чтобы убедиться, что мощность теста составляет 80% для выявления этой разницы? Будет использоваться двусторонний тест с уровнем значимости 5%. Чтобы вычислить величину эффекта, необходима оценка вариабельности систолического артериального давления. Анализ данных Framingham Heart Study показал, что стандартное отклонение систолического артериального давления составило 19,0. Это значение можно использовать для планирования испытания. Размер эффекта: Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки. Образцы размером n 1 = 232 и n 2 = 232 гарантируют, что проверка гипотезы будет иметь мощность 80% для обнаружения разницы в 5 единиц среднего систолического артериального давления у пациентов, принимающих новый препарат, по сравнению с пациентами. получение плацебо.Однако исследователи выдвинули гипотезу о 10% отсеве (в обеих группах) и, чтобы обеспечить общий размер выборки 232, они должны учитывать отсев. N (число для включения) * (% оставшихся) = желаемый размер выборки Следовательно, N (число для включения) = желаемый размер выборки / (% оставшихся) N = 232 / 0,90 = 258. Исследователь должен зарегистрировать 258 участников, которые будут случайным образом распределены для приема нового препарата или плацебо. Исследователь планирует исследование для оценки связи между потреблением алкоголя и средним баллом среди выпускников колледжа.План состоит в том, чтобы классифицировать студентов как сильно пьющих или не употребляющих 5 или более напитков в обычный день выпивки в качестве критерия алкоголя. Средние средние баллы будут сравниваться между учащимися, отнесенными к категории сильно пьющих, по сравнению с не использующими две независимые выборки проверки средних значений. Предполагается, что стандартное отклонение средних баллов составляет 0,42, а значимая разница в средних баллах (относительно статуса потребления алкоголя) составляет 0,25 единицы. Сколько выпускников колледжа должны быть включены в исследование, чтобы убедиться, что мощность теста составляет 80% для определения 0.25 единиц разницы в среднем среднем балле? Используйте двусторонний тест с уровнем значимости 5%. Ответ В исследованиях, в которых планируется провести проверку гипотезы о средней разнице в непрерывной переменной результата на основе сопоставленных данных, представляют интерес гипотезы: против , где μ d — средняя разница в генеральной совокупности. Формула для определения размера выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже: , где α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, удерживающего 1- α / 2 ниже него, 1- β — выбранная степень, а Z 1-β — значение из стандартного нормального распределения, удерживающее 1- β ниже него, а ES — величина эффекта, определяемая следующим образом: , где μ d — средняя разница, ожидаемая согласно альтернативной гипотезе, H 1 , а σ d — стандартное отклонение разницы в результате (например,g., разница основана на измерениях с течением времени или разница между согласованными парами). Пример 10: Исследователь хочет оценить эффективность лечения иглоукалыванием для уменьшения боли у пациентов с хронической мигренью. Планируется набор пациентов, страдающих мигренью. Каждого перед тем, как назначить какое-либо лечение, попросят оценить серьезность боли, которую он испытывает при следующей мигрени.Боль будет регистрироваться по шкале от 1 до 100, причем более высокие баллы указывают на более сильную боль. Затем каждый пациент будет проходить курс лечения иглоукалыванием. При следующей мигрени (после лечения) каждого пациента снова попросят оценить тяжесть боли. Разница в боли будет рассчитана для каждого пациента. Будет проведена двусторонняя проверка гипотезы при α = 0,05, чтобы оценить, существует ли статистически значимая разница в оценке боли до и после лечения. Сколько пациентов должно быть вовлечено в исследование, чтобы убедиться, что тест имеет мощность 80% для определения разницы в 10 единиц по шкале боли? Предположим, что стандартное отклонение разницы оценок составляет примерно 20 единиц. Сначала вычислите размер эффекта: Затем подставьте размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки. Выборка размером n = 32 пациента с мигренью гарантирует, что двусторонний тест с α = 0,05 будет иметь 80% мощность для определения средней разницы в 10 баллов боли до и после лечения, при условии, что все 32 пациента завершили лечение. . В исследованиях, в которых планируется провести проверку гипотезы, сравнивая пропорции успехов в двух независимых популяциях, представляют интерес гипотезы: H 0 : p 1 = p 2 по сравнению с H 1 : p 1 ≠ p 2 , где p 1 и p 2 — пропорции в двух сравниваемых популяциях.Формула для определения размеров выборки, чтобы гарантировать, что тест имеет заданную мощность, приведена ниже: , где n i — размер выборки, необходимый в каждой группе (i = 1,2), α — выбранный уровень значимости, а Z 1-α / 2 — значение из стандартного нормального распределения, содержащего 1- α / 2 под ним, а 1- β — выбранная степень, а Z 1-β — значение из стандартного нормального распределения, удерживающего 1- β под ним. ES — величина эффекта, определяемая следующим образом: , где | p 1 — p 2 | — абсолютное значение разницы в пропорциях между двумя группами, ожидаемыми согласно альтернативной гипотезе, H 1 , а p — общая пропорция, основанная на объединении данных из двух групп сравнения (p можно вычислить, взяв среднее значение пропорций в двух группах сравнения, предполагая, что группы будут примерно одинакового размера). Пример 11: Исследователь выдвинул гипотезу о более высокой заболеваемости гриппом среди студентов, регулярно пользующихся спортивными сооружениями, чем среди их сверстников, которые этого не делают. Исследование будет проведено весной. Каждого ученика спросят, пользовались ли они спортивным сооружением регулярно в течение последних 6 месяцев и не болели ли они гриппом. Будет проведена проверка гипотезы для сравнения доли студентов, которые регулярно использовали спортивные сооружения и заболели гриппом, с долей студентов, которые этого не сделали и заболели гриппом.В течение обычного года примерно 35% студентов болеют гриппом. Исследователи считают, что увеличение заболеваемости гриппом на 30% среди тех, кто регулярно пользовался спортивным сооружением, было бы клинически значимым. Сколько студентов следует включить в исследование, чтобы убедиться, что мощность теста составляет 80%, чтобы выявить эту разницу в пропорциях? Будет использоваться двусторонний тест с уровнем значимости 5%. Сначала мы вычисляем размер эффекта, подставляя доли учащихся в каждой группе, у которых ожидается развитие гриппа, p 1 = 0.46 (т.е. 0,35 * 1,30 = 0,46) и p 2 = 0,35, а общая пропорция, p = 0,41 (т.е. (0,46 + 0,35) / 2): Теперь мы подставляем размер эффекта и соответствующие значения Z для выбранного α и мощности, чтобы вычислить размер выборки. Выборки размера n 1 = 324 и n 2 = 324 гарантируют, что проверка гипотезы будет иметь 80% -ную мощность для выявления 30% -ной разницы в пропорциях учащихся, заболевших гриппом, между теми, кто болеет, и не заболевает. регулярно пользоваться спортивными сооружениями. Донорские фекалии? Действительно? Clostridium difficile (также называемая «C. difficile» или «C. diff.») Представляет собой бактериальный вид, который можно найти в толстой кишке человека, хотя его численность контролируется другой нормальной флорой толстой кишки. Антибиотикотерапия иногда снижает нормальную флору в толстой кишке до такой степени, что процветает C. difficile и вызывается инфекция с симптомами, варьирующимися от диареи до опасного для жизни воспаления толстой кишки. Болезнь от C.difficile чаще всего поражает пожилых людей в больницах или учреждениях длительного ухода и обычно возникает после приема антибиотиков. В последние годы инфекции, вызванные C. difficile, стали более частыми, тяжелыми и трудно поддающимися лечению. По иронии судьбы, C. difficile сначала лечится путем прекращения приема антибиотиков, если они все еще назначаются. Если это не помогло, инфекцию вылечили путем перехода на другой антибиотик. Однако лечение другим антибиотиком часто не излечивает C.difficile. Были спорадические сообщения об успешном лечении путем вливания фекалий здоровых доноров в двенадцатиперстную кишку пациентов, страдающих C. difficile. (Юк!) Это восстанавливает нормальную микробиоту в толстой кишке и противодействует чрезмерному росту C. diff. Эффективность этого подхода была проверена в рандомизированном клиническом исследовании, опубликованном в Медицинском журнале Новой Англии (январь 2013 г.). Исследователи планировали случайным образом распределить пациентов с рецидивирующей инфекцией C. difficile либо на антибактериальную терапию, либо на дуоденальную инфузию донорских фекалий.Чтобы оценить необходимый размер образца, исследователи предположили, что инфузия кала будет успешной в 90% случаев, а антибактериальная терапия будет успешной в 60% случаев. Сколько субъектов потребуется в каждой группе, чтобы гарантировать, что мощность исследования составляет 80% с уровнем значимости α = 0,05? Ответ Определение подходящего дизайна исследования более важно, чем статистический анализ; плохо спланированное исследование никогда нельзя спасти, тогда как плохо проанализированное исследование можно повторно проанализировать.Важным компонентом дизайна исследования является определение подходящего размера выборки. Размер выборки должен быть достаточно большим, чтобы адекватно ответить на вопрос исследования, но не слишком большим, чтобы охватить слишком много пациентов, когда было бы достаточно меньшего. Определение подходящего размера выборки включает статистические критерии, а также клинические или практические соображения. Определение размера выборки требует совместной работы; биостатисты должны работать в тесном сотрудничестве с клиническими исследователями, чтобы определить размер выборки, которая будет решать интересующий вопрос исследования с достаточной точностью или мощностью для получения клинически значимых результатов. В следующей таблице приведены формулы размера выборки для каждого описанного здесь сценария. Формулы организованы по предлагаемому анализу, оценке доверительного интервала или проверке гипотез.
Ответ на вопрос о весе при рождении — стр. 3Исследователь хочет оценить средний вес при рождении доношенных детей (примерно 40 недель беременности) от матерей в возрасте 19 лет и младше. Средний вес новорожденных, рожденных доношенными от матерей в возрасте 20 лет и старше, составляет 3 510 граммов со стандартным отклонением 385 граммов.Сколько женщин в возрасте 19 лет и младше должны быть включены в исследование, чтобы гарантировать, что оценка среднего веса при рождении их младенцев с доверительным интервалом 95% имеет предел погрешности, не превышающий 100 граммов? Чтобы гарантировать, что оценка среднего веса при рождении с доверительным интервалом 95% находится в пределах 100 граммов от истинного среднего, необходима выборка размером 57. При планировании исследования исследователь должен учитывать тот факт, что у некоторых женщин могут возникать преждевременные роды.Если женщины будут включены в исследование во время беременности, то необходимо будет включить в исследование более 57 женщин, чтобы после исключения преждевременных родов 57 женщин с информацией о результатах были доступны для анализа. Например, если ожидается, что 5% женщин родят преждевременные роды (т.е. 95% родят доношенными), то необходимо включить 60 женщин, чтобы гарантировать, что 57 роды будут доношенными. Количество женщин, которые должны быть зачислены, N, рассчитывается следующим образом: N (число для включения) * (% оставшихся) = желаемый размер выборки N (0.95) = 57 N = 57 / 0,95 = 60, Ответ Курение первокурсников — стр. 4Предположим, что подобное исследование было проведено 2 года назад и обнаружило, что распространенность курения среди первокурсников составляет 27%. Если исследователь считает, что это разумная оценка распространенности через 2 года, ее можно использовать для планирования следующего исследования. Используя эту оценку p, какой размер выборки необходим (при условии, что снова будет использоваться 95% доверительный интервал и нам нужен такой же уровень точности)? Чтобы гарантировать, что оценка 95% доверительного интервала доли курящих первокурсников находится в пределах 5% от истинной доли, необходима выборка размером 303.Обратите внимание, что этот размер выборки существенно меньше, чем рассчитанный выше. Наличие некоторой информации о величине доли в генеральной совокупности всегда дает размер выборки, который меньше или равен тому, который основан на доле генеральной совокупности 0,5. Однако оценка должна быть реалистичной. Ответ на проблему с медицинским устройством — стр. 7Производитель медицинского оборудования производит имплантируемые стенты. В процессе производства приблизительно 10% стентов считаются дефектными.Производитель хочет проверить, не превышает ли доля дефектных стентов 10%. Если в результате процесса образуется более 15% дефектных стентов, необходимо предпринять корректирующие действия. Поэтому производитель хочет, чтобы тест имел мощность 90%, чтобы обнаружить разницу в пропорциях такой величины. Сколько стентов необходимо оценить? Для расчетов используйте двусторонний тест с уровнем значимости 5%. Затем подставьте размер эффекта и соответствующие значения z для выбранных альфа и мощности, чтобы вычислить размер выборки. Размер выборки из 364 стентов гарантирует, что двусторонний тест с α = 0,05 будет иметь мощность 90% для обнаружения 0,05 или 5% разницы в пропорции произведенных дефектных стентов. Ответ на алкоголь и средний балл — страница 8Исследователь планирует исследование для оценки связи между потреблением алкоголя и средним баллом среди выпускников колледжа. План состоит в том, чтобы классифицировать студентов как сильно пьющих или не употребляющих 5 или более напитков в обычный день выпивки в качестве критерия алкоголя.Средние средние баллы будут сравниваться между учащимися, отнесенными к категории сильно пьющих, по сравнению с не использующими две независимые выборки проверки средних значений. Предполагается, что стандартное отклонение средних баллов составляет 0,42, а значимая разница в средних баллах (относительно статуса потребления алкоголя) составляет 0,25 единицы. Сколько выпускников колледжа должны быть включены в исследование, чтобы убедиться, что мощность теста составляет 80%, чтобы выявить разницу в 0,25 единицы в средних средних баллах? Используйте двусторонний тест с уровнем значимости 5%. Сначала вычислите размер эффекта. Теперь замените размер эффекта и соответствующие значения z на альфа и мощность, чтобы вычислить размер выборки. Размер выборки n i = 44 сильно пьющих и 44, которые выпивают менее пяти напитков в течение обычного питьевого дня, гарантирует, что проверка гипотезы будет иметь 80% -ную мощность для обнаружения разницы в 0,25 единицы средних средних баллов. Ответ на донорские фекалии — страница 8Сначала мы вычисляем размер эффекта, подставляя доли пациентов, которые, как ожидается, будут излечены при каждом лечении, p 1 = 0.6 и p 2 = 0,9, а общая пропорция p = 0,75: Теперь мы заменяем размер эффекта и соответствующие значения Z на выбранные a и мощность, чтобы вычислить размер выборки. Образцы размера n 1 = 33 и n 2 = 33 гарантируют, что проверка гипотезы будет иметь 80% -ную мощность для обнаружения этой разницы в долях пациентов, излеченных от C. diff. инфузией кала по сравнению с терапией антибиотиками. Фактически, исследователи включили по 38 в каждую группу, чтобы учесть отсев. Тем не менее, после промежуточного анализа исследование было остановлено. Из 16 пациентов в группе инфузии у 13 (81%) отмечалось исчезновение диареи, связанной с C. difficile, после первой инфузии. Остальным 3 пациентам была проведена вторая инфузия с фекалиями от другого донора с разрешением у 2 пациентов. Излечение C. difficile произошло только у 4 из 13 пациентов (31%), получавших антибиотик ванкомицин. Документация к калькулятору простой нормированной стоимости энергии (LCOE)| Энергетический анализЭто простой калькулятор LCOE для получения метрики, позволяющей сравнивать комбинацию капитальных затрат, Затраты на эксплуатацию и техническое обслуживание, производительность и топливо. Обратите внимание, что это не включает вопросы финансирования, проблемы со скидками, будущие затраты на замену или деградацию и т. д.что потребуется быть включенным для более сложного анализа. Финансовые предположенияУстановите ползунки на подходящие значения для балансового срока в годах и ставки дисконтирования. В Ставка дисконтирования может быть номинальной или реальной. Используя периоды и ставку дисконтирования, рассчитываем коэффициент возврата капитала (CRF). Коэффициент возврата капитала — это отношение постоянной ренты к текущей стоимости. получения этой ренты в течение определенного периода времени.n] -1} , где n — количество полученных аннуитетов. Это связано с формулой аннуитета, что дает приведенную стоимость с точки зрения аннуитета, процентной ставки и количество аннуитетов. Если n = 1, CRF уменьшается до 1 + i. Когда n стремится к бесконечности, CRF переходит к i (Источник: 1). Стоимость и производительностьУстановите ползунки на подходящие значения для каждого значения стоимости и производительности. Простой расчет приведенной стоимости энергииПростая нормированная стоимость энергии рассчитывается по следующей формуле: sLCOE = {(овернайтные капитальные затраты * коэффициент возмещения капитала + фиксированные затраты на эксплуатацию и техническое обслуживание) / (8760 * коэффициент мощности)} + (стоимость топлива * тепловая мощность) + переменные затраты на ЭиТО. Если стоимость овернайта измеряется в долларах за установленный киловатт ($ / кВт), Коэффициент возврата капитала — это доля, рассчитанная, как описано выше.Фиксированная операция и затраты на техническое обслуживание (O&M) в долларах за киловатт-год ($ / кВт-год) и переменные O&M. затраты в долларах за киловатт-час ($ / кВтч). В знаменателе 8760 указано количество часов в году, а коэффициент мощности равен доля от 0 до 1, представляющая часть года, в которую электростанция генерирующая мощность. Стоимость топлива выражается в долларах за миллион британских тепловых единиц ($ / MMBtu) и тепловой поток измеряется в британских тепловых единицах на киловатт-час (БТЕ / кВтч).Стоимость топлива не является обязательным, так как некоторые генерирующие технологии, такие как солнечная и ветровая энергия, не имеют топлива расходы. Нормированная стоимость энергии (LCOE, также называемая приведенной стоимостью энергии или LEC) — это стоимость выработки энергии (обычно электричества) для конкретной системы. Это экономический оценка стоимости энергогенерирующей системы, включая все затраты сверх срок его службы: первоначальные вложения, эксплуатация и обслуживание, стоимость топлива, стоимость столица.Расчет чистой приведенной стоимости выполняется и решается таким образом, что для выбранной стоимости LCOE чистая приведенная стоимость проекта становится равной нулю (Источник: 2, 3). Это означает, что LCOE — это минимальная цена, по которой энергия должна продаваться за энергетический проект выйти на уровень безубыточности. Обычно LCOE рассчитываются на срок службы от 20 до 40 лет и приводятся в денежные единицы за киловатт-час, например, доллар США / кВтч, евро / кВтч или мегаватт-час. При сравнении LCOE для альтернативных систем важно определить границы системы и затрат, которые в нее включены. Например, если передачи линии и системы распределения должны быть включены в стоимость? Если НИОКР, налоги и экология включены ли исследования воздействия? Если стоимость воздействия на здоровье населения и окружающую среду ущерб быть включен? Следует ли включать расходы на государственные субсидии в рассчитанные LCOE? Другой ключевой вопрос — это решение о величине учетной ставки i.Значение это выбрано, потому что я часто могу «взвесить» решение в пользу того или иного варианта, поэтому однозначно необходимо тщательно изучить основу для выбора скидки. Скидка ставка зависит от стоимости капитала, в том числе от остатка заемного финансирования и долевое финансирование, а также оценка финансового риска. Источники:
Расчет импеданса на единицу и базыРасчет единичного и базового импеданса Веб-страница не работает, так как JavaScript не включен.Скорее всего, вы просматриваете с помощью веб-сайта Dropbox или другой ограниченной среды браузера.Следующие ниже калькуляторы вычисляют различные базовые и единичные величины, обычно используемые инженерами энергосистем в системе анализа на единицу. Calculator-1 Известные переменные: Базовая трехфазная мощность, базовое линейное напряжение Формулы и переменные Изменение базовой формулы Единичные расчеты для конденсаторных батарей 0 9295000 00 0 9295000 00 Где:
Предпосылки Система расчета на единицу — это метод, посредством которого системные импедансы и величины нормализуются по разным уровням напряжения к общей базе.Устранение влияния переменных напряжений упрощает необходимые расчеты. Чтобы использовать метод на единицу, мы нормализуем все системные импедансы (и проводимости) в рассматриваемой сети к общей базе. Эти нормированные импедансы называются импедансами на единицу. Любой импеданс на единицу будет иметь одинаковое значение как на первичной, так и на вторичной обмотке трансформатора и не зависит от уровня напряжения. Сеть с импедансом на единицу может быть затем решена с помощью стандартного сетевого анализа. Существует четыре основных величины: базовая МВА, базовая КВ, базовое сопротивление и базовый ампер. Когда любые два из четырех назначены, два других могут быть получены. Обычной практикой является присвоение базовых значений исследования MVA и KV. Затем вычисляются базовые амперы и базовые сопротивления для каждого из уровней напряжения в системе. Назначенный MVA может быть рейтингом MVA одного из преобладающих элементов системного оборудования или более удобным числом, например 10 МВА или 100 МВА. Выбор последнего имеет некоторое преимущество общности, когда проводится много исследований, в то время как первый выбор означает, что импеданс или реактивное сопротивление по крайней мере одного значимого компонента не нужно будет преобразовывать в новую базу.Номинальные линейные системные напряжения обычно используются в качестве базовых напряжений, а трехфазное питание используется в качестве базового питания. Демистифицируйте текущие рейтинги для выбора разъемаЧтобы просмотреть PDF-версию этой статьи, щелкните здесь. Большинство электронных систем имеют смешанные требования к питанию, когда один и тот же разъем обрабатывает сигналы и питание. Однако, когда требуется возможность подключения модуля, разработчики часто используют разъемы, предназначенные в первую очередь для работы на уровне сигнала.В то время как на фото ниже показаны разъемы, специально разработанные для приложений без пайки с прессовой посадкой, основным критерием выбора часто является доступное пространство на плате. Тем не менее, для правильного выбора разъема необходимо раскрыть тайну комбинации требований к пространству, текущего номинального значения, факторов снижения номинальных характеристик, соображений нагрева и методов сборки. Использование сигнальных контактов для питания требует знания того, как определяются номинальные токи.Ни один орган по стандартизации не устанавливает методологию определения этих рейтингов. На рисунке на странице 39 показана система, в которой используется множество разъемов и кабелей. Номинальный ток контактаСогласно общепринятому определению, контакт разъема питания — это любой контакт, используемый при номинальной допустимой токовой нагрузке или близкой к ней. Таким образом, сигнальный контакт с номиналом 2 А фактически является контактом питания, когда он передает питание от модуля к ПК. доска. Разъемные контакты разъема обычно состоят из штыря, соединенного с розеткой, содержащей один или несколько «пальцев» с пружинным контактом.”Допустимая нагрузка по току пары сопряженных контактов разъема в основном зависит от:
Эти три переменные определяют величину и стабильность сопротивления на поверхности контакта. Номинальный ток контакта определяется как уровень тока, который вызывает определенное повышение температуры контактной пружины — обычно 20 ° C или 30 ° C.Как электрические, так и тепловые факторы определяют тепло, создаваемое током. Повышение температуры контактной пружины зависит от ее объемного сопротивления, уровня тока и от отвода тепла в окружающую среду. Объемное сопротивление и теплопроводность контактной пружины будут зависеть от конкретного рассматриваемого разъема. Но рассеивание тепла будет зависеть от эффектов теплоотвода окружающей среды контакта и размера провода или характера печатной платы, соединенной с контактом. Контакты снижения номинальных характеристикПубликуемые в каталогах значения тока часто относятся к одной контактной паре, изолированной от окружающего воздуха. Это идеальная и искусственная ситуация. Наличие кожуха вокруг контактной пары будет препятствовать конвективному и радиационному охлаждению до такой степени, что преобладает кондуктивное охлаждение. Кондуктивное охлаждение включает охлаждение провода или платы, соединенных с контактами. Размер провода, подведенного к контакту, существенно влияет на допустимую нагрузку по току.Провода большего размера позволяют использовать более высокий ток при таком же повышении температуры. Другой важный фактор — это тепло, выделяемое несколькими силовыми контактами, сгруппированными вместе в пластиковом корпусе. Это тепло накапливается, уменьшая рассеивание тепла и требуя снижения характеристик отдельных контактов. Кроме того, старение контактов и количество циклов соединения / разъединения, которые испытал соединитель, отрицательно влияют на допустимую нагрузку на контакт по току. Рассмотрим следующий пример. Предположим, 5A вызывает повышение температуры на 30 ° в одиночной контактной пружине, подключенной к проводу 18-AWG в окружающем воздухе (без корпуса).Однако в реальном приложении несколько контактов находятся в корпусе разъема — 50% из них будут нести ток 5А, и они подключены к меньшему проводу 20-AWG. Из Таблицы 1 на стр. 40 для контактов, подключенных к проводу 20-AWG и нагруженных на 50% в пластиковом корпусе, коэффициент снижения номинальных характеристик составляет 0,68. Конкретный номинальный ток для этого приложения составляет 5 × 0,68 или 3,4 А. Это значение относится к контактам, находящимся под независимым питанием; то есть каждый контакт находится в отдельной цепи (не соединен параллельно). Число циклов сопряжения контактной сопряженной пары также влияет на ее номинальную мощность с течением времени. На микроскопическом уровне контактная поверхность фактически состоит из множества небольших холмов и долин, называемых неровностями. Высокие токи через эти небольшие неровности создают локализованные высокие температуры — достаточно высокие, чтобы вызвать микросварку контактов в этих точках. Эти микросварки могут вызвать износ границы раздела в последующих циклах соединения / разъединения. Различные контактные покрытия имеют разные температуры плавления, что влияет на их реакцию на такие высокие температуры шероховатости.Но для обсуждаемых здесь контактов сигнальные контакты, передающие мощность, обычно имеют золотое покрытие. Когда уровни напряжения падают, характеристики контактов разъема должны быть больше похожи на сигнальный разъем, несмотря на функцию питания. Золото имеет как высокую температуру плавления (минимизирует износ при использовании), так и низкое сопротивление (минимизирует падение напряжения). Это делает золото лучшим выбором для этих приложений. Применение параллельных контактовРазработчик может выбрать распределение высокого тока от модуля питания по нескольким контактам.Эти приложения с параллельными контактами электрически и термически взаимодействуют в корпусе. Если контакт в параллельной цепи развивает высокое сопротивление по сравнению с другими контактами, то значительная часть его токовой нагрузки смещается на оставшиеся контакты в цепи. Это увеличивает электрическую и тепловую нагрузку на другие контакты. Хотя высокоомный контакт работает при более низком токе, чем другие, его рабочая температура не обязательно будет снижена.Это результат более высокого сопротивления и теплового взаимодействия с остальными контактами. Могут стать важными механизмы разрушения, вызванные тепловым воздействием, и в соединителе может возникнуть тепловой разгон. Стратегия проектирования должна предусматривать достаточное количество контактов в параллельной цепи, чтобы, несмотря на неравномерное распределение тока, ни один из контактов не превышал их индивидуальный номинальный ток. Если разъем должен быть подключен или отключен, когда цепи находятся под напряжением, в игру вступают другие соображения по питанию.Например, приложению может потребоваться соединитель с контактами заземления. Таким образом, разработчик должен рассмотреть разъемы, которые включают в себя набор более длинных контактов, обозначенных как контакты заземления. Это означает, что во время стыковки и разъединения контакты заземления замыкаются первыми, а размыкаются последними в разъеме, что способствует электрической стабильности цепи. Методы сборкиДля разъемов, устанавливаемых на плату, используются традиционные конфигурации оконечных устройств с отверстиями, поверхностным монтажом и прессовой посадкой.Силовые контакты подходят для всех трех типов, поэтому критерии выбора заделки больше зависят от области применения и применяемой стоимости. Как правило, способ подключения определяется конструкцией платы. Для платы стандартной толщины наиболее распространенным выбором разъема является заделка с отверстиями. Тонкие небольшие платы и платы с нижним радиатором имеют тенденцию к поверхностному монтажу, особенно если другие компоненты устанавливаются на поверхность. На толстой многослойной плате будут использоваться разъемы с прессовой посадкой, поскольку пайка таких плат становится более сложной. Стоимость соединителя имеет тенденцию к росту по мере того, как концевые муфты переходят от монтажа в отверстиях к поверхностному монтажу с запрессовкой. В общем, соединители с отверстиями и штифтами являются наименее дорогими. Процесс пайки волной припоя этих разъемов является наиболее распространенным и знакомым. Разъемы для поверхностного монтажа обычно имеют пластиковые корпуса с более высокими эксплуатационными характеристиками, что немного увеличивает их стоимость. Они также имеют более низкую номинальную мощность. Разработчики плат должны проверить, не изменил ли производитель разъема неблагоприятным образом геометрию контактов (с точки зрения питания), чтобы получить версию для поверхностного монтажа в рамках того же семейства модульных разъемов.Соединители с прессовой посадкой требуют специальной соответствующей конструкции контактов, что снова увеличивает затраты. Прикладная стоимость — другое дело. Разъемы для поверхностного монтажа упрощают процесс пайки и позволяют использовать автоматизированные методы сборки. Соединители с прессовой посадкой исключают необходимость пайки. Имеется сборочное оборудование для проверки и документирования каждой установки соединителя с прессовой посадкой на предмет надлежащего усилия вставки. В случае соединителей провод-плата альтернативными выводами являются обжим, пайка или смещение изоляции.Доступны высокоскоростные сборочные машины для методов обжима и смещения изоляции. Чтобы минимизировать падение напряжения в системах с небольшим запасом по напряжению, силовые разъемы должны иметь контакты и сечения проводов как можно большего размера. Это особенно верно, если конструктор использует параллельные контакты для распределения силовой нагрузки. В таких случаях количество позиций должно быть большим, чтобы повысить надежность. Однако часто разъем является последним фактором при проектировании, оставляя минимальное или недостаточное пространство для разъема. Еще одна проблема, связанная с использованием сигнальных разъемов для силовых приложений, заключается в том, что каталоги редко предлагают таблицы снижения номинальных характеристик и данные, касающиеся характеристик мощности. Для больших объемов соединителей у разработчиков есть возможность потребовать испытаний, которые документируют энергетические характеристики соединителей, подключенных к разным размерам проводов и с разным процентом нагрузки. В противном случае проектировщикам придется выбирать разъемы консервативно, руководствуясь принципами. Для получения дополнительной информации об этой статье, CIRCLE 333 на сервисной карте считывателя США — U.S. Управление энергетической информации (EIA)Страница не существует для. Чтобы просмотреть эту страницу, выберите штат: United StatesAlabamaAlaskaArizonaArkansasCaliforniaColoradoConnecticutDelawareDistrict из ColumbiaFloridaGeorgiaHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMississippiMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyoming Страница не существует для. Чтобы просмотреть эту страницу, выберите штат: AlabamaAlaskaArizonaArkansasCaliforniaColoradoConnecticutDelawareDistrict из ColumbiaFloridaGeorgiaHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMississippiMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyoming Страница не существует для. |