Site Loader

6.1.4. Расчет параметров автотрансформатора

Задача 3. Автотрансформатор, схема которого изображена на рис. 6.1, включен в сеть с напряжением U1=220 В. Напряжение на вторичных зажимах U2=180 В, ток нагрузки I2=10 А. Обмотка имеет ω1=500 витков. Определить площадь поперечного сечения провода, из которого сделана обмотка, если максимально допустимая плотность тока равна 2,5 А/мм2.

Решение. Коэффициент трансформации

.

Ток, потребляемый из сети,

.

Число витков, к которым присоединена нагрузка,

.

Ток, который течет по этим виткам,

.

В верхней части обмотки содержится виток, сечение провода мм2.

Сечение провода остальной части обмотки (409 витков) мм2.

Если при прочих равных условиях изготовить не автотрансформатор, а трансформатор, то первичная обмотка из 500 витков имела бы сечение S

1=3,272 мм2, а вторичная из 409 витков мм2.

Таким образом, автотрансформаторная схема позволяет сэкономить значительное количество меди при изготовлении обмоток.

6.1.5. Расчет параметров электрической цепи с измерительными трансформаторами

Задача 4. Схема включения измерительных приборов через трансформаторы напряжения 3000/100 В и тока 100/5 А дана на рис. 6.2. Показания приборов оказались следующими: вольтметра U2=80 В, амперметра I2=4 А, ваттметра Р2=256 Вт.

Условие 1. Определить в первичной сети: напряжение U1, ток I1, мощность Р1, расход энергии W1 за 8 ч. работы и показание счетчика W2 за то же время.

Анализ и решение

Коэффициенты трансформации трансформатора напряжения , трансформатора тока .

При заданных показаниях измерительных приборов

; . Мощность в первичной цепи .

Показание ваттметра . Пренебрегая угловой погрешностью и считая , получаем кВт. Расход энергии за 8 ч работы

кВт×ч. Показание счетчика

Вт×ч.

Условие 2. Полное сопротивление вторичной цепи трансформатора тока (вторичной обмотки и токовых катушек измерительных приборов) 3 Ом. Определить э.д.с. в первичной и вторичной обмотках трансформатора тока. Определить также э.д.с. во вторичной обмотке трансформатора тока, если эту обмотку разомкнуть.

Анализ и решение

При замкнутой вторичной обмотке э.д.с. в ней В. Коэффициент трансформации

.

Следовательно, э.д.с. в первичной обмотке

В.

Трансформатор тока нормально работает в режиме, близком к короткому замыканию. Напряжение на выводах вторичной обмотки близко к нулю. При разомкнутой вторичной обмотке ток в ней, размагничивающий трансформатор, становится равным нулю, а намагничивающий ток А остается прежним. Поэтому магнитный поток, а следовательно, э.д.с. во вторичной обмотке трансформатора увеличатся примерно в k

i раз, т.е. В. Отсюда следует, что вторичную обмотку трансформатора тока нельзя размыкать в процессе работы; она должна быть замкнута либо накоротко, либо на малое сопротивление токовых катушек измерительных приборов.

6.2. Практическое занятие №2. Самостоятельная работа студента

В процессе выполнения самостоятельной работы студент должен решить все нижеприведенные задачи (или один из вариантов) используя лекционный материал, примеры расчета и анализа задач, рассмотренных на практическом занятии №1.

Расчет трансформатора онлайн по железу

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Программный (он-лайн) расчет трансформатора, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.

Описание вводимых и расчётных полей программы:

  1. — поле светло-голубого цвета – исходные данные для расчёта,
  2. — поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае клика , поле меняет цвет на светло-голубой и позволяет вводить собственные значения,
  3. — поле зелёного цвета – рассчитанное значение.
  • Геометрические параметры сердечника
    D =см
    d =см
    h =см
    Напряжение первичной обмотки
    U =В

    задать параметры вторичных обмоток

    Ввод табличных значений
    КПД =cos ф =B max =J =K ок =K ст =дельта U =
    Расчётные параметры трансформатора
    Sст =см 2Sок =см 2P
  • =

    ВтPтор =ВтIперв =Аdперв =ммW на 1В =витWперв =витNперв =слой
    Параметры вторичных обмоток
    U1 = ВI1 = А
    U2 = ВI2 = А
    U3 = ВI3 = А
    U4 = ВI4 = А
    Расчетные параметры вторичных обмоток
    W 1 = витd1 = ммW 2 = витd2 = ммW 3 = витd3 = ммW 4 = витd4 = мм

    Sст ф — площадь поперечного сечения магнитопровода. Рассчитывается по формуле:
    Sст = h * (D – d)/2.

    Sок ф – фактическая площадь окна в имеющемся магнитопроводе. Рассчитывается по формуле:
    Sок = π * d 2 / 4.

    Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:
    Pc max = Bmax *J * Кок * Кст * Sст * Sок / 0.901

    Расчет автотрансформатора мощностью до 1 кВт

    Автотрансформатор — электронный трансформатор, часть обмотки которого принадлежит сразу первичной и вторичной цепям. При питании первичной обмотки АХ от сети переменного тока в сердечнике возбуждается магнитный поток, наводящий в ней противоэдс.

    На участке gх, являющемся вторичной цепью, устанавливается напряжение, пропорциональное числу его витков. Ток вторичной цепи I2 проходит по участку ах, а ток первичной I1 – по всей обмотке АХ. При подключении нагрузки RН на часть обмотки АХ токи I1 и I2 имеют встречное направление, и потому по обмотке АХ будет проходить разность токов Iax = I1 – I2. Это позволяет выполнить обмотку АХ проводом наименьшего сечения.

    Автотрансформатор, изображенный на рис. а, — понижающий, потому что W1 > W2. Если на обмотку ах подать входное напряжение, он станет повышающим, потому что W2

    Рис. 1 Устройство автотрансформатора: а — понижающего, б — схема, в — трехфазного

    В автотрансформаторе напряжение и ток в первичной и вторичной обмотках связаны такими же соотношениями, как и в трансформаторах, т.е. U2 /U1 = W2/W1 = K, где U2 и U1 – напряжения во вторичной и первичной обмотках; W2 и W1 – число витков в соответственных обмотках; К – коэффициент трансформации.

    Мощность, получаемая во вторичной обмотке (мощность автотрансформатора), будет P2 = Pат = U2I2.

    В случае понижающего трансформатора I = I2 – I1 либо I2 = I + I1.

    Потому Рат = U2I2 = U2(I + I1) = U2I + U2I1.

    Отсюда следует, что Рат состоит из 2-ух слагаемых: мощности Рт = U2I, предаваемой на вторичную обмотку за счет трансформаторной (магнитной) связи меж обеими цепями; мощности Рэ = U2I1, передаваемой из первичной обмотки во вторичную за счет одновременной электронной связи меж обмотками.

    Мощность Рт является той мощностью, на которую необходимо рассчитывать автотрансформатор:

    для понижающего Рт = Рат(1 – К),

    для повышающего Рт = Рат(1 – 1/К).

    Площадь поперечного сечения сердечника S = 1,2√Pт.

    Число витков обмотки, приходящееся на 1 В напряжения, W0 = 45000/BH, где Н – магнитная индукция сердечника; В – намагничивающая сила.

    Число витков каждой из обмоток W1 = WU1; 2 = WU2.

    Обмотка автотрансформатора при долговременной работе не должна греться выше 65 градусов С. Во избежание этого плотность тока в проводе не должна превосходить 2…2,2 А/1 мм² его сечения.

    Поперечник провода рассчитывается по формуле d = 0,8√I, где d – поперечник провода обмотки, мм; I – ток в соответственной обмотке, А.

    Ток, потребляемый автотрансформатором из сети, I1 = Рат/U1, ток нагрузки I2 = Рат/U2.

    Справочник электрика

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

    Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

    В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора.
    Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

    Просмотр и ввод комментариев к статье Расчёт тороидального трансформатора по сечению сердечника онлайн

    По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия. Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации. Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы.

    Определение основных параметров

    Перед началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника. Далее нужно сделать правильный выбор сечения, влияющего на показатели выходного тока и мощность устройства.

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Следует учитывать и тот фактор, что при небольшом количестве витков, первичная обмотка будет нагреваться. Точно такая же ситуация возникает, когда мощность потребителей, включаемых во вторичную обмотку, превышает мощность, отдаваемую трансформатором. В результате перегрева снижается надежность устройства, иногда может произойти воспламенение трансформатора.

    В качестве примера приводится таблица, с помощью которой можно рассчитать тороидальный трансформатор, работающий при частоте сети 50 Гц.

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Сердечники устройств могут быть изготовлены из холоднокатаной стали марок Э310-330, толщиной от 0,35 до 0,5 мм. Может применяться и обычная сталь, марок Э340-360, где толщина ленты будет в пределах от 0,05 до 0,1 мм.

    Условные обозначения в таблице соответствуют:

    • – габаритная мощность трансформатора;
    • ω1 – количество витков на 1 вольт для стали Э310, Э320, Э330;
    • ω2 – количество витков на 1 вольт для стали Э340, Э350, Э360;
    • S – сечение сердечника;
    • – значение допустимой плотности тока в обмотках;
    • ŋ – КПД трансформатора.

    При наматывании тороидальной катушки используется только наружная и межобмоточная изоляция. Несмотря на ровную укладку обмоточных проводов, толщина намотки по внутреннему диаметру обязательно увеличивается вследствие разницы между наружным и внутренним диаметром сердечника. Поэтому рекомендуется использовать проводники, изоляция которых обладает повышенной механической и электрической прочностью, например, марки ПЭЛШО и ПЭШО, а в некоторых случаях – ПЭВ-2. Для наружной и межобмоточной изоляции чаще всего применяется батистовая лента, лакоткань ЛШСС, толщиной 0,06-0,12 мм, а также триацетатная или фторопластовая пленка, толщиной 0,01-0,02 мм.

    Формулы для расчета тороидального трансформатора

    Основными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р = Uн х Iн = 24 х 1,8 = 43,2 Вт.

    Далее определяется габаритная мощность трансформаторного устройства по формуле:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность.

    Следующим этапом будет расчет площади сечения сердечника по формуле:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Выбор размеров сердечника осуществляется следующим образом:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм 2 , которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Если в качестве примера взять сердечник, изготовленный из стали Э320, то в этом случае количество витков на один вольт будет определяться по формуле:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Теперь необходимо определить количество витков в первичной и вторичной обмотках:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению. В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах. В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом: W1-2=133 х 1,03=137 витков.

    Диаметры обмоточных проводов можно определить по формуле:

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Здесь I1 является током первичной обмотки, определяемый по собственной формуле: I1=1,1 (P2/Uc)=1,1 (48/220)=0,24A

    Расчёт тороидального трансформатора по сечению сердечника онлайн

    Диаметр провода выбирается по ближайшему значению в сторону увеличения, что будет составлять 0,31 мм.

    Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства.

    В настоящее время наиболее распространены магнитопроводы следующих типов:

    Расчёт тороидального трансформатора по сечению сердечника онлайн
    Кое-где еще можно встретить Ш-образные плаcтинчатые сердечники, расчет таких трансформаторов аналогичен расчету Ш-образного ленточного.

    Тороидальный трансформатор может использоваться при мощностях от 30 до 1000 Вт, когда требуется минимальное рассеяние магнитного потока или когда требование минимального объема является первостепенным. Имея некоторые преимущества в объеме и массе перед другими типами конструкций трансформаторов, тороидальные являются вместе с тем и наименее технологичными (удобными) в изготовлении.

    Исходными начальными данными для упрощенного расчета являются:

    • напряжение первичной обмотки U1;
    • напряжение вторичной обмотки U2;
    • ток вторичной обмотки I2;

    1.Расчет трансформатора

    Расчет габаритной мощности трансформатора

    При выборе железа для трансформатора надо учитываять, чтобы габаритная мощность трансформатора была строго больше расчетной электрической мощности вторичных обмоток.

    Мощность вторичной обмотки Р2 = I2 * U2 = Рвых

    Если обмоток много, то мощность, отдаваемая трансформатором, определяется суммой всех мощностей вторичных обмоток (Рвых).

    Другими словами — габаритная мощность трансформатора — это мощность которую способно «вынести» железо. Прежде чем перейти к формуле, сделаем несколько оговорок:

    • Главный качественный показатель силового трансформатора для радиоаппаратуры это его надежность. Следствие надежности — это минимальный нагрев трансформатора при работе (иными словами он должен быть всегда холодным!) и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть «жестким»).
    • В расчетах примем КПД трансформатора 0,95
    • Так как речь в статье пойдет об обычном сетевеом трансформаторе, примем рабочую частоту равной 50Гц.
    • Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1,2 Тл
    • Плотность тока принимаем 3,5 А/мм2
    • Коэффициент заполнения сердечника сталью принимаем 0,95
    • Коэффициент заполнения окна принимаем 0,45

    Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

    Р=1.9 * Sc * So
    Где:
    Sc и So — площади поперечного сечения сердечника и окна, соответственно [кв. см];

    2. Определение количества витков в обмотках.

    Прежде всего расчитываем количество витков в первичной обмотке.

    упрощенная формула будет иметь вид:

    Р=40 * U / Sc Где:
    Sc — площадь поперечного сечения сердечника, соответственно [кв. см]; U — напряжение первичной обмотки [В];

    Количество витков во вторичной обмотке можно расчитать по этой же формуле, увеличив число витков примерно на 5% (КПД трансформатора), но можно поступить проще: после того как намотана первичка — наматываем поверх нее 10 витков и измеряем напряжение. Зная какое напряжение требуется получить на выходе трансформатора и зная какое напряжение приходится на 10 витков — определяем необходимое число витков.

    3. Расчет диаметра провода.

    Рассчитываем диаметры проводов обмоток исходя из протекающих в них токов по следующим формулам (для меди, серебра или алюминия): Расчёт тороидального трансформатора по сечению сердечника онлайн

    Расчёт тороидального трансформатора по сечению сердечника онлайнРасчёт тороидального трансформатора по сечению сердечника онлайн

    Простейший расчет силовых трансформаторов и автотрансформаторов — Статьи по электротехнике — Каталог статей


    Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100—200 Вт проводится следующим образом.

    Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

     

    Далее, принимая КПД трансформатора небольшой мощности, равным около 80 %, определяем первичную мощность:

     

    Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

     

    где s — в квадратных сантиметрах, а Р1 — в ваттах.

    По значению S определяется число витков w’ на один вольт. При использовании трансформаторной стали

     

    Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w’ на 20—30 %.

    Теперь можно рассчитать число витков обмоток и т.д.

     

     

     

    В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5—10 % больше рассчитанного.

    Ток первичной обмотки

     

    Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

     

    Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

     

    Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

    В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз — диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2—3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

    Таблица 1

     

    В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

    Определяем общую мощность вторичных обмоток:

     

    Мощность первичной цепи

     

    Находим площадь сечения сердечника из трансформаторной стали:

     

    Число витков на один вольт

     

    Ток первичной обмотки

     

    Число витков и диаметр проводов обмоток равны:

    • для первичной обмотки

     

     

     

    • для повышающей обмотки

     

     

     

    • для обмотки накала ламп

     

     

     

    Предположим, что окно сердечника имеет площадь сечения 5×3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

    Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

    • для первичной обмотки

     

    • для повышающей обмотки

     

    • для обмотки накала ламп

     

    Общая площадь сечения обмоток составляет примерно 430 мм2.

    Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

    Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

    Эта мощность определяется по формулам:

     

    — для повышающего автотрансформатора

     

    — для понижающего автотрансформатора, причем

     

    Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

    Затем определяется расчетная мощность Р, которая может быть принята равной 1,15•Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

    алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 — I2, если автотрансформатор повышающий, и I2 — I1 если он понижающий.

    Источник информации: «Школа для электрика: электротехника и электроника. Статьи, советы, полезная информация.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован.