Site Loader

Содержание

ом [Ом] в вольт на ампер [В/А] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ом [Ом] в вольт на ампер [В/А] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

ом [Ом] в вольт на ампер [В/А] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Как преобразовать вольты в омы (Ом)

Как преобразовать электрическое напряжение в вольтах (В) в электрическое сопротивление в омах (Ом) .

Вы можете рассчитать ом из вольт, ампер или ватт , но вы не можете преобразовать вольты в омы, поскольку единицы измерения вольт и ом не измеряют одинаковую величину.

Расчет вольт в ом с амперами

По закону Ома сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (А):

R (Ω) = V (V) / I (A)

 

Таким образом, омы равны вольтам, разделенным на амперы:

Ом = вольт / ампер

или

Ω = В / А

пример

Вычислите сопротивление резистора в Ом при напряжении 5 вольт и токе 0,2 ампера.

Сопротивление R равно 5 вольтам, разделенным на 0,2 ампера, что равно 25 Ом:

R = 5 В / 0,2 А = 25 Ом

Расчет вольт в ом с ваттами

Мощность P равна напряжению V, умноженному на ток I :

P = V × I

Ток I

равен напряжению V, деленному на сопротивление R (закон Ома):

I = V / R

Таким образом, мощность P равна

P = V × V / R = V 2 / R

Таким образом, сопротивление R в омах (Ом) равно квадрату значения напряжения V в вольтах (В), деленного на мощность P в ваттах (Вт):

R (Ом) = V 2 (В) / P (Вт)

 

Таким образом, омы равны квадрату значений вольт, разделенных на ватты:

Ом = 2 вольт / Вт

или

Ω = V 2 / Вт

пример

Вычислите сопротивление резистора в Ом при напряжении 5 вольт и мощности 2 ватта.

Сопротивление R равно квадрату 5 вольт, разделенных на 2 ватта, что равно 12,5 Ом.

R = (5В) 2 / 2W = 12.5Ω

 

Как преобразовать омы в вольты ►

 


Смотрите также

Как преобразовать омы в вольты (В)

Как преобразовать электрическое сопротивление в омах (Ом) в электрическое напряжение в вольтах (В) .

Вы можете рассчитать вольты из омов, ампер или ватт , но вы не можете преобразовать омы в вольты, поскольку единицы измерения ома и вольта не измеряют одинаковую величину.

Расчет омов в вольт с помощью ампер

Согласно закону Ома , напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):

V (V)

= I (A) × R (Ω)

Итак, вольты равны амперам, умноженным на ом:

вольт = амперы × ом

или

V = A × Ω

пример

Вычислите напряжение в вольтах при сопротивлении 25 Ом и токе 0,2 ампера.

Напряжение V равно 0,2 ампера на 25 Ом, что равно 5 вольт:

V = 0,2 А × 25 Ом = 5 В

Расчет омов в вольт с ваттами

Мощность P равна напряжению V, умноженному на ток I :

P = V × I

Ток I равен напряжению V, деленному на сопротивление R (закон Ома):

I = V / R

Таким образом, мощность P равна

P =

V × V / R = V 2 / R

Таким образом, напряжение V в вольтах (В) равно квадратному корню из мощности P в ваттах (Вт), умноженной на сопротивление R в омах (Ом):

                    __________________

V (V) = √P (W) × R (Ом)

 

Таким образом, вольты равны квадратному корню из ватт, умноженных на ом:

вольт = √ Вт × Ом

или

V = √ W × Ω

пример

Вычислите напряжение V в вольтах при сопротивлении 12,5 Ом и мощности 2 Вт.

Напряжение V равно квадратному корню из 2 Вт, умноженному на 12,5 Ом, что равно 5 вольт:

V = √ 2 Вт × 12,5 Ом = 5 В

 

Как перевести вольты в омы ►

 


Смотрите также

Что такое Ом

Ом (Ом, Ω) — единица измерения электрического сопротивления. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

\[ Ом = \frac{В}{А} \]

Ом — единица электрического сопротивления в системе СИ. Если проводник соединяет две точки с разными электрическими потенциалами, то через проводник течёт ток. Величина тока зависит от разности потенциалов, а также от сопротивления проводника этому току. Электрическое сопротивление является характеристикой цепи и измеряется в омах.

Что такое Ом?

1 ом представляет собой “электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила”. CIPM, резолюция 2, 1946 год.

Это небольшое сопротивление, в применяемых на практике цепях сопротивление часто измеряется в мегаомах, то есть в миллионах ом. Единица ом названа в честь немецкого физика Георга Симона Ома (1787–1854). Имя Ома впервые было применено в качестве электрической единицы в 1861 году, когда Чарльз Брайт и Латимер Кларк предложили использовать название ohma для единицы электродвижущей силы. В качестве обозначения для ома применяется большая греческая буква омега Ω, поскольку букву O можно легко принять за ноль. Хотя в Юникоде и присутствует значок ома (Ω, Ohm sign, U+2126), но его каноническим разложением[1] является заглавная греческая буква омега (Ω, U+03A9), т. е. эти два символа должны быть неразличимы с точки зрения пользователя. Рекомендуется для обозначения ома использовать омегу.

Закон Ома

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так:
сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника

.

Формула закона Ома записывается в следующем виде:

\[ I = \frac{U}{R} \]

где

I – сила тока в проводнике, единица измерения силы тока — ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].

Ом и зависимости от других величин

Еще на заре исследования электричества ученые заметили, что сила тока, проходящего через разные материалы, отличается, хотя эксперимент проводится в одинаковых условиях, образцы подключаются одинаково к одинаковым источникам. Было сделано предположение, что разные образцы обладают разным сопротивлением электрическому току, которое и определяет силу этого тока. 2 / [Сопротивление проводника, Ом]

[Действующая сила тока, А] = [Действующее напряжение, В] / [Сопротивление, Ом]

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название
обозначение
величина название обозначение
101 Ом декаом даОм daΩ 10−1 Ом дециом дОм
102 Ом гектоом гОм 10−2 Ом сантиом сОм
103 Ом килоом кОм 10−3 Ом миллиом мОм
106 Ом мегаом
МОм
10−6 Ом микроом мкОм µΩ
109 Ом гигаом ГОм 10−9 Ом наноом нОм
1012 Ом тераом ТОм 10−12 Ом пикоом пОм
1015 Ом петаом ПОм 10−15 Ом фемтоом фОм
1018 Ом эксаом ЭОм 10−18 Ом аттоом аОм
1021 Ом зеттаом ЗОм 10−21 Ом зептоом зОм
1024 Ом йоттаом ИОм 10−24 Ом йоктоом иОм
     применять не рекомендуется      не применяются или редко применяются на практике

Что такое резисторы?

Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике

резисторами.

В практике применяются резисторы от долей Ома до десятков мегаомов.

мегаом / мегом МОм MOhm 1E6 Ом 1000000 Ом
килоом кОм kOhm 1E3 Ом 1000 Ом
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Больше интересного в телеграм @calcsbox

Вольты, ватты и омы – как они влияют на работу электронных сигарет?

Внимательный курильщик э-сигарет, определённо, замечал, что ассортимент э-сигарет в магазинах стремительно расширяется – в продаже есть как простые одноразовые палочки, так и сложные модели с цветными кнопочками, дисками и дисплеями. Для того чтобы упростить нашу жизнь, сделать её удобней и приятней, эти «гаджеты» также постоянно развиваются. Далее мы поговорим о новейших моделях э-сигарет, которые позволяют пользователю самостоятельно регулировать количество пара, интенсивность затяжки и вкуса.

Поскольку вкусы и привычки у всех людей разные, специалисты разработали такие э-сигареты, которые позволяют пользователю самому регулировать силу затяжки, количество пара и интенсивность вкуса. Одному нравится мягкое и лёгкое общение с э-сигаретой, другой предпочитает серьёзный «выхлоп», иначе э-сигарета не удовлетворит его аппетит курильщика, а третьему подходит нечто среднее.

В этой статье мы рассмотрим совокупное воздействие сопротивления (Ом), напряжения (Вольт) и мощности (Ватт) и узнаем, что чем меньше сопротивление и чем выше напряжение, тем больше количество пара, сильнее «выхлоп» и интенсивнее вкус.

Однако до того как начать урок физики, стоит отметить, что в действительности пользователь э-сигареты даже без специальных физических знаний может легко справиться с напряжением и сопротивлением, не сильно углубляясь в научные исследования.

Сопротивление (Ом Ω)

Что такое Ом?
Ом – единица измерения сопротивления. Чем меньше сопротивление испарителя Вашей э-сигареты, тем больше тока через него проходит. Если Вы повышаете уровень сопротивления, то на столько же меньше тока пройдёт через испаритель.

Какое сопротивление лучше использовать?
Это зависит от Ваших предпочтений – насколько интенсивный вкус и «выхлоп» Вы предпочитаете? Также зависит от того, какое соотношение напряжения (Вольт) и сопротивления (Ом) Вы используете. При этом различные э-жидкости ведут себя по-разному, а использование разного сопротивления влияет на вкус. Поэтому для достижения оптимальных качеств э-сигареты потребуются эксперименты. Далее мы приведём свойства э-сигареты при использовании испарителя с различным сопротивлением.

При использовании испарителя с низким сопротивлением тока будет больше, поэтому:

  • В нагревательном элементе генерируется больше тепла
  • Генерируется больше пара
  • Вкус менее интенсивный
  • Пар теплее
  • Аккумулятор разряжается быстрее
  • Срок эксплуатации аккумулятора уменьшается
  • Э-жидкость быстрее заканчивается Срок эксплуатации испарителя уменьшается (испаритель с очень низким сопротивлением может продержаться всего 2-3 дня)
  • Высока вероятность, что Вы получите «сухую затяжку» („dry hit“)

При использовании испарителя с высоким сопротивлением получается обратный эффект:

  • Через нагревательный элемент проходит меньше тока
  • Происходит меньший нагрев испарителя
  • Меньшее количество пара
  • Пар холоднее
  • Пар с более интенсивным вкусом
  • Срок эксплуатации аккумулятора увеличивается
  • Меньше расходуется э-жидкости (хватит надолго)
  • Маловероятно, что Вы получите «сухую затяжку» („dry hit“)

Изменяемое напряжение (V) и мощность (W)

Сопротивление испарителя – не единственный показатель, который контролирует количество пара, интенсивность вкуса и «выхлопа», – это также зависит от вырабатываемой аккумулятором мощности (W) в испарителе.

Имеется 2 основных типа аккумулятора э-сигареты, которые позволяют менять силу тока в испарителе, – аккумуляторы с изменяемым напряжением (VV – variable voltage) и с изменяемой мощностью (VW – variable wattage). К примеру, Nicorex предлагает аккумулятор Ola 2200 mAh. https://www.nicorex.eu/ola-2200-vvvw-akkumuliator/

Как сказано выше, интенсивность пара э-сигареты можно увеличить путём уменьшения сопротивления испарителя либо увеличения тока, проходящего через Вашу э-сигарету. Это может показаться сложным, но в действительности ничего трудного в этом нет – нужно только нажать на кнопку вверх-вниз или отрегулировать поворотный диск.

Что же делать, если Вы захотите вновь увеличить количество пара? В этом случае можно комбинировать испаритель с низким сопротивлением с аккумулятором с высоким напряжением (V) – так можно получить ещё больше пара. Однако при этом могут возникнуть проблемы: если Вы отрегулируете слишком сильно, испаритель может перегреться, при этом Вы можете получить «сухую затяжку» („dry hit“). В любом случае, срок эксплуатации испарителя резко уменьшится.

Устройства с изменяемым напряжением (V) против устройств с изменяемой мощностью (W)

Отличие изменяемого напряжения (VV) от изменяемой мощности (VW) можно сравнить с отличием автоматической коробки передач от мануальной.

В устройстве с изменяемым напряжением (VV) можно вручную регулировать напряжение – в этом случае конечная мощность зависит от сопротивления конкретного испарителя. В устройстве с изменяемой мощностью (VW) требуется только настроить мощность на желаемый уровень – и аккумулятор повышает напряжение автоматически в соответствии с сопротивлением испарителя. Аккумулятор сам распознаёт сопротивление испарителя и соответственно регулирует напряжение. В этом случае всегда обеспечена одна и та же мощность, независимо от сопротивления испарителя. Таким образом, при повышении мощности (W) повышается также и напряжение (V), и наоборот.

К примеру, если Вы используете испаритель с нагревательным элементом с сопротивлением 1,8 Ом, который работает при напряжении 3,7 Вольт, на выходе получите мощность около 7,3 Ватт – это хорошая затяжка.

Однако если Вы настроите нагревательный элемент на сопротивление выше 2,8 Ом, то заметите существенное уменьшение вкуса, количества пара и нагрева, поскольку мощность (W) ниже (около 4,4 Ватт), и для повышения мощности (W) Вам придётся повысить напряжение (V) – тогда Вы получите хорошую затяжку. Нагревательные элементы с более низким сопротивлением используют больше мощности (W), они стремятся производить больше тепла и поэтому могут перегреться быстрее, чем нагревательные элементы с более высоким сопротивлением.

Что означает mAh на аккумуляторе э-сигареты?

Вероятно, Вы замечали обозначение „mAh“ в описании различных аккумуляторов электронных сигарет. mAh по существу показывает, сколько времени может работать аккумулятор. Если вернуться к аналогии с автомобилем, то если напряжение (V) – это топливо, то mAh – это размер топливного бака: чем больше бак, тем дольше можно ехать. mAh означает миллиамперы в час и показывает ёмкость аккумулятора: чем больше это значение, тем дольше сможет работать аккумулятор.

Воздействие вольтметра

на измеряемую цепь | Цепи измерения постоянного тока

Каждый метр в некоторой степени влияет на контур, который он измеряет, точно так же, как любой манометр в шинах слегка изменяет измеренное давление в шинах, поскольку для работы манометра выпускается некоторое количество воздуха. Хотя некоторое воздействие неизбежно, его можно свести к минимуму за счет хорошей конструкции расходомера.

Схема делителя напряжения

Поскольку вольтметры всегда подключаются параллельно тестируемому компоненту или компонентам, любой ток через вольтметр будет вносить вклад в общий ток в тестируемой цепи, потенциально влияя на измеряемое напряжение.Идеальный вольтметр имеет бесконечное сопротивление, поэтому он не потребляет ток из тестируемой цепи. Однако совершенные вольтметры существуют только на страницах учебников, а не в реальной жизни! Возьмем следующую схему делителя напряжения в качестве крайнего примера того, как реалистичный вольтметр может повлиять на схему, которую он измеряет:

При отсутствии вольтметра, подключенного к цепи, на каждом резисторе 250 МОм в последовательной цепи должно быть ровно 12 Вольт, причем два резистора равного номинала делят общее напряжение (24 В) точно пополам.Однако, если рассматриваемый вольтметр имеет сопротивление между выводами 10 МОм (обычное значение для современного цифрового вольтметра), его сопротивление создаст параллельную подсхему с нижним резистором делителя при подключении:

Это эффективно снижает нижнее сопротивление с 250 МОм до 9,615 МОм (250 МОм и 10 МОм параллельно), резко изменяя падение напряжения в цепи. На нижнем резисторе теперь будет гораздо меньшее напряжение, чем раньше, а на верхнем резисторе — намного больше.

Делитель измеряемого напряжения

Делитель напряжения с сопротивлением 250 МОм и 9,615 МОм разделит 24 В на части 23,1111 В и 0,8889 В соответственно. Поскольку вольтметр является частью этого сопротивления 9,615 МОм, он будет показывать именно это: 0,8889 вольт.

Теперь вольтметр может показывать только напряжение, подключенное к нему. Он не имеет возможности «знать», что на нижнем резисторе сопротивлением 250 МОм упало напряжение 12 В до того, как резистор был подключен к нему.Сам факт подключения вольтметра к цепи делает его частью цепи, а собственное сопротивление вольтметра изменяет соотношение сопротивлений цепи делителя напряжения, следовательно, влияя на измеряемое напряжение.

Как работает вольтметр?

Представьте, что вы используете манометр в шинах, для работы которого требуется такой большой объем воздуха, что он может спустить воздух из любой шины, к которой он подключен. Количество воздуха, потребляемого манометром во время измерения, аналогично току, затрачиваемому движением вольтметра для перемещения иглы.Чем меньше воздуха требуется манометру для работы, тем меньше он будет спускать воздух из тестируемой шины. Чем меньше ток, потребляемый вольтметром для приведения в действие иглы, тем меньше нагрузка на тестируемую цепь.

Этот эффект называется загрузка , и он в той или иной степени присутствует в каждом случае использования вольтметра. Показанный здесь сценарий является наихудшим: сопротивление вольтметра существенно ниже, чем сопротивление резисторов делителя. Но всегда будет некоторая степень нагрузки, из-за которой измеритель будет показывать меньшее, чем истинное напряжение, без подключенного измерителя.Очевидно, что чем выше сопротивление вольтметра, тем меньше нагрузка на тестируемую цепь, и поэтому идеальный вольтметр имеет бесконечное внутреннее сопротивление.

Вольтметрам с электромеханическими механизмами обычно присваиваются номинальные значения в диапазоне «Ом на вольт» для обозначения силы воздействия цепи, создаваемой током, потребляемым движением. Поскольку в таких измерителях используются разные значения резисторов умножителя для получения разных диапазонов измерения, их сопротивление между выводами будет изменяться в зависимости от того, на какой диапазон они настроены.Цифровые вольтметры, с другой стороны, часто демонстрируют постоянное сопротивление на измерительных выводах независимо от настройки диапазона (но не всегда!), И поэтому обычно измеряются просто в омах входного сопротивления, а не чувствительности «Ом на вольт».

«Ом на вольт» означает, сколько Ом сопротивления между выводами на каждый вольт диапазона , установленного на селекторном переключателе. Возьмем в качестве примера наш пример вольтметра из последнего раздела:

По шкале 1000 вольт полное сопротивление составляет 1 МОм (999.5 кОм + 500 Ом), что дает 1000000 Ом на 1000 вольт диапазона или 1000 Ом на вольт (1 кОм / В). Этот рейтинг «чувствительности» в омах на вольт остается постоянным для любого диапазона этого измерителя:

Проницательный наблюдатель заметит, что номинальное сопротивление любого измерителя определяется одним фактором: током полной шкалы механизма, в данном случае 1 мА. «Ом на вольт» — это математическая величина, обратная «вольт на ом», которая определяется законом Ома как ток (I = E / R). Следовательно, полномасштабный ток механизма определяет чувствительность измерителя в Ом / вольт, независимо от того, какими диапазонами разработчик снабдил его через резисторы умножителя.В этом случае номинальный ток полной шкалы измерительного механизма в 1 мА дает ему чувствительность вольтметра 1000 Ом / В независимо от того, как мы измеряем его с помощью резисторов умножителя.

Чтобы свести к минимуму нагрузку вольтметра на любую схему, разработчик должен стремиться минимизировать ток, потребляемый его движением. Это может быть достигнуто путем изменения конструкции самого механизма для обеспечения максимальной чувствительности (меньший ток требуется для полного отклонения), но здесь обычно возникает компромисс: более чувствительный механизм имеет тенденцию быть более хрупким.

Другой подход — электронное усиление тока, подаваемого на механизм, так что от тестируемой цепи требуется очень небольшой ток. Эта специальная электронная схема известна как усилитель , а построенный таким образом вольтметр представляет собой вольтметр с усилением .

Внутренняя работа усилителя слишком сложна, чтобы обсуждать ее здесь, но достаточно сказать, что схема позволяет измеренному напряжению контролировать , сколько тока батареи направляется на движение счетчика.Таким образом, потребность механизма в токе обеспечивается внутренней батареей вольтметра, а не проверяемой схемой. Усилитель все еще в некоторой степени нагружает тестируемую цепь, но обычно в сотни или тысячи раз меньше, чем сам по себе счетчик.

Вольтметры вакуумные (ВТВМ)

До появления полупроводников, известных как «полевые транзисторы», вакуумные лампы использовались в качестве усилительных устройств для выполнения этого повышения. Такие ламповые вольтметры или (VTVM) когда-то были очень популярными приборами для электронных испытаний и измерений.Вот фотография очень старого VTVM с открытой лампой!

Теперь схемы усилителя на твердотельных транзисторах решают ту же задачу при разработке цифровых измерителей. Хотя этот подход (использование усилителя для увеличения тока измеряемого сигнала) работает хорошо, он значительно усложняет конструкцию измерителя, делая почти невозможным для начинающего студента-электронщика понять его внутреннюю работу.

Последнее и оригинальное решение проблемы нагрузки вольтметра — это потенциометрический прибор или с нулевым балансом .Это не требует продвинутых (электронных) схем или чувствительных устройств, таких как транзисторы или электронные лампы, но требует большего участия и навыков технического специалиста. В потенциометрическом приборе прецизионно регулируемый источник напряжения сравнивается с измеренным напряжением, и чувствительное устройство, называемое нулевым детектором , используется для индикации равенства двух напряжений.

В некоторых схемах для обеспечения регулируемого напряжения используется прецизионный потенциометр , отсюда и метка потенциометрический .Когда напряжения равны, из проверяемой цепи будет подаваться нулевой ток, и, следовательно, на измеренное напряжение не должно влиять. Легко показать, как это работает, на нашем последнем примере, схеме высоковольтного делителя напряжения:

Детектор нуля

«Детектор нуля» — это чувствительное устройство, способное указывать на наличие очень малых напряжений. Если в качестве нуль-детектора используется электромеханический датчик, он будет иметь пружинно-центрированную стрелку, которая может отклоняться в любом направлении, чтобы быть полезной для индикации напряжения любой полярности.Поскольку цель нулевого детектора состоит в том, чтобы точно указать состояние ноль напряжения, а не указывать какую-либо конкретную (ненулевую) величину, как это делал бы обычный вольтметр, шкала используемого прибора не имеет значения. Детекторы нуля обычно разрабатываются так, чтобы быть максимально чувствительными, чтобы более точно указывать на «нулевое» или «равновесное» (нулевое напряжение) состояние.

Чрезвычайно простой тип нуль-детектора — это набор аудионаушников, динамики внутри которых действуют как своего рода движение измерителя.Когда к динамику изначально подается постоянное напряжение, возникающий через него ток будет перемещать диффузор динамика и производить слышимый «щелчок». Другой звук щелчка будет слышен при отключении источника постоянного тока. Основываясь на этом принципе, чувствительный нуль-детектор может быть сделан не более чем из наушников и переключателя мгновенного действия:

Если для этой цели используются наушники «8 Ом», их чувствительность можно значительно повысить, подключив их к устройству, называемому трансформатором .Трансформатор использует принципы электромагнетизма для «преобразования» уровней напряжения и тока импульсов электрической энергии. В этом случае используется понижающий трансформатор , который преобразует слаботочные импульсы (создаваемые путем замыкания и размыкания кнопочного переключателя при подключении к небольшому источнику напряжения) в более сильные импульсы для более эффективного вставьте диффузоры динамиков внутрь наушников.

Трансформатор «аудиовыхода» с коэффициентом импеданса 1000: 8 идеально подходит для этой цели.Трансформатор также увеличивает чувствительность детектора, накапливая энергию слаботочного сигнала в магнитном поле для внезапного выброса в динамики наушников при размыкании переключателя. Таким образом, он будет производить более громкие «щелчки» для обнаружения более слабых сигналов:

Подключенный к потенциометрической схеме в качестве детектора нуля, переключатель / трансформатор / наушники используется как таковое:

Назначение любого нуль-детектора — действовать как лабораторные весы, показывая, когда два напряжения равны (отсутствие напряжения между точками 1 и 2) и ничего более.Балансир лабораторных весов фактически ничего не весит; скорее, он просто указывает на равенство между неизвестной массой и стопкой стандартных (калиброванных) масс.

Аналогичным образом, нулевой детектор просто указывает, когда напряжение между точками 1 и 2 одинаково, что (согласно закону Кирхгофа о напряжении) будет, когда регулируемый источник напряжения (символ батареи с диагональной стрелкой, проходящей через него) точно равен напряжение к падению на R2.

Для работы с этим прибором техник должен вручную регулировать выход прецизионного источника напряжения до тех пор, пока нулевой детектор не покажет точно ноль (при использовании аудионаушников в качестве нулевого детектора, техник несколько раз нажимает и отпускает кнопочный переключатель, прислушиваясь к тишине указывает, что схема была «сбалансированной»), а затем отметьте напряжение источника, показанное вольтметром, подключенным к прецизионному источнику напряжения, это показание представляет напряжение на нижнем резисторе 250 МОм:

Вольтметр, используемый для прямого измерения прецизионного источника, не обязательно должен иметь чрезвычайно высокую чувствительность Ω / V, потому что источник будет обеспечивать весь ток, необходимый для работы.Пока на нуль-детекторе есть нулевое напряжение, между точками 1 и 2 будет нулевой ток, что означает отсутствие нагрузки на тестируемую схему делителя.

Стоит повторить тот факт, что этот метод, при правильном выполнении, накладывает почти нулевую нагрузку на измеряемую цепь. В идеале он абсолютно не нагружает тестируемую схему, но для достижения этой идеальной цели нуль-детектор должен иметь абсолютно нулевое напряжение на нем , что потребует бесконечно чувствительного нуль-метра и идеального баланса напряжения от регулируемого источник напряжения.

Однако, несмотря на практическую неспособность достичь абсолютного нуля нагрузки, потенциометрическая схема по-прежнему является отличным методом измерения напряжения в цепях с высоким сопротивлением. И в отличие от электронного усилителя, который решает проблему с помощью передовых технологий, потенциометрический метод обеспечивает гипотетически идеальное решение, используя фундаментальный закон электричества (KVL).

ОБЗОР:

  • Идеальный вольтметр имеет бесконечное сопротивление.
  • Слишком низкое внутреннее сопротивление в вольтметре отрицательно повлияет на измеряемую цепь.
  • Вольтметры с вакуумной трубкой (VTVM), транзисторные вольтметры и потенциометрические схемы — все это средства минимизации нагрузки на измеряемую цепь. Из этих методов потенциометрический («нулевой баланс») метод — единственный, способный разместить нулевую нагрузку на схему.
  • Детектор нуля — это устройство, созданное для максимальной чувствительности к небольшим напряжениям или токам.Он используется в цепях потенциометрического вольтметра для индикации отсутствия напряжения между двумя точками, что указывает на состояние баланса между регулируемым источником напряжения и измеряемым напряжением.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Изготовление вольтметра из манометра, чувствительного к току

ИЗГОТОВЛЕНИЕ ВОЛЬТМЕТРА ПО ДВИЖЕНИЮ ЧУВСТВИТЕЛЬНОГО ТОКА

Все движения счетчика, описанные ранее в этой главе, реагируют на ток.Были показаны различные способы использования этих перемещений в амперметрах. Если ток и сопротивление известны, напряжение можно рассчитать по формуле E = IR. А движение измерителя имеет известное сопротивление, поэтому, поскольку движение реагирует на ток, напряжение может быть указано на шкале счетчика.

На рисунке 1-27 (A) вольтметр (обозначенный R 2 ), подключенный через 10-омный резистор с приложенным напряжением 10 В. Ток через вольтметр (R 2 ) есть.1 миллиамперы. На рисунке 1-27 (B) напряжение увеличено до 100 вольт. Теперь текущая через вольтметр (R 2 ) — 1 миллиампер.

Напряжение увеличилось в 10 раз, как и ток. Это иллюстрирует что ток через измеритель пропорционален измеряемому напряжению.

Рисунок 1-27. — Ток и напряжение в параллельной цепи.

ЧУВСТВИТЕЛЬНОСТЬ ВОЛЬТМЕТРОВ

Чувствительность вольтметра выражается в омах на вольт (

/ В).

Это сопротивление вольтметра при полном показании в вольтах.

Поскольку сопротивление вольтметра не меняется в зависимости от положения указателя, полное сопротивление измерителя — это чувствительность, умноженная на полное напряжение чтение. Чем выше чувствительность вольтметра, тем выше сопротивление вольтметра. Поскольку вольтметры с высоким сопротивлением оказывают меньшее влияние на нагрузку на цепи, высокая чувствительность измеритель обеспечит более точное измерение напряжения.

Чтобы определить чувствительность движения измерителя, вам нужно только разделить 1 на величина тока, необходимая для полного отклонения движения измерителя. В производитель обычно отмечает движения счетчика величиной тока, необходимой для полное отклонение и сопротивление измерителя. С этими цифрами вы можете рассчитать чувствительность

и показание напряжения полной шкалы тока полной шкалы (ток полной шкалы X сопротивление).

Например, если измеритель имеет ток полной шкалы 50 мкА и сопротивление 960 & Omega; чувствительность может быть рассчитана как:

  • Полное значение напряжения рассчитывается как:
  • Показание напряжения полной шкалы = ток полной шкалы X сопротивление
  • Полномасштабное показание напряжения = 50 мкА X 960 Ом;
  • Полномасштабное показание напряжения = 48 мВ

ДИАПАЗОН

Таблица 1-1 показывает цифры для большинства используемых в настоящее время измерительных механизмов.

Таблица 1-1. — Характеристики движения измерителя

ТОК ОТКЛОНЕНИЯ ПОЛНОЙ МАСШТАБЫ

СОПРОТИВЛЕНИЕ ЧУВСТВИТЕЛЬНОСТЬ НАПРЯЖЕНИЕ ПОЛНАЯ МАСШТАБА
1 мА 100 Вт 1кВт / ВОЛЬТ.1В
50 & mu; A 960 Вт 20кВт / ВОЛЬТ .048 В
5 & mu; A 5750 Вт 200кВт / ВОЛЬТ .029 В

Обратите внимание, что движения счетчика, показанные в таблице 1-1

будет показывать от 0,029 вольт до .I вольт на полной шкале, а диапазон чувствительности — от 1000 Ом на вольт до 200000 Ом на вольт.Измерители с более высокой чувствительностью указывают на меньшее количества напряжения. Поскольку в большинстве измерений напряжения используется напряжение, превышающее 0,1 вольт, необходимо использовать метод для увеличения показаний напряжения.

На рис. 1-28 показан способ увеличения диапазона напряжения вольтметра.

Рисунок 1-28. — Вольтметр и резистор диапазона.

На рисунке 1-28 (A) вольтметр с диапазоном 10 вольт и сопротивлением 1 кОм (R 2 ) подключается параллельно резистору R 1 .Счетчик имеет ток 0,01 ампер. (полное отклонение) и показывает 10 вольт. На рисунке 1-28 (B) напряжение было увеличился до 100 вольт. Это больше, чем измеритель может измерить. Резистор 9 кОм (R 3 ) подключается последовательно со счетчиком (R 2 ). Счетчик (R 2 ) теперь имеет 0,01 ампер тока (полное отклонение). Но с тех пор, как R 3 увеличил допустимое напряжение счетчика, счетчик показывает 100 вольт.R 3 изменилось дальность действия измерителя.

Вольтметры

могут быть сконструированы с несколькими диапазонами за счет использования переключателя и внутреннего резисторы. На рисунке 1-29 показан вольтметр с перемещением 100 Ом и 1 Полное отклонение в миллиамперном диапазоне с 5 диапазонами напряжения за счет использования переключателя. В Таким образом, вольтметр можно использовать для измерения нескольких различных диапазонов напряжения.

Рисунок 1-29. — Вольтметр с внутренними резисторами диапазона.

Ток через движение счетчика определяется измеряемым напряжением. Если измеренное напряжение выше диапазона вольтметра, будет течь избыточный ток из-за движения счетчика, и счетчик будет поврежден. Следовательно, вы всегда должны начните с наивысшего диапазона вольтметра и переключайте диапазоны до тех пор, пока не будет получается около центра шкалы.

Рисунок 1-30 иллюстрирует эти моменты.

Рисунок 1-30. — Считывание показаний вольтметра в различных диапазонах.

На рисунке 1-30 (A) счетчик находится в диапазоне 1000 вольт. Указатель чуть выше 0 позиция. Это напряжение невозможно точно прочитать. На рисунке 1-30 (B) счетчик переключается на диапазон 250 вольт. С позиции указателя можно Напряжение приблизительно равно 20 вольт. Поскольку это значение значительно ниже следующего диапазона, измеритель переключается, как на рисунке 1-30 (C).С измерителем в диапазоне 50 В можно считайте напряжение как 22 вольта. Поскольку это больше, чем следующий диапазон измерителя (10 вольт), счетчик не переключится на следующую (нижнюю) шкалу.

Q.34 Как можно использовать движение измерителя тока, чувствительного к току, для измерения напряжения?
В.35 Что такое чувствительность вольтметра?
В.36 Какой метод используется для того, чтобы вольтметр имел несколько диапазонов?
В.37. Почему вы всегда должны использовать самый высокий диапазон при подключении вольтметра к цепи?

Перевести ом в вольт на ампер

›› Перевести ом в вольт на ампер

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что вы можете отключить большинство объявлений здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько Ом в 1 вольте на ампер? Ответ: 1.
Мы предполагаем, что вы конвертируете между Ом и вольт / ампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
Ом или вольт на ампер
Производной единицей СИ для электрического сопротивления является ом.
1 Ом равен 1 вольту на ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать сопротивление между омами и вольтами / амперами.
Введите свои числа в форму для преобразования единиц!


›› Таблица преобразования омов в вольт на ампер

1 Ом на вольт на ампер = 1 вольт на ампер

5 Ом на вольт на ампер = 5 вольт на ампер

10 Ом на вольт на ампер = 10 вольт на ампер

20 Ом на вольт на ампер = 20 вольт на ампер

30 Ом на вольт на ампер = 30 вольт на ампер

40 Ом на вольт на ампер = 40 вольт на ампер

50 Ом на вольт на ампер = 50 вольт на ампер

75 Ом на вольт на ампер = 75 вольт на ампер

100 Ом на вольт на ампер = 100 вольт на ампер



›› Хотите другие юниты?

Вы можете произвести обратное преобразование единиц измерения из вольт на ампер в ом, или введите любые две единицы ниже:

›› Преобразование общего электрического сопротивления

Ом на Нано
Ом на Статом
Ом на Миллиом
Ом на Абом
Ом на Гом
Ом на Килом
Ом на Пиком

›› Определение: Ом

Ом (символ: Ω) — это единица измерения электрического сопротивления в системе СИ или, в случае постоянного тока, электрического сопротивления, названная в честь Георга Ома.Он определяется как сопротивление между двумя точками проводника, когда постоянная разность потенциалов в 1 вольт, приложенная к этим точкам, создает в проводнике ток в 1 ампер, причем проводник не является источником какой-либо электродвижущей силы.


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения. Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных.Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Преобразовать вольт на ом в ампер

›› Перевести вольт на ом в амперы

Пожалуйста, включите Javascript для использования конвертер величин.
Обратите внимание, что большинство объявлений можно отключить здесь:
https://www.convertunits.com/contact/remove-some-ads.php



›› Дополнительная информация в конвертере величин

Сколько вольт на ом в 1 ампер? Ответ: 1.
Мы предполагаем, что вы конвертируете между вольт / Ом и ампер .
Вы можете просмотреть более подробную информацию о каждой единице измерения:
вольт на Ом или amp
Базовой единицей СИ для электрического тока является ампер.
1 ампер равен 1 вольту на ом или 1 ампер.
Обратите внимание, что могут возникать ошибки округления, поэтому всегда проверяйте результаты.
Используйте эту страницу, чтобы узнать, как преобразовать напряжение / Ом в ампер.
Введите свои числа в форму для преобразования единиц!


›› Таблица преобразования вольт на ом в ампер

1 вольт на Ом на ампер = 1 ампер

5 вольт на Ом на ампер = 5 ампер

10 вольт на Ом на ампер = 10 ампер

20 вольт на Ом на ток = 20 ампер

30 вольт на Ом на ампер = 30 ампер

40 вольт на Ом на ампер = 40 ампер

50 вольт на Ом на ампер = 50 ампер

75 вольт на Ом на ампер = 75 ампер

100 вольт на Ом на ампер = 100 ампер



›› Хотите другие юниты?

Вы можете произвести обратное преобразование единиц измерения из ампер в вольт на ом, или введите любые две единицы ниже:

›› Преобразователи общего электрического тока

вольт на ом на гигаампер
вольт на ом на дециампер
вольт на ом на аттоампер
вольт на ом на сименс-вольт
вольт на ом на усиление
вольт на ом до электростатической единицы
вольт на ом до терампера
дециампера на ом
вольт на ом для biot
вольт на ом для миллиампер


›› Определение: Amp

В физике ампер (символ: A, часто неофициально сокращается до ампер) — это базовая единица СИ, используемая для измерения электрических токов.Нынешнее определение, принятое 9-й сессией CGPM в 1948 году, гласит: «Один ампер — это тот постоянный ток, который, если он поддерживается в двух прямых параллельных проводниках бесконечной длины, с незначительным круглым поперечным сечением и помещен на расстоянии одного метра в вакууме, дает между этими проводниками сила, равная 2 × 10 -7 ньютон на метр длины ».


›› Метрические преобразования и др.

ConvertUnits.com предоставляет онлайн калькулятор преобразования для всех типов единиц измерения.Вы также можете найти метрические таблицы преобразования для единиц СИ. в виде английских единиц, валюты и других данных. Введите единицу символы, сокращения или полные названия единиц длины, площадь, масса, давление и другие типы. Примеры включают мм, дюйм, 100 кг, жидкая унция США, 6 футов 3 дюйма, 10 стоун 4, кубический см, метры в квадрате, граммы, моль, футы в секунду и многое другое!

Чувствительность вольтметра

В соответствии с рисунком A на рисунке 3-11, источник 150 вольт подключен к последовательной цепи. состоящий из двух резисторов по 10 кОм.Вид A показывает падение напряжения на каждом резисторе. быть 75 вольт. В диапазоне 150 В используемый вольтметр имеет полное внутреннее сопротивление 10 кОм. Вид B показывает вольтметр, подключенный к цепи. В параллельная комбинация R2 и измерителя теперь дает общее сопротивление 5 кОм. Из-за добавления вольтметра падение напряжения изменяется до 100 вольт на R1. и 50 вольт на R2. Обратите внимание, что это не нормальное падение напряжения на R2.Действительный условия цепи были изменены из-за вольтметра.

Чувствительность вольтметра

Чувствительность вольтметра указывается в омах на вольт. Определяется делением сумма сопротивления счетчика (R m ) плюс последовательное сопротивление (R s ), по показаниям полной шкалы в вольтах. В форме уравнения чувствительность выражается следующим образом:

Это то же самое, что сказать, что чувствительность равна обратной величине полной шкалы. ток отклонения.В форме уравнения это выражается следующим образом:

Следовательно, чувствительность 100-микроамперного механизма обратно пропорциональна 0,0001. ампер, или 10000 Ом на вольт.

Q.19 Какой термин используется для обозначения чувствительности вольтметра?

МЕТРА, ИСПОЛЬЗУЕМЫЕ ДЛЯ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ

Два инструмента, которые вы будете использовать чаще всего для проверки целостности цепи или для измерения Сопротивление цепи или компонента схемы, ОММЕТР и МЕГГЕР (МЕГОММЕТР).Омметр широко используется для измерения сопротивления и проверки целостность электрических цепей и устройств. Его диапазон обычно распространяется только на несколько МОм. Мегомметр широко используется для измерения сопротивления изоляции, например, между проводом и внешней поверхностью его изоляции, а сопротивление изоляции кабели и изоляторы. Диапазон мегомметра может быть увеличен до более чем 1000 МОм.

Q.20 Какой прибор используется для измерения сопротивления изоляции кабелей?

Омметр

Простая схема омметра показана на рисунке 3-12.Омметр состоит из постоянного тока миллиамперметр, описанный ранее в этой главе, и дополнительные функции, показанные ниже:

Рисунок 3-12. — Простая схема омметра.

Q.21 Какие дополнительные функции позволяют миллиамперметру постоянного тока работать как омметр?

Отклонение стрелки омметра контролируется количеством заряда батареи. ток, проходящий через движущуюся катушку.Прежде чем вы сможете измерить сопротивление неизвестный резистор или электрическая цепь, необходимо откалибровать омметр, который будет использоваться. Если значение измеряемого сопротивления можно оценить в разумных пределах, выберите диапазон на омметре, который даст отклонение примерно на половину шкалы, когда между датчиками вставлено сопротивление. Если вы не можете оценить сопротивление как измерить, затем установите переключатель диапазонов в положение наивысшего значения. Какой бы диапазон вы ни выбрали, Перед измерением неизвестного сопротивления измеритель должен быть откалиброван так, чтобы показывать ноль.

Для калибровки измерителя сначала замкните измерительные провода вместе, как показано на рисунке. 3-12. Если измерительные провода закорочены, существует полная последовательная цепь. Полная серия Схема состоит из источника 3 В, сопротивления катушки счетчика (R м ), сопротивление реостата регулировки нуля и последовательного умножающего резистора (R s ). Закороченные измерительные провода вызывают протекание тока и отклонение стрелки измерителя.

Обратите внимание, что нулевая точка на шкале омметра (в отличие от нулевых точек для напряжение и ток) находится в крайней правой части шкалы. С тестом закорочены провода, потенциометр регулировки нуля установлен так, что стрелка находится на нуле отметка. Следовательно, полное отклонение указывает на нулевое сопротивление между выводами.

Q.22 Полное отклонение по шкале омметра показывает, какое сопротивление между ведет?

Если вы измените диапазон на измерителе, вы должны «обнулить» (откалибровать) измеритель. еще раз, чтобы получить точные показания.Когда вы разделяете измерительные провода, указатель метр вернется к левой части шкалы. Это действие, как объяснялось ранее, вызванный восстанавливающей силой натяжения пружины, действующей на подвижный узел катушки. Значение в левой части шкалы указывает на бесконечное сопротивление.

После того, как вы настроили омметр на нулевое показание, он готов к подключению к цепь для измерения сопротивления. Типовая схема и расположение омметра показаны на рисунок 3-13.Убедитесь, что выключатель питания измеряемой цепи находится в обесточенное (ВЫКЛ) положение. Это предотвращает падение напряжения источника цепи. применительно к глюкометру, состояние, которое может привести к серьезным повреждениям движения глюкометра.

Рисунок 3-13. — Измерение сопротивления цепи омметром.

Помните, что омметр — это разрыв цепи, когда измерительные провода разделены.К Снимите показания сопротивления с помощью измерителя, вы должны указать путь для протекания тока. батареей счетчика. В соответствии с видом A на рис. 3-13 счетчик подключается в точках A и B для создания этого пути. При подключении этих измерительных проводов устанавливаются резисторы R1 и R2. последовательно с сопротивлением измерительной катушки, потенциометра регулировки нуля и последовательный резистор умножения. Поскольку вы ранее откалибровали измеритель, количество катушек движение теперь зависит только от сопротивлений R1 и R2.

Добавление R1 и R2 в цепь счетчика увеличивает общее последовательное сопротивление и уменьшает ток. Это уменьшает отклонение стрелки. Указатель приходит на шкале, показывающей суммарное сопротивление R1 и R2. если ты были заменены либо R1, либо R2, либо оба резистора с большим омическим сопротивлением. ток в подвижной катушке счетчика уменьшится еще больше. Это бы еще больше уменьшите отклонение указателя, и шкала покажет неподвижный более высокое сопротивление цепи.Вид B — это упрощенная версия схемы в представлении A.

Из нашего обсуждения омметра должны быть очевидны два факта: (1) Движение подвижного катушка пропорциональна величине протекающего тока, и (2) показание шкалы Омметр обратно пропорционален току, протекающему в подвижной катушке.

Величина измеряемого сопротивления цепи может варьироваться в широком диапазоне. В некоторых в корпусах оно может составлять всего несколько Ом; в других случаях оно может достигать 1 МОм.Масштаб Функции умножения встроены в большинство омметров, поэтому они показывают любые омические измеряемое значение и предлагают наименьшую погрешность. Большинство омметров оснащены селекторный переключатель для выбора желаемой шкалы умножения. Например, просмотреть A из На рис. 3-14 показан типичный счетчик с шестипозиционным переключателем. Позиции отмечены на счетчике кратно 10, от R X 1 до R X 100K.

Рисунок 3-14. — Омметр с переключателем умножения.

Диапазон, используемый для измерения любого конкретного неизвестного сопротивления (R x , вид A рисунка 3-14) зависит от приблизительного омического значения неизвестного сопротивления. Для Например, шкала омметра фигуры откалибрована по делениям от 0 до бесконечности. Обратите внимание, что деления легче читать в правой части шкалы, чем на слева. По этой причине, если R x больше 1000 Ом и если вы используя диапазон R X 1, вы не сможете точно прочитать указанное сопротивление.Это происходит из-за того, что суммарное последовательное сопротивление резисторов R x слишком велико. большой для диапазона R X 1, чтобы позволить току батареи течь, чтобы отклонить указатель в сторону из бесконечности. Вам необходимо повернуть переключатель диапазонов в положение R X 10, чтобы получить Чтение 1000 Ом.

Предположим, вы установили переключатель диапазонов в положение R X 10, а указатель теперь отклоняется до значения 375 Ом, как показано на виде B на рисунке 3-14.Этот укажет вам, что неизвестное сопротивление R x имеет 3750 (375 раз 10) Ом сопротивления. Изменение диапазона вызвало отклонение, потому что резистор R X 10 имеет только 1/10 сопротивления резистора R X 1. Следовательно, выбирая меньшее последовательное сопротивление позволил току батареи достаточного значения, чтобы вызвать читаемое отклонение указателя. Если диапазон R X 100 использовался для измерения того же резистора 3750 Ом, указатель будет отклониться еще дальше к 37.Положение 5 Ом, как показано на рисунке C. отклонение может произойти, потому что резистор R X 100 имеет только 1/10 сопротивления резистора R 10 х

Q.23 Выбор сопротивления R X 100 на омметре имеет какое сопротивление по сравнению с выбором R X 10?

Вольтметр — Измерение напряжения

При анализе работы электрических и электронных схем или попытке понять, почему схема не работает должным образом, в конечном итоге вам понадобится использовать вольтметр для измерения различных уровней напряжения.Вольтметры, используемые для измерения напряжения, бывают разных форм и размеров, аналоговые или цифровые, или как часть цифрового мультиметра, более широко используемого сегодня.

Вольтметры также можно использовать для измерения постоянного и синусоидального напряжения переменного тока, но использование вольтметра в качестве измерительного прибора в цепи может повлиять на его установившееся состояние.

Как следует из названия, «вольтметр» — это прибор, используемый для измерения напряжения (В), то есть разности потенциалов между любыми двумя точками в цепи.Для измерения напряжения (разности потенциалов) вольтметр должен быть подключен параллельно к компоненту, напряжение которого вы хотите измерить. Вольтметры могут использоваться для измерения падения напряжения на отдельном компоненте или источнике питания, или их можно использовать для измерения суммы падений напряжения на двух или более точках или компонентах в цепи.

Например, если мы подключим вольтметр к клеммам полностью заряженного автомобильного аккумулятора, он покажет 12,6 вольт. То есть есть разница в потенциале 12.6 вольт между положительной и отрицательной клеммами аккумулятора. Таким образом, напряжение V всегда измеряется параллельно или параллельно компоненту схемы.

Самым основным типом аналогового вольтметра постоянного тока является измеритель с подвижной катушкой постоянного магнита (PMMC), также известный как механизм Д’Арсонваля. Этот тип аналогового измерителя движения представляет собой устройство для измерения тока (называемое гальванометром), которое может быть настроено для работы либо как вольтметр , , либо как амперметр, принципиальная разница заключается в способе их подключения в цепи.Движение с подвижной катушкой использует фиксированный постоянный магнит и катушку из очень тонкой проволоки, которая может перемещаться (отсюда и название «подвижная катушка») в магнитном поле магнита.

При подключении к цепи электрический ток течет через катушку, которая в свою очередь создает собственное магнитное поле (электромагнетизм), которое реагирует на магнитное поле, создаваемое окружающим постоянным магнитом, заставляя катушку двигаться. Поскольку гальванометр реагирует на внутренний поток тока, если мы знаем внутреннее сопротивление катушки (намотанной из медной проволоки), мы можем просто использовать закон Ома для определения соответствующей измеряемой разности потенциалов.

Конструкция счетчика подвижной катушки с постоянным магнитом

Величина, на которую перемещается электромагнитная катушка, называемая «отклонением», пропорциональна силе тока, протекающего через катушку, необходимого для создания магнитного поля, необходимого для отклонения иглы. Обычно к катушке подключен указатель или игла, поэтому движение катушки вызывает отклонение указателя по линейной шкале, чтобы указать измеряемое значение, причем угол отклонения пропорционален входному току.Таким образом, стрелка гальванометра перемещается в ответ на ток.

Обычно тонкие демпфирующие пружины спирального типа для часов используются для управления углом отклонения, предотвращая колебания или быстрые движения, которые могут повредить стрелку, а также для удержания движения катушки в состоянии покоя, когда через катушку не проходит ток. Обычно перемещение указателя находится между нулем слева и полным отклонением (FSD) в крайнем правом углу шкалы. Некоторые измерительные приборы имеют указатель с пружинным центром, а нулевое положение покоя находится в середине шкалы, что позволяет перемещать указатель в обоих направлениях.Это полезно для измерения напряжения любой полярности.

Хотя это движение измерителя PMMC линейно реагирует на протекание тока в подвижной катушке, его можно приспособить для измерения напряжения путем добавления сопротивления последовательно с движением катушек. Комбинация последовательного сопротивления с движением измерителя с подвижной катушкой образует вольтметр постоянного тока, который может давать точные результаты после калибровки.

Измерение напряжения

В этих уроках мы видели, что, когда электрические заряды находятся в равновесии, напряжение между любыми двумя точками цепи равно нулю, а если ток (движение заряда) течет по цепи, напряжение будет существовать между двумя или более разными точками. точки схемы.Используя гальванометр, мы можем измерить не только ток, протекающий между двумя точками, но также и разницу напряжений между ними, согласно закону Ома, поскольку эти величины пропорциональны друг другу. Таким образом, используя градуированный вольтметр, мы можем измерить разность потенциалов между любыми двумя точками цепи.

Но как преобразовать счетчик, работающий с током, в счетчик, который можно использовать для измерения напряжения. Ранее мы говорили, что отклонение измерителя с подвижной катушкой постоянного магнита пропорционально силе тока, проходящего через его подвижную катушку.Если его полное отклонение (FSD) умножается на внутреннее сопротивление движущихся катушек, измеритель можно заставить считывать напряжение, а не ток, тем самым преобразовывая измеритель движущейся катушки с движущимся магнитом в вольтметр постоянного тока.

Однако из-за конструкции движения катушки, большинство измерителей PMMC являются очень чувствительными устройствами, которые могут иметь ток отклонения полной шкалы, номинальный ток I G составляет всего 100 мкА (или меньше). Если, например, сопротивление движущихся катушек R G составляет 500 Ом, то максимальное полное напряжение, которое мы могли бы измерить, было бы всего 50 мВ (V = I * R = 100 мкА x 500 Ом).Таким образом, чтобы чувствительное движение катушки вольтметра PMMC могло измерять более высокие значения напряжения, нам нужно найти способ уменьшить измеряемое напряжение до значения, которое измеритель может обработать, и это достигается путем размещения резистора, называемого умножителем, последовательно с измерителем внутреннего сопротивления катушки.

Предположим, что мы хотим использовать наш гальванометр 100 мкА, 500 Ом, указанный выше, для измерения напряжения в цепи до 1,0 вольт. Ясно, что мы не можем подключить измеритель напрямую для измерения 1 вольт, потому что, как мы видели ранее, максимальное напряжение, которое он может измерить, составляет 50 милливольт (50 мВ).Но, используя закон Ома, мы можем рассчитать номинал последовательного резистора, требуемого R S , который при измерении разности потенциалов в один вольт будет производить полное движение измерителя.

Таким образом, если ток, при котором гальванометр показывает отклонение на полную шкалу, составляет 100 мкА, то необходимое последовательное сопротивление R S рассчитывается как 9,5 кОм. Таким образом, гальванометр можно превратить в вольтметр, просто подключив к нему последовательно достаточно большое сопротивление, как показано.

Сопротивление серии вольтметров

Обратите внимание, что это последовательное сопротивление R S всегда будет выше внутреннего сопротивления катушки R G , чтобы ограничить силу тока через обмотки катушки. Комбинация движения измерителя с этим внешним последовательным сопротивлением формирует основу простого аналогового вольтметра.

Вольтметр Пример №1

Гальванометр PMMC имеет внутреннее сопротивление катушки 100 Ом и обеспечивает полное отклонение до 200 мВ.Найдите сопротивление умножителя, необходимое для того, чтобы измеритель давал полное отклонение при измерении постоянного напряжения 5 вольт.

Следовательно, необходимое последовательное сопротивление составляет 2,4 кОм.

Мы можем использовать этот метод для измерения любого значения напряжения, изменяя номинал резисторов умножителя по мере необходимости, при условии, что нам известны значения полного отклонения (FSD) тока или напряжения (I FSD или V FSD ) гальванометр. Затем все, что нам нужно сделать, это перемаркировать шкалу, чтобы она показывала от нуля до нового измеренного значения напряжения.

Эта простая схема последовательно соединенного делителя напряжения может быть расширена, чтобы иметь в ней ряд различных «умножающих» резисторов, что позволяет использовать вольтметр для измерения ряда различных уровней напряжения при нажатии переключателя.

Конструкция многодиапазонного вольтметра

Наш простой вольтметр постоянного тока, указанный выше, может быть дополнительно расширен за счет использования ряда последовательных сопротивлений, каждое из которых рассчитано на определенный диапазон напряжения, которые могут быть выбраны одно за другим с помощью одного многополюсного переключателя, что позволяет нашему аналоговому вольтметру Измерьте более широкий диапазон уровней напряжения одним движением.Этот тип конфигурации вольтметра называется многодиапазонным вольтметром с диапазоном, выбранным в зависимости от количества положений переключателя, например, 4-позиционный, 5-позиционный и т. Д.

Конфигурация многодиапазонного вольтметра прямого действия

В этой конфигурации вольтметра каждый резистор умножителя, R S многодиапазонного вольтметра, как и прежде, соединен последовательно с измерителем для получения желаемого диапазона напряжений. Итак, если мы предположим, что наш измеритель FSD на 50 мВ, указанный выше, требуется для измерения следующих диапазонов напряжения 10 В, 50 В, 100 В, 250 В и 500 В, то требуемые последовательные резисторы рассчитываются так же, как и раньше:

Давая прямую схему многодиапазонного вольтметра:

Хотя эта конфигурация прямого вольтметра очень хорошо работает для считывания нашего диапазона напряжений, значения резистора умножителя, необходимые для получения правильной полной шкалы измерителя для расчетных диапазонов, могут давать значения сопротивления, которые не являются стандартными предпочтительными значениями, или требуют, чтобы резисторы были припаяны. вместе, чтобы получить точное значение.Наши расчетные значения от 99,5 кОм до 4,9995 МОм не являются общими значениями резисторов, поэтому нам нужно найти вариант вышеупомянутой конструкции вольтметра, который будет использовать более распространенные значения резисторов.

Конфигурация многодиапазонного вольтметра косвенного действия

Более практичной конструкцией является конфигурация вольтметра непрямого действия, в которой одно или несколько последовательных сопротивлений соединены вместе в последовательную цепь с измерителем для получения желаемого диапазона напряжений. Преимущество здесь в том, что мы можем использовать стандартные предпочтительные значения для резисторов умножителя.Итак, если мы снова возьмем наш измеритель FSD на 50 мВ и диапазоны напряжений 10 В, 50 В, 100 В, 250 В и 500 В, то требуемые последовательные резисторы умножителя будут рассчитаны как:

Давая цепь вольтметра непрямого действия многодиапазонного из:

Тогда мы можем видеть с помощью этой непрямой 5-диапазонной конфигурации вольтметра, чем выше измеряемое напряжение, тем больше резисторов умножителя выбирается переключателем. Общее сопротивление, подключенное последовательно с измерителем PMMC, будет суммой сопротивлений, так как R ИТОГО = R S1 + R S2 + R S3 … и т. Д.Очевидно, что в то время как две схемы, прямая и косвенная конфигурация вольтметра могут считывать одни и те же уровни напряжения, использование стандартных и предпочтительных значений резисторов 400 кОм, 500 кОм, 1M5Ω и 2M5Ω делает косвенный метод более простым и дешевым в изготовлении.

Очевидно, что выбор номиналов резистора в конечном итоге будет зависеть от полной шкалы используемого гальванометра и уровней напряжения, которые необходимо измерить. В любом случае простой многодиапазонный аналоговый вольтметр постоянного тока может быть построен путем подключения резисторов умножителя более высокой серии и переключателя.Большинство цифровых мультиметров в наши дни имеют автоматический выбор диапазона.

Последний момент, на который следует обратить внимание при создании вольтметра постоянного тока, заключается в том, что идеальный вольтметр не будет влиять на измеряемую часть цепи или компонент, поскольку он будет иметь бесконечное эквивалентное сопротивление. Однако на практике при измерении напряжений подключение вольтметра к цепи, особенно к цепи с высоким сопротивлением, может снизить эффективное сопротивление цепи и, следовательно, имеет эффект уменьшения напряжения, измеряемого между двумя точками.

Чтобы минимизировать этот эффект нагрузки, следует использовать измеритель с высокой чувствительностью, то есть его полное отклонение достигается с меньшим отклоняющим током, чтобы сопротивление умножителя, используемое для вольтметра, могло быть как можно большим для уменьшения тока. который проходит через измеритель PMMC. Чувствительность вольтметра измеряется в Ом / Вольт (Ом / В).

Мультиметр

Цифровой мультиметр

Мультиметр или мультитестер , также известный как вольт / омметр или VOM , представляет собой электронный измерительный прибор, который объединяет несколько функций измерения в одном устройстве.Типичный мультиметр может включать такие функции, как возможность измерения напряжения, тока и сопротивления. Мультиметры могут использовать аналоговые или цифровые схемы — аналоговые мультиметры , и цифровые мультиметры , (часто сокращенно DMM, или DVOM ). Аналоговые инструменты обычно основаны на микроамперметре, указатель которого перемещается по шкале калибровки для всех различных измерений, которые может быть сделано; цифровые приборы обычно отображают цифры, но могут отображать полосу, длина которой пропорциональна измеряемой величине.

Мультиметр может быть портативным устройством, используемым для базового поиска неисправностей и работы в полевых условиях, или настольным прибором, который может выполнять измерения с очень высокой степенью точности. Их можно использовать для устранения проблем с электричеством в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателем, бытовые приборы, источники питания и системы электропроводки.


Измеряемые величины

Современные мультиметры могут измерять множество величин.Наиболее распространенными являются:

Кроме того, некоторые мультиметры измеряют:

Цифровые мультиметры могут также включать в себя схемы для:

  • непрерывности; пищит, когда цепь проводит.
  • Диоды (измерение прямого падения диодных переходов, т. Е. Диодов и переходов транзисторов) и транзисторы (измерение усиления по току и других параметров).
  • Проверка аккумуляторов для простых аккумуляторов на 1,5 и 9 В. Это шкала напряжения, нагруженного током.Проверка батареи (игнорирование внутреннего сопротивления, которое увеличивается по мере разряда батареи) менее точна при использовании шкалы напряжения постоянного тока.

Разрешение

Цифровой

Разрешение мультиметра часто указывается в «цифрах» разрешения. Например, термин 5½ цифр относится к количеству цифр, отображаемых на дисплее мультиметра.

По соглашению, половина цифры может отображать либо ноль, либо единицу, в то время как цифра в три четверти может отображать цифру больше единицы, но не девять.Обычно цифра в три четверти соответствует максимальному значению 3 или 5. Дробная цифра всегда является самой старшей цифрой отображаемого значения. Мультиметр на 5½ разряда будет иметь пять полных цифр, отображающих значения от 0 до 9, и одну половину цифры, которая может отображать только 0 или 1. [3] Такой измеритель может показывать положительные или отрицательные значения от 0 до 199 999. Трехзначный счетчик может отображать количество от 0 до 3 999 или 5 999, в зависимости от производителя.

В то время как цифровой дисплей может быть легко увеличен в точности, дополнительные цифры не имеют значения, если не сопровождаются тщательным проектированием и калибровкой аналоговых частей мультиметра.Значимые измерения с высоким разрешением требуют хорошего понимания технических характеристик прибора, хорошего контроля условий измерения и прослеживаемости калибровки прибора.

Указание «счетчиков дисплея» — еще один способ указать разрешение. Счетчики на дисплее дают наибольшее число или наибольшее число плюс один (чтобы число счёта выглядело лучше), которое может отображать дисплей мультиметра, игнорируя десятичный разделитель. Например, мультиметр с 5 ½ разрядами может быть указан как мультиметр с отображением 199999 или 200000 счетчиков.Часто счетчик на дисплее в спецификациях мультиметра называется просто счетчиком.

Аналоговый

Разрешение аналоговых мультиметров ограничено шириной указателя шкалы, вибрацией указателя, точностью печати шкал, калибровкой нуля, количеством диапазонов и ошибками из-за негоризонтального использования механического дисплея . Точность полученных показаний также часто снижается из-за неправильного подсчета разметки деления, ошибок в мысленной арифметике, ошибок наблюдения параллакса и неидеального зрения.Для улучшения разрешения используются зеркальные шкалы и более крупные измерительные приборы; Эквивалентное разрешение от двух с половиной до трех цифр является обычным (и обычно достаточно для ограниченной точности, необходимой для большинства измерений).

Измерения сопротивления, в частности, имеют низкую точность из-за типичной схемы измерения сопротивления, которая сильно сжимает шкалу при более высоких значениях сопротивления. Недорогие аналоговые измерители могут иметь только одну шкалу сопротивления, что серьезно ограничивает диапазон точных измерений.Обычно аналоговый измеритель имеет панель регулировки для установки калибровки измерителя при нулевом сопротивлении, чтобы компенсировать изменяющееся напряжение батареи измерителя.

Точность

Цифровые мультиметры обычно выполняют измерения с точностью, превосходящей их аналоговые аналоги. Стандартные аналоговые мультиметры обычно производят измерения с точностью до трех процентов, [4] , хотя бывают и более точные приборы. Стандартные портативные цифровые мультиметры обычно имеют точность 0.5% в диапазонах постоянного напряжения. Стандартные настольные мультиметры доступны с указанной точностью лучше ± 0,01%. Приборы лабораторного класса могут иметь точность до нескольких миллионных долей. [5]

Значения точности следует интерпретировать с осторожностью. Точность аналогового прибора обычно относится к полномасштабному отклонению; при измерении 10 В по шкале 100 В 3% счетчика возможна погрешность в 3 В, 30% от показания. Цифровые измерители обычно указывают точность в процентах от показаний плюс процент от полной шкалы, иногда выраженный в единицах, а не в процентах.

Заявленная точность определяется как нижняя граница диапазона милливольт (мВ) постоянного тока и известна как «базовая точность измерения постоянного напряжения». Более высокие диапазоны постоянного напряжения, тока, сопротивления, переменного тока и других диапазонов обычно имеют меньшую точность, чем базовое значение постоянного напряжения. Измерения переменного тока соответствуют указанной точности только в указанном диапазоне частот.

Производители могут предоставлять услуги по калибровке, так что новые счетчики могут быть приобретены с сертификатом калибровки, указывающим, что счетчик был настроен на стандарты, отслеживаемые, например, в Национальном институте стандартов и технологий США (NIST) или другой национальной лаборатории стандартов. .

Испытательное оборудование имеет тенденцию выходить из строя со временем, и на указанную точность нельзя полагаться бесконечно. Для более дорогого оборудования производители и третьи стороны предоставляют услуги по калибровке, чтобы старое оборудование могло быть откалибровано и повторно сертифицировано. Стоимость таких услуг непропорциональна недорогому оборудованию; однако предельная точность не требуется для большинства рутинных испытаний. Мультиметры, используемые для критических измерений, могут быть частью метрологической программы для обеспечения калибровки.

Чувствительность и входной импеданс

При использовании для измерения напряжения входное сопротивление мультиметра должно быть очень высоким по сравнению с импедансом измеряемой цепи; в противном случае работа схемы может измениться, и показания также будут неточными.

Измерители с электронными усилителями (все цифровые мультиметры и некоторые аналоговые измерители) имеют фиксированный входной импеданс, который достаточно высок, чтобы не мешать работе большинства цепей. Часто это один или десять МОм; Стандартизация входного сопротивления позволяет использовать внешние высокоомные пробники, которые образуют делитель напряжения с входным сопротивлением, чтобы расширить диапазон напряжений до десятков тысяч вольт.

Большинство аналоговых мультиметров с подвижной стрелкой не имеют буферизации и потребляют ток от тестируемой цепи, чтобы отклонить указатель измерителя. Импеданс измерителя варьируется в зависимости от базовой чувствительности движения измерителя и выбранного диапазона. Например, измеритель с типичной чувствительностью 20 000 Ом / В будет иметь входное сопротивление 2 миллиона Ом в диапазоне 100 В (100 В * 20 000 Ом / В = 2 000 000 Ом). В каждом диапазоне при полном напряжении диапазона полный ток, необходимый для отклонения движения измерителя, берется из тестируемой цепи.Движение измерителя с меньшей чувствительностью приемлемо для тестирования в цепях, где полное сопротивление источника низкое по сравнению с импедансом измерителя, например, силовые цепи; эти счетчики механически более прочны. Некоторые измерения в сигнальных цепях требуют движений с более высокой чувствительностью, чтобы не нагружать тестируемую цепь импедансом измерителя. [6]

Иногда чувствительность путают с разрешением измерителя, которое определяется как наименьшее изменение напряжения, тока или сопротивления, которое может изменить наблюдаемые показания.

Для цифровых мультиметров общего назначения самый низкий диапазон напряжения обычно составляет несколько сотен милливольт переменного или постоянного тока, но самый низкий диапазон тока может составлять несколько сотен миллиампер, хотя доступны инструменты с более высокой чувствительностью по току. Для измерения низкого сопротивления необходимо вычесть сопротивление выводов (измеренное путем соприкосновения измерительных щупов) для обеспечения максимальной точности.

Верхний предел диапазонов измерения мультиметра значительно варьируется; для измерения напряжений более 600 вольт, 10 ампер или 100 МОм может потребоваться специальный измерительный прибор.

Напряжение нагрузки

Любой амперметр, в том числе и мультиметр в диапазоне токов, имеет определенное сопротивление. Большинство мультиметров по своей сути измеряют напряжение и пропускают измеряемый ток через шунтирующее сопротивление, измеряя напряжение, возникающее на нем. Падение напряжения называется нагрузочным напряжением и выражается в вольтах на ампер. Значение может меняться в зависимости от диапазона, который выбирает измеритель, поскольку в разных диапазонах обычно используются разные шунтирующие резисторы. [7] [8]

Напряжение нагрузки может быть значительным в цепях низкого напряжения.Чтобы проверить его влияние на точность и работу внешней цепи, счетчик может быть переключен на различные диапазоны; текущее показание должно быть таким же, и работа схемы не должна нарушаться, если напряжение нагрузки не является проблемой. Если это напряжение является значительным, его можно уменьшить (также уменьшая присущую точность и точность измерения), используя более высокий диапазон тока.

Измерение переменного тока

Поскольку базовая индикаторная система в аналоговом или цифровом измерителе реагирует только на постоянный ток, мультиметр включает в себя схему преобразования переменного тока в постоянный для выполнения измерений переменного тока.В базовых измерителях используется схема выпрямителя для измерения среднего или пикового абсолютного значения напряжения, но они откалиброваны для отображения вычисленного среднеквадратичного значения (RMS) для синусоидальной формы волны; это даст правильные показания для переменного тока, используемого при распределении энергии.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *