Квантово-полевая картина мира и ее основные принципы
В конце ХIХ — начале XX вв. последовал ряд открытий, которые не вписывались в существовавшую научную картину мира. Революционная ситуация, сложившаяся в естествознании в начале XX в., связана с появлением двух новых теоретических концепций — квантовой механики и специальной теории относительности.
Во второй половине 19 в. в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах (во всем интервале длин волн) равнялась бесконечности, что противоречило закону сохранения энергии. Особенно ярко это противоречие проявлялось в области коротких длин волн, поэтому оно получило название «ультрафиолетовой катастрофы».
В 1900 г. Макс Планк для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями — квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой, квантовой, физики (старая при этом получила название классической). Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии
В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц — фотонов. В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель), представлявшая свет как механическую волну. В 70-х годах после утверждения теории Максвелла под светом стали понимать электромагнитную волну. В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.
В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс, обладают волновыми свойствами. При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).
Таким образом, корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга. Эта идея была высказана Н. Бором (1927 г.) и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание
Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. Микрочастица, напротив, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г.
В Гейзенберг, дав общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, В результате им был сформулирован принцип неопределенности, математическое выражение которого называется соотношением неопределенностей Гейзенберга:
Δx х Δv > h/m,
где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h – постоянная Планка.
Принцип соответствия, имеющий важное философское и методологическое значение, может быть сформулирован следующим образом: теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий. Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.
Ранее считалось, что устройство мира можно познавать, не вмешиваясь в него, не влияя на протекающие в нем процессы, т.е. находясь вне абсолютной физической реальности. Эйнштейн не включал в понятие «физическая реальность» акт наблюдения, а Бор считал его важным элементом физической реальности. Картина реальности в квантовой механике становится как бы двуплановой: с одной стороны в нее входят характеристики исследуемого объекта, а с другой — условия наблюдения. Таким образом, в КПКМ появляется
Эйнштейн обобщил принцип относительности Галилея на все явления природы. Принцип относительности Эйнштейна гласит: «Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое». Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета. Принцип относительности явился первым постулатом, который Эйнштейн положил в основу созданной им теории относительности. Второй постулат — принцип постоянства скорости света: скорость света в вакууме одинакова во всех инерциальных системах отсчета, по всем направлениям. Она не зависит от движения источника света и наблюдателя. При сложении любых скоростей результат не может превысить скорость света в вакууме, т.е. эта скорость — предельная.
Теория, созданная А. Эйнштейном для описания явлений в инерциальных системах отсчета, основанная на приведенных выше двух постулатах, называется специальной теорией относительности (СТО). В СТО протяженность и длительность меняются в движущихся системах отсчета, одновременность событий не абсолютна и зависит от выбора системы отсчета. Механика больших скоростей, где скорость приближается к скорости света, называется релятивистской механикой. Она опирается на два постулата Эйнштейна и не отменяет классическую механику, а лишь устанавливает границы ее применимости СТО подтверждена обширной совокупностью фактов и лежит в основе всех современных теорий, рассматривающих явления при релятивистских, т.е. близких к скорости света, скоростях.
Резюмируя вышесказанное, можно выделить следующие характерные особенности квантово-полевой картины мира: сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм — наличие у каждого элемента материи свойств волны и частицы; одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость; ушли в прошлое и представления о неизменности материи. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.
Эти новые мировоззренческие подходы к исследованию естественнонаучной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.
1. Квантово-полевая (неклассическая) картина мира и ее основные принципы. Фундаментальные концепции описания природы
Похожие главы из других работ:
Исторические эволюции картин мира
3. Современная картина мира
В ХХ в. на роль лидера научного познания наряду с физической претендует и биология, к которой относятся такие мощные направления, как эволюционное учение, генетика и экология, ставшая наукой о биосфере в целом…
Классическая теория эволюции Ч. Дарвина
2. Синтетическая (неклассическая) теория эволюции. Концептуальные основы и принципы
Проблема наследования изменений была ключевой для судьбы дарвиновской теории. Во времена Дарвина господствовали представления о слитной наследственности. Наследственность объяснялась слиянием «кровей» предковых форм…
Концепции современного естествознания
3. Электромагнитная физическая картина мира
Наибольший вклад в формирование данного представления о мире внесли работы М. Фарадея и Д. Максвелла…
Концепции современного естествознания
3. Жизнь. Биологическая картина мира. Биосфера и цивилизация. А.Л. Чижевский о влиянии Солнца на природные и общественные процессы
То, что Солнце — основа возникновения и существования жизни на нашей планете, а также причина большинства протекающих на ней физических и химических процессов,— тривиальная истина, привычная с незапамятных времен…
Критерии естественно-научного познания
3. Рациональная и реальная картина мира в формировании мировоззрения
Основываясь на естественно-научном восприятии мира, многие убеждены, что окружающий мир подвластен рациональному анализу. Для них, как они полагают, все явления природы можно логически объяснить, а то, что сегодня кажется чудом…
Наука и общество. Сциентизм и антисциентизм
2. НАУЧНАЯ КАРТИНА МИРА
антисциентизм философский мир материя Научная картина мира — это целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате обобщения и синтеза основных естественно-научных понятий, принципов…
Наука и общество. Сциентизм и антисциентизм
3. Понятие «физическая картина мира» и его содержание
История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI-XVII вв., было связано долгое время с развитием физики. Именно физика была и остается наиболее развитой и концепциям и аргументам…
Научная картина мира и синергетическая парадигма
1. Научная картина мира.
Научная картина мира — система представлений человека о свойствах и закономерностях действительности (реально существующего мира), построенная в результате обобщения и синтеза научных понятий и принципов…
Научная картина мира, понятие, структура, функции. Корпускулярно–волновой дуализм. Его сущность
2.2 Современная научная картина мира и ее отличие от ненаучных картин мира.
Основой современной научной картины мира являются фундаментальные знания, полученные, прежде всего, в области физики. Однако в последние десятилетия прошлого века все больше утверждалось мнение…
Особенности современной научной картины мира
2. Общие контуры и основные принципы построения современной естественно-научной картины мира.
Мир в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется общим закономерностям. При этом он имеет свою долгую историю, в общих чертах известную современной науке…
Физическая картина мира
Глава 2. Механистическая картина мира
Она складывается в результате научной революции XVI-XVII вв. на основе работ Галилео Галилея, который установил законы движения свободно падающих тел и сформулировал механический принцип относительности. Но главная заслуга Галилея в том…
Физическая картина мира
Глава 3. Электромагнитная картина мира
В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Он сделал вывод…
Физическая концепция естествознания
1. Развитие физики как науки. Физическая картина мира
Термин «физическая картина мира» обычно приписывается Г. Герцу, немецкому физику, одному из основателей электродинамики, который в 1886-89 гг. экспериментально доказал существование электромагнитных волн и исследовал их свойства…
Фундаментальные концепции описания природы
4. Принципы эволюционно-синергетической (современной) картины мира
Господствующей в современной науке является эволюционно-синергетическая концепция, т.е. основополагающий принцип, в соответствии с которым…
Эволюция в КСЕ
1. Естественно — научная картина мира.
Научная картина мира это — множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания…
Лекция Квантово-полевая картина мира (кпкм)
Лекция 8. Квантово-полевая картина мира (КПКМ).
8.1. Формирование идеи квантования физических величин
8.2. Корпускулярно-волновой дуализм света и вещества
8.3. Соотношения неопределенностей Гейзенберга
8.4. Основные понятия и принципы КПКМ
В основе современной КПКМ лежит новая физическая теория – квантовая механика, описывающая состояние и движение микрообъектов. Это – четвертая (после механики, электродинамики и теории относительности) фундаментальная физическая теория. Она является базой для развития современного естествознания.
В основе квантовой механики лежат фундаментальные идеи о квантовании физических величин и корпускулярно-волновом дуализме (единстве корпускулярного и континуального подхода к описанию мира).
8.1. Формирование идеи квантования физических величин.
Определение: физические величины, которые могут принимать лишь определенные дискретные значения, называются квантованными. А само их выражение через квантовые числа называется квантованием. Сама идея квантования сформировалась на основе ряда открытий в конце 19-го – начале 20-го века. Эти открытия следующие.
Открытие электрона. В 1897 г. был открыт электрон. Его заряд оказался наименьшим, элементарным. Заряд любого тела равен целому числу элементарных зарядов. Таким образом, заряд дискретен, а равенство q=±ne представляет собой форму квантования электрического заряда.
Тепловое излучение. Во второй половине 19 в. в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах (во всем интервале длин волн)равнялась бесконечности, что противоречило закону сохранения энергии. Особенно ярко это противоречие проявлялось в области коротких длин волн, поэтому оно получило название «ультрафиолетовой катастрофы».
В 1900 г. Макс Планк (1858-1947) для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями – квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой физики – квантовой физики (старая при этом получила название классической). Согласно этим представлениям энергия кванта e = h×n, где n — частота, а h – постоянная Планка, равная 6,626×10-34 Дж×с. Она является фундаментальной физической константой (квант действия).
Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии W =n×h×n, где n = 1,2,3… — целые числа.
В конце 19 в. в результате экспериментов были установлены законы фотоэффекта – явления выбивания электронов из вещества под действием света: 1) независимость энергии выбиваемых электронов от интенсивности света, а зависимость ее только от частоты световой волны и 2) наличие для каждого вещества «красной» границы фотоэффекта, т.е. минимальной частоты, при которой фотоэффект еще возможен. Эти законы не могли быть объяснены на основе представлений ЭМКМ.
В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц – фотонов. Как видно, это возвращает нас к корпускулярным воззрениям Ньютона, но на новом уровне.
Энергия фотона e = h×n = mc2, импульс P = mc = hn/c = h/l. Эти соотношения означали, что масса покоя фотона m0 = 0 (покоящийся фотон не существует), а скорость его равна скорости света. Масса движения фотона m = hn/c2 = P/c. На основе фотонных представлений и закона сохранения и превращения энергии Эйнштейн записывает основное уравнение фотоэффекта hn = A + Ek (энергия фотона расходуется на работу выхода электрона из атома и придание ему кинетической энергии.
8.2. Корпускулярно-волновой дуализм света и вещества.
В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель), представлявшая свет как механическую волну. В 70-х годах 19 века после утверждения теории Максвелла под светом стали понимать электромагнитную волну.
В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.
В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс Р, обладают волновыми свойствами. Так в физике появилась знаменитая формула де Бройля , где m – масса частицы, V – ее скорость, h – постоянная Планка.
В настоящее время волновые свойства микрочастиц находят широкое применение, например, в электронном микроскопе. Современные электронные микроскопы позволяют видеть молекулы и даже атомы вещества (увеличение в 105-106 раз).
При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).
По современным представлениям квантовый объект – это не частица, не волна, и даже не то и не другое одновременно. Квантовый объект – это нечто третье, не равное простой сумме свойств частицы и волны. Для выражения свойства квантового объекта у нас в языке просто нет соответствующих понятий. Но, поскольку сведения о микрообъекте, о его характеристиках мы получаем в результате взаимодействия его с прибором (макрообъектом), то и описывать этот микрообъект приходится в классических понятиях, т.е. используя понятия волны и частицы.
Принцип дополнительности. Итак, из сказанного выше следует, что корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга. Эта идея была высказана Н. Бором и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание – принципа дополнительности (1927). Суть принципа дополнительности по Н. Бору сводится к следующему: как бы далеко не выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных.
Важно отметить, что идея дополнительности рассматривалась Бором как выходящая за рамки чисто физического познания. Он считал (и эта точка зрения разделяется в настоящее время), что интерпретация квантовой механики «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающих из разделения «субъекта и объекта».
Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. К числу таких явлений относятся, например, квантовые явления, жизнь, психика и др. Бор, в частности, видел необходимость применения принципа дополнительности в биологии, что обусловлено чрезвычайно сложным строением и функциями живых организмов, которые обеспечивают им практически неисчерпаемые скрытые возможности.
8.3. Соотношения неопределенностей Гейзенберга.
Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Другими словами, мы можем говорить о значениях координаты и импульса микрочастицы только с некоторой степенью приближения. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг. Он показал, что эти неопределенности (неточности) удовлетворяют следующим соотношениям:
DX×DPX³h; DY×DPY³h; DZ×DPZ³h; DW×Dt³h.
Эти неравенства называются соотношениями неопределенностей Гейзенберга.
Таким образом, если мы знаем положение X импульс Р микрочастицы (например, электрона в атоме) с погрешностями DX и DPX, то эта погрешность не может быть меньше, чем h. Этот предел мал, поскольку мала сама h – постоянная Планка, но он существует, и это фундаментальный закон природы. Важно заметить, что эта неопределенность не связана с несовершенством наших приборов. Речь о том, что принципиально нельзя определить одновременно координату и импульс частицы точнее, чем это допускает соотношение неопределенностей. Этого нельзя сделать точно, так же как нельзя превысить скорость света, достичь абсолютного нуля температур, поднять себя за волосы, вернуть вчерашний день.
Из соотношения неопределенностей видно, что с увеличением массы частицы ограничения, накладываемые им уменьшаются. Например, для пылинки m=10-13кг, координата которой получена с точностью до ее размеров, т.е. DX=10-6м, получаем DVX=1,0×10-15 м/с. Эта неопределенность практически не будет сказываться ни при каких скоростях, с которыми может двигаться частица. Для макроскопических тел соотношение неопределенностей не будет вносить никаких ограничений в возможность применить для них понятия координаты и скорости одновременно. Дело в том, что постоянная Планка в этих случаях может рассматриваться пренебрежимо малой. Это приводит к тому, что квантовые свойства изучаемых объектов оказываются несущественными, а представления классической физики – полностью справедливыми. Аналогично при скоростях, намного меньших скорости света, выводы теории относительности совпадают с выводами классической механики.
Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.
Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом:
Теории, справедливость которых была экспериментально установлена для определенной группы объектов, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.
8.4. Основные понятия и принципы КПКМ.
Как и все предшествующие картины Мира, КПКМ представляет собой процесс дальнейшего развития и углубления наших знаний о сущности физических явлений. Процесс становления и развития КПКМ продолжается и прошел уже ряд стадий, в частности:
1) утверждение корпускулярно-волновых представлений о материи;
2) изменение методологии познания и отношения к физической реальности;
Пояснение: Ранее считалось, что устройство мира можно познавать, не вмешиваясь в него, не влияя на протекающие в нем процессы, т.е. находясь как бы вне его, вне абсолютной физической реальности. Эйнштейн не включал в понятие «физическая реальность» акт наблюдения, а Бор считал его важным элементом физической реальности. Картина реальности в квантовой механике становится как бы двуплановой: с одной стороны в нее входят характеристики исследуемого объекта, а с другой – условия наблюдения. Таким образом, в КПКМ появляется принцип относительности к средствам наблюдения.
Все рассмотренные ранее картины мира отличались своей трактовкой таких фундаментальных понятий как пространство и время, движение, принцип причинности, взаимодействия. Рассмотрим, как они представлены в КПКМ.
Пространство и время. При рассмотрении МКМ подчеркивалось, что пространство и время в ней абсолютны и независимы друг от друга. Для характеристики объекта в пространстве вводились три пространственные координаты (X,Y,Z), а для обозначения времени независимо от них вводилась одна временная координата t. В СТО и ЭМКМ они потеряли абсолютный и независимый характер. Появилось новое пространство-время как абсолютная характеристика четырехмерного Мира (пространственно-временного континуума Минковского). И новая величина – пространственно-временной интервал стал оставаться неизменным (инвариантным) при переходе от одной системы отсчета к другой.
Причинность. В МКМ при описании объектов используется два класса понятий: пространственно-временные, которые дают кинематическую картину движения и энергетически импульсные, которые дают динамическую (причинную) картину. В МКМ и ЭМКМ они независимы. В КПКМ, в соответствии соотношением неопределенностей они не могут применяться независимо друг от друга, они дополняют друг друга. Таким образом, пространство, время и причинность оказались относительными и зависимыми друг от друга.
Независимость пространства, времени и причинности в МКМ позволяет говорить о точной локализации объекта в пространстве, его траектории, об однозначной причинно-следственной связи (лапласовский детерминизм), об одновременном, точном измерении координат и скорости, энергии и времени.
В квантовой механике относительность пространства-времени и причинности приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории движения микрообъекта. И если в классической физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой частицы подчиняется не динамическим (детерминистским), а статистическим законам. Таким образом, причинность в современной КПКМ имеет вероятностный характер (вероятностная причинность).
Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.
1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 100, радиус действия порядка 10-15, время протекания t ~10-23с. Частицы – переносчики — p-мезоны.
2. Электромагнитное взаимодействие: константа порядка 10-2, радиус взаимодействия не ограничен, время взаимодействия t ~ 10-20с. Оно реализуется между всеми заряженными частицами. Частица-переносчик – фотон (g-квант).
3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10-13, t ~ 10-10с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10-18м. Частица – переносчик — векторный бозон.
4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.
Контрольные вопросы
1. Назовите основные этапы формирования КПКМ
2. Что такое «ультрафиолетовая катастрофа»?
3. Какая гипотеза легла в основу квантовой физики?
4. В чем заключается общность современных воззрений на природу света и представлений Ньютона?
5. Чему равна масса покоя фотона?
6. Запишите основное уравнение фотоэффекта.
7. Что такое корпускулярно-волновой дуализм?
8. Напишите и объясните формулу де Бройля.
9. Объясните понятие «квантовый объект».
10. В чем заключается сущность принципа дополнительности в квантовой физике? Как общего принципа познания?
11. Кто автор принципа дополнительности?
12. Запишите соотношение неопределенностей. Объясните его.
13. Как зависят ограничения, накладываемые соотношением неопределенностей, от массы частицы?
14. Поясните утверждение: «классическая механика является предельным случаем квантовой механики и релятивистской механики».
15. Охарактеризуйте понятия пространства и времени с позиций КПКМ.
16. Как следует понимать принцип причинности в рамках КПКМ?
17. Назовите типы взаимодействий. Чем характеризуются типы взаимодействий?
18. Какие взаимодействия следует учитывать при описании объектов и явлений микромира?
19. Какие взаимодействия следует учитывать при описании объектов и явлений макромира?
20. Какое взаимодействие является самым слабым?
Семинарское занятие № 4 Основные представления и принципы квантово-полевой картины Мира (кпкм).
Формирование идеи квантования физических величин (заряда, энергии, импульса и др.). Планетарная модель строения атома. Постулаты Бора. Принципы дополнительности и соответствия Н. Бора.
Объяснение фотоэффекта на основе фотонных представлений и закона сохранения и превращения энергии. Уравнение Эйнштейна для фотоэффекта.
Корпускулярно-волновой дуализм света и вещества. Формула Луи де Бройля. Методы электронной микроскопии и рентгеноструктурного анализа.
Периодическая система элементов Д.И. Менделеева и электронная теория строения атомов. Квантовые числа. Принцип Паули.
Химические процессы. Реакционная способность вещества. Энергетика химических реакций. Катализаторы и автокаталитические системы.
Основные термины и понятия
Квантово-полевая картина Мира. Физическая теория. Квантовая механика. Микрообъект. Квантованные величины. Квантование. Законы Кирхгофа, Стефана–Больцмана, Вина. «Ультрафиолетовая катастрофа». Квантовая гипотеза Планка. Формула Планка. Квант действия. Фотоны. Основное уравнение фотоэффекта. Модель атома Томсона. Планетарная модель строения атома. Ядерная физика. Радиоактивность. Постулаты Бора. Стационарные состояния атома. Правило квантования орбит. Теория атома водорода. Атомные спектры. Корпускулярно-волновой дуализм. Формула де Бройля. Разрешающая способность микроскопа. Квантовый объект. Методологический принцип. Принцип дополнительности. Соотношения неопределенностей Гейзенберга. Принцип соответствия. Границы применимости классической механики. Волновая функция. Уравнение Шрёдингера. Квантовые числа (главное, орбитальное, магнитное, магнитное спиновое). Принцип Паули. Электронная оболочка.
Семинарское занятие № 5 Многообразие и единство Мира по современным представлениям. Закономерности микромира. Принцип симметрии. Концепция самоорганизации.
Фундаментальные взаимодействия, их виды и характеристика.
Атомное ядро. Изотопы. Ядерные силы. Ядерная энергия и ее применение.
Элементарные частицы и их классификации. Фундаментальные частицы. Кварки.
Симметрия и асимметрия. Теорема Эмми Нётер. Принцип симметрии и законы сохранения
Концепция самоорганизации и ее становление. Основы синергетики. Самоорганизация в живой и неживой природе.
Основные термины и понятия
Четыре типа фундаментальных взаимодействий. Обменный характер взаимодействий. Нуклоны. Кварки. Элементарные частицы. Фундаментальные частицы. Сильное взаимодействие. Слабое взаимодействие. Фотон. Лептоны. Мюоны. Нейтрино. Адроны. Мезоны. Барионы. Спин. Бозоны. Фермионы. Античастица. Аннигиляция. Электронно-позитронная пара. Антикварки. Гипотеза кварков Гелл-Манна и Цвейга. Переносчики фундаментальных взаимодействий. Глюоны. Гравитоны. Теория Вайнберга–Глэшоу–Салама. Статистические законы. Вероятностный характер статистических законов. Дискретность. Система. Самоорганизация. Синергетика. Термодинамическое равновесие. Диссипативность. Бифуркация. «Детерминированный хаос». Эволюционно-синергетическая парадигма. Симметрия. Асимметрия. Теорема Эмми Нётер.
Квантовый мистицизм самыми простыми словами
Многие древние духовные концепции – иллюзорность материи, создание реальности сознанием, глубинное единство мира, существование Абсолюта – всегда назывались мистическими. Потому что они считались принципиально недоказуемы. Однако, с появлением квантовой механики, духовная картина мира начала обретать научную основу.
Квантово-полевая картина мира содержит целый ряд положений, которые ранее считались чистой мистикой. При этом, ключевые выводы квантовой механики многократно подтверждены различными экспериментами.
Как именно мистическая картина мира обретает научную основу с помощью квантовой механики – расскажет эта статья!
Квантовая механика доказывает:
#1: Свет – одновременно волна и частица!
Все началось со света.
Две различные теории образования света были высказаны в XVII века почти одновременно Ньютоном и Гюйгенсом.
Ньютон предположил, что свет – это поток неких частиц, а Гюйгенс – что это волна в «мировом эфире».
Победила точка зрения Ньютона, и почти на 200 лет стала общепринятой.
До тех пор, пока в 1803 году сэр Томас Юнг не провел первый в истории «квантовый эксперимент».
Правда, сам он, конечно, даже не подозревал, что его опыты сыграют ключевую роль в квантовой механике, которая возникнет только спустя более ста лет. Он просто был любознателен, и изучал природу света.
Итак, он взял непрозрачную ширму, сделал в ней 2 прорези и направил на нее луч света. За ширмой Юнг поставил экран. Теория Ньютона говорила, что свет – это поток частиц. Поэтому Юнг рассчитывал увидеть на экране за ширмой 2 вертикальных световых полосы от пролетевших сквозь прорези частиц.
Однако, к своему изумлению, он обнаружил на экране картину с множеством полосок. Словно через щели проходили световые волны, которые накладывались друг на друга («интерферировали»).
После этого опыта на сто с лишним лет вопрос о «природе света» был закрыт. Опыт Юнга недвусмысленно говорил: свет — это волна!
Тем не менее, в середине XIX века было открыто явление «фотоэффекта». Фотоэффект – это выбивание светом электронов с поверхности некоторых материалов.
Именно этот эффект, кстати, лежит в основе работы солнечных батарей.
В начале XX века Эйнштейн объяснил, почему именно отдельные электроны выбиваются светом. Потому что свет также состоит из отдельных частиц – фотонов. Эти фотоны, словно бильярдные шары, вышибают электроны со своих мест.
Это объяснение впоследствии было многократно подтверждено экспериментально. И опять вопрос о «природе света» был закрыт. Свет состоит из частиц – «фотонов»!
Теперь полученный ранее Юнгом результат с интерференционными полосами, подтверждающий «волновую» природу света, приобрел совершенно новое значение.
Объяснения Эйнштейна и Юнга были абсолютно надежно подтверждены экспериментально. И… при этом оказались совершенно противоположны.
Свет — это волна! – утверждал один эксперимент.
Свет — это частица! – настаивал другой.
Для увеличения схемы нажмите на нее.Каким-то непостижимым образом свет одновременно проявлял свойства и частицы, и волны одновременно. Это явление получило название «квантово-волновой дуализм». Оно полностью противоречило здравому смыслу, и буквально взорвало научный мир.
Однако, возможно, что так себя ведет только свет? Ведь свет – действительно совершенно уникальная субстанция, у которой нет массы и заряда, но имеется энергия!
#2: «Объективной реальности» не существует!
В 1924 году Луи де Бройль выдвинул гипотезу, что не только свет обладает квантово-волновым дуализмом.
Он предположил, что любая элементарная частица (электрон, протон, и т. д.) обладает свойствами как волны, так и частицы. Таким образом, квантово-волновой дуализм – это общее свойство всей материи.
Эту теорию удалось экспериментально подтвердить Клауссу Йонссону в 1961 году. Он заменил в опыте Юнга поток света на поток электронов из электронной пушки… и получил ту же самую картину с полосами на экране!
Результат опыта подтвердил, что электрон тоже ведет себя как волна. А ведь электрон обладает и массой, и зарядом. Электрон – одна из составляющих атома. Атомы образуют молекулы, а молекулы – это те кирпичики, из которых строятся вполне осязаемые твердые тела.
Дальнейшие эксперименты показали, что де Бройль был прав. Не только электрон, а все элементарные частицы демонстрировали свою волновую природу!
Это выглядит очень странно. Возникло предположение: может быть, электрон – не волна? Может быть, множество электронов просто движется волной?
Подтвердить или опровергнуть это утверждение помог опыт, в котором электроны выпускались поодиночке. Ведь отдельный электрон никак не сможет пройти одновременно в обе щели, чтобы интерферировать с самим собой!
Оказалось, что для электрона это возможно. Впервые опыт с выпусканием электронов через две щели «поодиночке» был проведен Акиро Тономурой из Токийского университета в 1989 году. На экране вновь появилась все та же знакомая картина с полосами. Единственное объяснение этому – электрон одновременно проходит в обе щели, интерферируя сам с собой.
Впрочем, физики и не сомневались в результатах этого опыта. И задолго до окончательного экспериментального подтверждения, был разработан математический аппарат, который описывает происходящее.
В соответствии с этим описанием, электрон до момента наблюдения над ним, не существует как материальный объект. Он находится в так называемом состоянии «суперпозиции».
«Состояние суперпозиции» означает, что электрон существует в виде «облака вероятностей». Он может обнаружится с определенной вероятностью в любой точке Вселенной.
То есть, электрон находится одновременно везде и нигде. Таким образом, на квантовом уровне никакой «объективной реальности» не существует! И этот удивительный факт многократно доказан экспериментально.
Но, может быть, на фотонах, электронах и других элементарных частицах все и кончается? Может быть, все эти удивительные свойства проявляются только лишь для них, а на «большие» объекты квантовая механика не распространяется? То, что можно «потрогать» – это точно объективная реальность!
Но нет, квантовые эксперименты и здесь наносят удар по здравому смыслу!
«Двухщелевой эксперимент» был неоднократно повторен австрийским исследователем Антоном Цайлингером с использованием молекул. Он начал в 1999 году с относительно небольших молекул, а в 2012 году провел опыт с огромными молекулами, содержащими до 114 атомов. Результаты всегда были однозначны.
Молекулы вели себя, как волны, а не как «материальные» объекты. Точно так же, как электроны и фотоны, они до момента наблюдения над ними словно «растворялись» в окружающем пространстве.
Кстати, не так давно в Венском университете была получена интерференционная картина для органической молекулы, состоящей из 15-ти аминокислот. Так что, «строительный материал» наших тел тоже проявляет «волновую» природу.
Для увеличения схемы нажмите на нее.Собственно, нет никаких сомнений, что объекты любой величины, если бы их удалось каким-то образом сделать «невидимыми» для наблюдателя, вели бы себя так же.
Именно поэтому квантовая механика делает вывод: никакой «объективной реальности» не существует! Реальность начинает возникать в момент наблюдения над ней.
#3: Наблюдаемая реальность создается информацией!
Один из самых загадочных результатов, полученных в результате экспериментов квантовой механики – «эффект наблюдателя».
Дело в том, что если, проводя «двухщелевой эксперимент», мы начинаем «подглядывать» за электроном, он перестает вести себя как волна, проходя сквозь обе щели. Под пристальным взглядом он начинает вести себя как частица, проходя в одну-единственную конкретную щель!
Для этого нужно поставить детектор, который может засечь, через какую именно щель пролетел электрон. Как только детектор заработает — на экране исчезнет интерференционная картина со множеством полосок, и возникнут две полосы напротив щелей.
Для увеличения схемы нажмите на нее.Результаты такого эксперимента были давным-давно предсказаны квантовой механикой теоретически.
Однако, технически возможным оказалось провести такой эксперимент лишь в 2013 году. Опыт поставил профессор Герман Бателаан.
Еще более неожиданно демонстрирует «эффект наблюдателя» эксперимент, который был предложен Джоном Уилером из университета Принстона.
Не буду его подробно описывать, скажу лишь суть: детектор электронов ставится уже после того, как электрон пролетел сквозь щели. Результат этого эксперимента оказался тем же самым.
Если есть наблюдатель – электрон «материализуется» как частица, и проходит через одну конкретную щель.
Нет наблюдателя – электрон «растворяется» в пространстве, проходя одновременно через обе щели.
То есть появление наблюдателя даже после пролета сквозь щель словно заставляет электрон вернуться в прошлое и принять решение – проходит он сквозь одну щель, или сквозь обе. Такая «власть» наблюдателя над элементарными частицами выглядит совершенно мистически!
Описанный «эффект наблюдателя» был предсказан задолго до его экспериментального подтверждения.
Долгое время он трактовался по-разному. Кто-то говорил о том, что сознание наблюдателя создает картину мира, некоторые наделяли «сознанием» элементарные частицы, кто-то говорил, что своими грубыми приборами мы разрушаем квантовую природу объекта.
Все оказались по-своему правы.
В 2004 году уже известный нам Антон Цайлингер провел совершенно удивительный эксперимент. Для опыта он использовал молекулы фуллерена. Это — крупные углеродные молекулы, содержащие до 70 атомов.
Сперва он просто стрелял пучком молекул фуллерена по стене с отверстиями и экраном за ней (на самом деле используемое им оборудование было более сложным, но суть опыта от этого не меняется). Конечно же, он наблюдал уже знакомую картину с интерференционными полосами – молекулы вели себя как квантовые объекты.
Затем эти молекулы после запуска, но до прохождения щелей, нагревались лучом лазера. По мере увеличения температуры нагрева, квантовые эффекты постепенно исчезали, и при температуре 3000 К молекулы начинали вести себя как «нормальные» материальные частицы! На экране появлялись две полосы. Возникал «эффект наблюдателя». Как будто кто-то пытался установить, через какую щель прошли молекулы.
Однако, никто специально не пытался «ловить» молекулу. Значит, «эффект наблюдателя» возникает сам по себе, и этот опыт опровергает выводы квантовой механики?
Нет, не опровергает. Он их расширяет. Просто «наблюдатель» — это не обязательно человек. В этом эксперименте в роли наблюдателя выступала… окружающая среда, или как говорят физики, окружение молекулы.
Вот как это происходит: нагретая молекула, как любое нагретое тело, начинает испускать тепло (тепловые фотоны). Если поймать несколько таких фотонов, то можно, в принципе, определить траекторию движения испустившей их молекулы. При этом, чем выше будет температура нагрева, тем точнее можно локализовать молекулу.
Если поставить детекторы фотонов, то при температуре 3000 К можно было бы точно сказать, через какую именно щель прошла конкретная молекула.
Только никакого детектора не было. Роль детектора выполняла окружающая среда.
Как только возникала принципиальная возможность выяснить местоположение молекулы в пространстве, она «возникала» в нем как материальная частица.
Для увеличения схемы нажмите на нее.Этот опыт говорит о следующем: реальность создается путем информационного обмена объекта с окружением. Как только объект «предоставляет» о себе достаточно информации – он материализуется из «квантовой реальности» в объективную.
Основа материальной реальности – информация! Информационный обмен объекта с его окружением проявляет этот объект в «материальном» мире.
#4: Вся Вселенная – единое целое!
Итак, экспериментально доказано, что факт обмена информацией со средой, или «наблюдения» заставляет частицы и более крупные объекты проявляться в «материальном» мире из изначальной «квантовой реальности».
Однако, «эхо» этой первичной реальности сохраняется в нашем материальном мире. И оно выражается в явлении квантовых корреляций, или «квантовой запутанности».
Наличие таких квантовых корреляций доказал опыт, проведенный в 1982 году французским физиком Аленом Аспе.
Аспе доказал, что факт наблюдения и измерения характеристик одной частицы может моментально «проявить» в нашем мире заранее неизвестные характеристики другой, «родственной» частицы.
Свойства этой частицы возникают, словно по взмаху волшебной палочки. Стоит только измерить ее «брата» – и в тот же миг частица возникает из «облака вероятностей», даже если она будет находиться на другом краю Вселенной.
В чем суть опыта? У фотона есть определенные характеристики, которые невозможно предсказать заранее, до наблюдения над ним.
В частности, каждый фотон имеет так называемую «поляризацию», то есть он колеблется в определенной плоскости. Это свойство фотона используется при работе широко известного поляризационного фильтра.
Такой фильтр не пропускает фотоны с определенной плоскостью колебаний («поляризацией»), и тем самым «убирает» разнообразные блики.
Однако, заранее предсказать, какую поляризацию имеет фотон – невозможно. Ведь, согласно квантовой механике, до наблюдения частицы этой характеристики просто не существует, есть только вероятность ее возникновения.
В опыте Аспе фотоны выпускались из одного источника попарно, чтобы между ними была взаимосвязь. После этого поляризация одного фотона фиксировалась на «детекторе» — поляризационном фильтре-решетке. Автоматически другой фотон пары прекращал свое существование как «квантовый объект», и приобретал ту же самую поляризацию. Вне зависимости от расстояния между ними!
Причем, установка Аспе была устроена так, что фильтр-решетка принимал определенное положение уже после того, как был выпущен фотон. То есть, если бы фотоны каким-то образом заранее воспринимали информацию о ее положении, то она должна была распространяться быстрее света.
Для увеличения схемы нажмите на нее.Очень приблизительно смысл эксперимента можно описать следующей аналогией.
Допустим, у двух друзей есть по колоде карт. Один друг находится в Москве, а другой – во Владивостоке. Тот, который находится в Москве, тасует колоду. Естественно, он не знает, какой окажется верхняя карта.
Затем москвич вытаскивает верхнюю карту и смотрит ее. После этого звонит во Владивосток, и спрашивает у своего друга – какая у него в колоде верхняя карта? И вдруг выясняется, что верхняя карта в колоде его друга во Владивостоке каким-то непостижимым образом стала точно такой же, как и в «московской» колоде! И сколько бы раз москвич ни тасовал колоду, и ни вытаскивал верхнюю карту – у друга во Владивостоке она будет точно такой же.
Объяснить результаты опыта неким «моментальным взаимодействием» частиц невозможно. Эйнштейн иронично называл такое предлагаемое объяснение «жутким дальнодействием». Ведь в наблюдаемом пространстве — времени ничто (и информация тоже!) не может двигаться быстрее света.
Объяснение, что оба фотона в момент своего «рождения» уже обладают определенной поляризацией, также неоднократно было опровергнуто квантовой механикой экспериментально.
Поэтому ученые ввели термин – «нелокальность». То есть, «запутанные» частицы находятся в состоянии целостности, единства.
Эффект, наблюдаемый в результате опыта, только выглядит как передача информации со сверхсветовой скоростью. На самом деле, частицы не взаимодействуют, они просто в определенном аспекте представляют собой единое целое. И это целое они представляют собой на уровне квантовой реальности.
Вот как пояснял явление «нелокальности» знаменитый американский физик Дэвид Бом:
«Представьте себе рыбу, плавающую в аквариуме. Представьте также, что вы никогда раньше не видели рыбу или аквариум и что единственную информацию о них вы получаете через две телевизионные камеры, одна из которых направлена на торец аквариума, а другая смотрит сбоку. Если смотреть на два телевизионных экрана, можно ошибочно предположить, что рыбы на экранах разные.
Действительно, поскольку камеры расположены под разными углами, каждое из изображений будет несколько отличаться. Но, продолжая наблюдать за рыбами, вы в конце концов понимаете, что между ними существует некая связь. Если поворачивается одна рыба, другая делает несколько другой, но синхронный поворот. Если одна рыба показывается анфас, другая предстает в профиль и т.д.
Если вы не знакомы с общей ситуацией, вы можете ошибочно заключить, что рыбы мгновенно координируют свои движения, однако это не так. Никакой мгновенной связи между ними нет, поскольку на более глубоком уровне реальности – реальности аквариума – существует одна, а не две рыбы».
Впоследствии явление «нелокальности» было экспериментально подтверждено неоднократно. Ученые увеличивали расстояние между частицами, «запутывали» между собой три частицы, и даже целые их облака.
В 2018 году группой физиков TheBigBellTest был проведен грандиозный эксперимент. Он позволил собрать статистически значимый объем результатов, чтобы получить окончательное экспериментальное подтверждение: наш мир «нелокален» по своей природе.
Для опытов «запутанные» состояния приготавливают специально. Однако, в природе квантовые корреляции – это обыденное явление. Они возникают постоянно.
Любые два крупных материальных объекта во Вселенной находятся в состоянии квантовой запутанности между собой. Этот факт был математически доказан в 2013 году профессором Станиславом Сжареком и группой математиков из Case Western Reserve University.
Следовательно, любые материальные объекты неразрывно связаны между собой. Не существует «отдельных», «независимых» объектов. Есть лишь части Целого. А еще вернее будет сказать – проекции отдельных аспектов Целого.
Любой объект «материального» мира (и конечно же, каждый человек!) неразрывно связан с абсолютной, квантовой реальностью. Мир не разделен на части, а един в своей основе.
Итак, глубинные духовные истины имеют научное подтверждение.
«Мы все — Одно», «Информация создает мир», «Абсолют – основа Вселенной» — именно к таким выводам приводят эксперименты квантовой механики.
Наука и духовность не противоречат друг другу. Чем глубже наука познает мир, тем сильнее она приближается к осознанию истинности духовных максим.
Поэтому тебе не нужно выбирать между наукой и духовностью. Объедини их в своем разуме и сердце!
Пожалуйста, оцени статью, нажав на звездочки в конце статьи.
Задавай вопросы или пиши свое мнение в комментариях!
Квантово-полевая картина мира
Концепции современного естествознания
Лекция 11. Квантово-полевая картина мира (КПКМ)
1. Формирование идеи квантования физических величин Контрольные вопросы |
В основе современной КПКМ лежит новая физическая теория квантовая механика, описывающая состояние и движение микрообъектов. Это четвертая (после механики, электродинамики и теории относительности) фундаментальная физическая теория. Она является базой для развития современного естествознания.
В основе квантовой механики лежат фундаментальные идеи о квантовании физических величин и корпускулярно-волновом дуализме (единстве корпускулярного и континуального подхода к описанию мира).
1. Формирование идеи квантования физических величин
Определение: физические величины, которые могут принимать лишь определенные дискретные значения, называются квантованными. А само их выражение через квантовые числа называется квантованием. Сама идея квантования сформировалась на основе ряда открытий в конце 19-го начале 20-го века. Рассмотрим основные из них.
Открытие электрона. В 1897 г. был открыт электрон. Его заряд оказался наименьшим, элементарным. Заряд любого тела равен целому числу элементарных зарядов. Таким образом, заряд дискретен, а равенство q=±ne представляет собой форму квантования электрического заряда.
Тепловое излучение. Во второй половине 19 в. в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах (во всем интервале длин волн)равнялась бесконечности, что противоречило закону сохранения энергии. Особенно ярко это противоречие проявлялось в области коротких длин волн, поэтому оно получило название «ультрафиолетовой катастрофы».
В 1900 г. Макс Планк (1858-1947) для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой физики квантовой физики (старая при этом получила название классической). Согласно этим представлениям энергия кванта e = h×n, где n — частота, а h постоянная Планка, равная 6,626×10-34 Дж×с. Она является фундаментальной физической константой (квант действия).
Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии W =n×h×n, где n = 1,2,3… — целые числа.
В конце 19 в. в результате экспериментов были установлены законы фотоэффекта явления выбивания электронов из вещества под действием света: 1) независимость энергии выбиваемых электронов от интенсивности света, а зависимость ее только от частоты световой волны и 2) наличие для каждого вещества «красной» границы фотоэффекта, т.е. минимальной частоты, при которой фотоэффект еще возможен. Эти законы не могли быть объяснены на основе представлений ЭМКМ.
В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц фотонов. Как видно, это возвращает нас к корпускулярным воззрениям Ньютона, но на новом уровне.
Энергия фотона e = h×n = mc2, импульс P = mc = hn/c = h/l. Эти соотношения означали, что масса покоя фотона m0 = 0 (покоящийся фотон не существует), а скорость его равна скорости света. Масса движения фотона m = hn/c2 = P/c. На основе фотонных представлений и закона сохранения и превращения энергии Эйнштейн записывает основное уравнение фотоэффекта hn = A + Ek (энергия фотона расходуется на работу выхода электрона из атома и придание ему кинетической энергии.
К началу документа
2. Корпускулярно-волновой дуализм света и вещества.
В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель), представлявшая свет как механическую волну. В 70-х годах после утверждения теории Максвелла под светом стали понимать электромагнитную волну.
В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.
В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс Р, обладают волновыми свойствами. Так в физике появилась знаменитая формула де Бройля , где m масса частицы, V ее скорость, h постоянная Планка.
В настоящее время волновые свойства микрочастиц находят широкое применение, например, в электронном микроскопе. Современные электронные микроскопы позволяют видеть молекулы и даже атомы вещества (увеличение в 105-106 раз).
При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).
По современным представлениям квантовый объект это не частица, не волна, и даже не то и не другое одновременно. Квантовый объект это нечто третье, не равное простой сумме свойств частицы и волны. Для выражения свойства квантового объекта у нас в языке просто нет соответствующих понятий. Но, поскольку сведения о микрообъекте, о его характеристиках мы получаем в результате взаимодействия его с прибором (макрообъектом), то и описывать этот микрообъект приходится в классических понятиях, т.е. используя понятия волны и частицы.
Принцип дополнительности. Итак, из сказанного выше следует, что корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга. Эта идея была высказана Н. Бором и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание принципа дополнительности (1927). Суть принципа дополнительности по Н. Бору сводится к следующему: как бы далеко не выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных.
Важно отметить, что идея дополнительности рассматривалась Бором как выходящая за рамки чисто физического познания. Он считал (и эта точка зрения разделяется в настоящее время), что интерпретация квантовой механики «имеет далеко идущую аналогию с общими трудностями образования человеческих понятий, возникающих из разделения «субъекта и объекта».
Принцип дополнительности, как общий принцип познания может быть сформулирован следующим образом: всякое истинное явление природы не может быть определено однозначно с помощью слов нашего языка и требует для своего определения, по крайней мере, двух взаимоисключающих дополнительных понятий. К числу таких явлений относятся, например, квантовые явления, жизнь, психика и др. Бор, в частности, видел необходимость применения принципа дополнительности в биологии, что обусловлено чрезвычайно сложным строением и функциями живых организмов, которые обеспечивают им практически неисчерпаемые скрытые возможности.
К началу документа
3. Соотношения неопределенностей Гейзенберга
Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. По-другому обстоит дело с микрочастицей. Микрочастица, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Другими словами, мы можем говорить о значениях координаты и импульса микрочастицы только с некоторой степенью приближения. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг. Он показал, что эти неопределенности (неточности) удовлетворяют следующим соотношениям:
DX×DPX³h; DY×DPY³h; DZ×DPZ³h; DW×Dt³h.
Эти неравенства называются соотношениями неопределенностей Гейзенберга.
Таким образом, если мы знаем положение X импульс Р микрочастицы (например, электрона в атоме) с погрешностями DX и DPX, то эта погрешность не может быть меньше, чем h. Этот предел мал, поскольку мала сама h постоянная Планка, но он существует, и это фундаментальный закон природы. Важно заметить, что эта неопределенность не связана с несовершенством наших приборов. Речь о том, что принципиально нельзя определить одновременно координату и импульс частицы точнее, чем это допускает соотношение неопределенностей. Этого нельзя сделать точно, так же как нельзя превысить скорость света, достичь абсолютного нуля температур, поднять себя за волосы, вернуть вчерашний день.
Из соотношения неопределенностей видно, что с увеличением массы частицы ограничения, накладываемые им уменьшаются. Например, для пылинки m=10-13кг, координата которой получена с точностью до ее размеров, т.е. DX=10-6м, получаем DVX=1,0×10-15 м/с. Эта неопределенность практически не будет сказываться ни при каких скоростях, с которыми может двигаться частица. Для макроскопических тел соотношение неопределенностей не будет вносить никаких ограничений в возможность применить для них понятия координаты и скорости одновременно. Дело в том, что постоянная Планка в этих случаях может рассматриваться пренебрежимо малой. Это приводит к тому, что квантовые свойства изучаемых объектов оказываются несущественными, а представления классической физики полностью справедливыми. Аналогично при скоростях, намного меньших скорости света, выводы теории относительности совпадают с выводами классической механики.
Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.
Это положение связано с так называемым принципом соответствия, имеющим важное философское и методологическое значение. Принцип соответствия может быть сформулирован следующим образом:
Теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий.
К началу документа
4. Основные понятия и принципы КПКМ
Как и все предшествующие картины Мира, КПКМ представляет собой процесс дальнейшего развития и углубления наших знаний о сущности физических явлений. Процесс становления и развития КПКМ продолжается и прошел уже ряд стадий, в частности:
1) утверждение корпускулярно-волновых представлений о материи;
2) изменение методологии познания и отношения к физической реальности;
Пояснение: Ранее считалось, что устройство мира можно познавать, не вмешиваясь в него, не влияя на протекающие в нем процессы, т.е. находясь как бы вне его, вне абсолютной физической реальности. Эйнштейн не включал в понятие «физическая реальность» акт наблюдения, а Бор считал его важным элементом физической реальности. Картина реальности в квантовой механике становится как бы двуплановой: с одной стороны в нее входят характеристики исследуемого объекта, а с другой условия наблюдения. Таким образом, в КПКМ появляется принцип относительности к средствам наблюдения.
Все рассмотренные ранее картины мира отличались своей трактовкой таких фундаментальных понятий как пространство и время, движение, принцип причинности, взаимодействия. Рассмотрим, как они представлены в КПКМ.
Пространство и время. При рассмотрении МКМ подчеркивалось, что пространство и время в ней абсолютны и независимы друг от друга. Для характеристики объекта в пространстве вводились три пространственные координаты (X,Y,Z), а для обозначения времени независимо от них вводилась одна временная координата t. В СТО и ЭМКМ они потеряли абсолютный и независимый характер. Появилось новое пространство-время как абсолютная характеристика четырехмерного Мира (пространственно-временного континуума Минковского). И новая величина пространственно-временной интервал стал оставаться неизменным (инвариантным) при переходе от одной системы отсчета к другой.
Причинность. В МКМ при описании объектов используется два класса понятий: пространственно-временные, которые дают кинематическую картину движения и энергетически импульсные, которые дают динамическую (причинную) картину. В МКМ и ЭМКМ они независимы. В КПКМ, в соответствии соотношением неопределенностей они не могут применяться независимо друг от друга, они дополняют друг друга. Таким образом, пространство, время и причинность оказались относительными и зависимыми друг от друга.
Независимость пространства, времени и причинности в МКМ позволяет говорить о точной локализации объекта в пространстве, его траектории, об однозначной причинно-следственной связи (лапласовский детерминизм), об одновременном, точном измерении координат и скорости, энергии и времени.
В квантовой механике относительность пространства-времени и причинности приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории движения микрообъекта. И если в классической физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой частицы подчиняется не динамическим (детерминистским), а статистическим законам. Таким образом, причинность в современной КПКМ имеет вероятностный характер (вероятностная причинность).
Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.
1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 100, радиус действия порядка 10-15, время протекания t ~10-23с. Частицы переносчики — p-мезоны.
2. Электромагнитное взаимодействие: константа порядка 10-2, радиус взаимодействия не ограничен, время взаимодействия t ~ 10-20с. Оно реализуется между всеми заряженными частицами. Частица-переносчик фотон (g-квант).
3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10-13, t ~ 10-10с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10-18м. Частица переносчик — векторный бозон.
4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, в ремя также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.
К началу документа
Контрольные вопросы
1. Назовите основные этапы формирования КПКМ
2. Что такое «ультрафиолетовая катастрофа»?
3. Какая гипотеза легла в основу квантовой физики?
4. В чем заключается общность современных воззрений на природу света и представлений Ньютона?
5. Чему равна масса покоя фотона?
6. Запишите основное уравнение фотоэффекта.
7. Что такое корпускулярно-волновой дуализм?
8. Напишите и объясните формулу де Бройля.
9. Объясните понятие «квантовый объект».
10. В чем заключается сущность принципа дополнительности в квантовой физике? Как общего принципа познания?
11. Кто автор принципа дополнительности?
12. Запишите соотношение неопределенностей. Объясните его.
13. Как зависят ограничения, накладываемые соотношением неопределенностей, от массы частицы?
14. Поясните утверждение: «классическая механика является предельным случаем квантовой механики и релятивистской механики».
15. Охарактеризуйте понятия пространства и времени с позиций КПКМ.
16. Как следует понимать принцип причинности в рамках КПКМ?
17. Назовите типы взаимодействий. Чем характеризуются типы взаимодействий?
18. Какие взаимодействия следует учитывать при описании объектов и явлений микромира?
19. Какие взаимодействия следует учитывать при описании объектов и явлений макромира?
20. Какое взаимодействие является самым слабым?
Литература
1. Дягилев Ф.М. Концепции современного естествознания. — М.: Изд. ИЭМПЭ, 1998.
2. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.
К началу документа
Права на распространение и использование курса принадлежат
Уфимскому Государственному Авиационному Техническому Университету
Обновлено 19.02.2002.
Web-мастер О.В. Трушин
4. Становление квантово-полевой картины мира. Диалектика природы и естествознания
4. Становление квантово-полевой картины мира
В начале XX в. эмпирически полученные данные о строении атома и о законах излучения оказались в противоречии с теорией электродинамики Максвелла, и это вело к принципиально новым представлениям о материи и движении. С одной стороны, представления о материи как о непрерывном бесконечном электромагнитном поле подтверждались огромным количеством экспериментальных данных, с другой — факты прерывности излучения и факты, свидетельствующие о сложном строении атома, нельзя было игнорировать. Таким образом, возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. В начале XX в. предпринимались многочисленные попытки совместить эти две точки зрения на материю (и на весь мир). При этом возникло множество предположений и гипотез, но все они, как правило, не могли объяснить, как могут существовать взаимоисключающие представления о материи. Многим казалось, что физика зашла в тупик, из которого нет выхода. Как выразился один из крупных физиков, П. Иордан, в этой науке воцарилось «беспокойство и смятение»[72].
Это смятение усугубилось, когда в 1913 г. Н. Бор предложил свою модель атома. Он предполагал, что электрон, вращающийся вокруг ядра, вопреки законам электродинамики не излучает энергии. Он излучает ее порциями лишь при перескакивании с одной орбиты на другую. Данное предположение первоначально казалось странным и непонятным даже таким физикам, как Э. Резерфорд, который является одним из авторов планетарной модели атома[73].
Однако именно модель атома Бора в значительной степени способствовала формированию новых физических представлений о материи и движении. В 1924 г. Луи де Бройль, используя аналогию между принципами наименьшего действия в механике и оптике, высказал гипотезу о соответствии каждой частице определенной волны. Иными словами, каждой частице материи присущи и свойство волны (непрерывность) и дискретность (квантовость). Тогда, отмечал де Бройль, становилась понятной теория Бора[74].
Эти физические представления нашли подтверждение в работах, выполненных в 1925–1927 гг. Э. Шредингером и В. Гейзенбергом. Первый на основе гипотезы де Бройля нашел волновое уравнение для частиц, а второй, развивая идеи Бора, дал основное уравнение квантовой механики в матричной форме. Вскоре М. Борном была показана тождественность волновой механики Шредингера и квантовой механики Гейзенберга.
В формировании квантово-полевой картины природы большую роль сыграла диалектическая идея о единстве прерывного и непрерывного. Тот, кто принимал эту идею, легко воспринял корпускулярно-волновой дуализм в представлениях о материи и движении. При построении первой квантовой теории поля — электродинамики Дирака — оно рассматривалось как совокупность частиц, а квантовые частицы — как возбуждение поля. Тем самым устанавливалась неразрывная взаимосвязь элементарных частиц и квантовых полей.
В настоящее время открыто несколько сот элементарных частиц. По массе они делятся на две группы: тяжелые (адроны) и легкие частицы (лептоны). При этом сначала было теоретически предсказано, а затем экспериментально подтверждено, что каждой элементарной частице соответствует античастица, обладающая противоположным знаком заряда и некоторыми другими квантовыми характеристиками. Одна из основных особенностей элементарных частиц — их универсальная взаимозависимость и взаимопревращаемость. Каждому виду элементарных частиц соответствуют свои формы взаимодействия. Кроме ранее известных электромагнитных (в которых участвуют частицы, обладающие электрическим зарядом) и гравитационных взаимодействий (в которых участвуют вообще все частицы) были открыты два новых вида взаимодействий: сильные, в которых участвуют адроны, и слабые, в которых участвуют лептоны. При этом происходит обмен виртуальными (короткоживущими) частицами, различными для разных видов взаимодействия. Это расширило представления о самом механизме взаимодействия. В современной физике основным материальным объектом является квантовое поле. Оно может находиться в возбужденном состоянии. При переходе поля из одного состояния в другое число частиц меняется.
Несмотря на тесную взаимосвязь понятий поля и частицы, понятие поля как совокупности частиц не исчерпывает его содержания. Специфика квантово-полевого понимания материи выражается и в том, что поле сохраняется даже тогда, когда частицы в нем отсутствуют. Такое состояние поля называется невозбужденным («нулевым»). Его не совсем точно называют вакуумом: в таком поле отсутствуют лишь частицы, но само поле остается протяженной материальной физической реальностью. Это подтверждено экспериментально. Представление о невозбужденных полях играет все более важную роль в квантово-полевой картине мира.
Ее особенность состоит в том, что в характеристике взаимопревращения частиц не действует закон сохранения их числа, т. е. частицы могут возникать, уничтожаться и превращаться в строгом соответствии с определенными законами сохранения (энергии, импульса, заряда и некоторых других специфически-квантовых величин). Совокупность этих законов в конечном счете является формой выражения всеобщего закона сохранения материи и движения[75].
Современные квантово-полевые представления о материи и движении не получили еще своей окончательной формулировки. Во-первых, в процессе развития атомной техники и эксперимента открываются все новые и новые разновидности микрообъектов. Во-вторых, в последние годы были сначала предсказаны теоретически, а затем зафиксированы экспериментально составные части квантовых частиц — так называемые кварки. Из них состоят все элементарные частицы, кроме лептонов. Поэтому стали говорить о кварках и лептонах как о фундаментальных частицах, из которых состоят все элементарные частицы. Однако в последнее время появились гипотезы о существовании еще более «элементарных» частиц, структурных элементов, из которых состоят кварки и лептоны. Эти гипотетические частицы названы «перонами». Как видно, в развитии квантово-полевых представлений подтверждается ленинское положение о неисчерпаемости материи вглубь.
Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме. Уравнения поля, выражающие объективные связи и законы, отражают и возможности тех или иных квантовых процессов, которые могут произойти в данной квантовой системе. В частности, вероятностная обусловленность тех или иных ее свойств выражена в соотношениях неопределенностей сопряженных пар физических величин: координаты и импульса, времени и энергии и некоторых других. Вследствие этих неопределенностей об элементарной частице нельзя говорить как о частице в обыденном понимании.
По мере того, как складывались квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии, о причинности и закономерности, строились различные общие теории. Сначала они охватывали лишь отдельные виды взаимодействий. Так, вслед за квантовой электродинамикой (теорией электромагнитных взаимодействий) была разработана теория слабых взаимодействий. Затем предпринимались многочисленные, но малоплодотворные попытки теоретического описания сильных взаимодействий. Но вскоре вследствие ряда возникших трудностей построение новых теорий затормозилось. Ученые пришли к выводу, что для дальнейшего развития физики необходимы принципиально новые идеи[76]. В. Гейзенберг, например, указывал, что надо отказаться от ряда устаревших понятий и по-новому сформулировать такие понятия, как «состояние», «часть» и «целое», «пространственная протяженность» и некоторые другие[77].
Это свидетельствовало о том, что квантово-полевая картина мира была недостаточно разработана в качестве исходной основы для построения этих теорий. Поэтому такие теории неизбежно были ограниченными; в них необходимо было вносить поправки и дополнения, с тем чтобы согласовать теоретические выводы с данными эксперимента. В результате они переставали быть подлинными теориями и превращались в свод полуэмпирических правил и закономерностей[78].
Однако за последние годы содержание квантово-полевой картины мира значительно расширилось. Прежде всего в соответствии с новыми экспериментами углублялись квантово-полевые представления о материи и движении, что оказывало влияние на картину мира в целом. В процессе более обстоятельного изучения взаимодействий между частицами было установлено, что понятие «состоять из» приобретает особый смысл. Оказалось возможным образовывать частицы с малой массой из частиц с большой массой. Таким образом, понятия «часть» и «целое» становились относительными, поскольку «часть» могла быть больше «целого». На этой основе сложились представления о том, что различия между микромиром и макромиром также относительны. Возникла гипотеза о «фридмонах» как о таких объектах, которые обладают космическими масштабами, но для внешнего наблюдателя проявляются как частицы сколь угодно малых размеров.
С открытием кварков и с разработкой гипотезы о «перонах» более глубокими стали и представления о материи и движении. Так, обнаружилось, что кварки и антикварки, составляющие протон и другие сложные частицы, связаны посредством особых виртуальных частиц — глюонов, взаимодействие которых тем слабее, чем ближе кварки находятся друг к другу. Создается представление, что внутри сложных частиц кварки относительно независимы друг от друга, обладают значительными «степенями свободы». Но при их удалении друг от друга взаимосвязь кварков становится столь большой, что «выбить» кварк из частицы оказывается практически невозможным. По всей вероятности, вне составленных из них частиц кварки и антикварки вообще не существуют. При таком углублении и расширении представлений о частицах и их взаимодействиях открываются новые возможности для построения квантовых теорий.
Перед современной физикой поставлена задача «великого объединения» — построения единой теории, охватывающей все виды взаимодействий элементарных частиц. Только такая теория могла бы рассматриваться в рамках достаточно разработанной картины мира в качестве фундаментальной квантово-полевой теории. Вместе с тем с ее появлением можно было бы считать завершенным формирование основ квантово-полевой картины мира. Отдельные элементы такого «великого объединения» уже созданы. Так, в 1967 г. С. Вейбергом и А. Саламом была разработана теория, объединяющая электромагнитные и слабые взаимодействия. Вслед за этим возникла задача объединения в одной теории этих взаимодействий с сильными взаимодействиями.
Однако в поисках такой единой теории физики натолкнулись на трудности, что свидетельствует о недостаточной разработанности ее основ. По-видимому, нужны качественно новые идеи и гипотезы. В этом плане плодотворным оказалось предположение о спонтанном нарушении симметрии вакуума, что связано с расширением представлений о вакууме как особом виде квантово-полевой материи: хотя вакуум является нулевым (основным) состоянием квантовой системы, он тем не менее обладает не нулевой энергией. Для дальнейшего успешного развития физики необходимо прежде всего углубление философских основ современной научной картины мира.
Таким образом, изучение особенностей современной революции в физике позволяет сделать ряд важных методологических выводов. Прежде всего необходима доработка квантово-полевой картины мира в соответствии с положениями о неисчерпаемости материи и многообразии ее видов, разнообразии взаимодействий, присущих квантовым объектам, объективности законов квантовой физики. Только на этом пути возможно правильное понимание необычных экспериментально установленных особенностей квантовых объектов.
Учитывая закономерности развития предыдущих физических картин мира, можно сделать вывод о том, что ключевой проблемой современной картины мира является, с одной стороны, углубление квантово-полевых представлений о материи и движении и, с другой — разработка таких представлений о пространстве и времени, которые полностью соответствовали бы квантово-полевому пониманию материи и движения.
В существующей картине мира наряду с новым, квантово-полевым пониманием материи и движения сохранились старые, электродинамические (релятивистские) представления о пространстве и времени. На этом основании некоторые физики пришли даже к выводу о неприменимости понятий пространства и времени в микромире, о том, что эти понятия якобы устарели и от них надо отказаться. На самом же деле устарели не понятия пространства и времени, а представления о них. В этом плане заслуживают внимания идеи квантования пространства и времени, идеи связи пространства и времени с внутренней симметрией элементарных частиц. Возможны и иные гипотезы об особенностях квантово-полевых объектов и форм их существования[79].
Качественные изменения представлений о пространстве и времени непосредственно связаны с разработкой нового математического аппарата, соответствующего квантово-полевой картине мира.
Таким образом, современная революция в физике открыла новые пути для развития этой науки. Однако новая физическая картина мира, пришедшая на смену старой, сложилась не сразу. Более того, до сих пор углубляются и расширяются основные для нее квантово-полевые представления о материи и движении, о взаимосвязи и взаимодействии; совершенствуются представления о причинности и закономерности. Главная задача в завершении квантово-полевой картины мира состоит в том, чтобы разработать такие квантово-полевые представления о пространстве и времени, которые качественно отличались бы от релятивистских и находились бы в полном соответствии с квантово-полевыми представлениями о материи и движении.
Поделитесь на страничкеСледующая глава >