Обратная трансформация — Большая Энциклопедия Нефти и Газа, статья, страница 2
Обратная трансформация
Cтраница 2
При этом, во избежание обратной трансформации в силовом трансформаторе, последний отключается от фазовых проводов. [17]
Если схема построена так, что возможна обратная трансформация напряжения, что бывает, например, при параллельной работе трансформаторов, то разъединители устанавливаются по обе стороны выключателей. [19]
Вторая трудность с алгоритмом Петрика состоит в росте числа возможных последовательностей обратных трансформаций, которые могут быть применены к заданному поверхностному дереву. Хотя многие из трансформаций, когда они применяются в прямом направлении, являются обязательными, так что только одно возможное действие может быть проделано, почти все обратные трансформации факультативны. Поэтому, когда какая-то обратная трансформация может быть применена, должны быть опробованы обе альтернативы: как применение обратной трансформации, так и неприменение ее. С ростом числа применяемых трансформаций число возможных активных путей может расти экспоненциально. [20]
Если при автоматическом отключении выключателя в РП оперативная бригада обнаружит на отключившейся линии напряжение от обратной трансформации, то необходимо найти кабель напряжением до 1 кв, связывающий разные линии, и отключить его с одной стороны. [21]
Это необходимо для того, чтобы не было случайной подачи на шины РУ высокого напряжения вследствие обратной трансформации
Применение постоянного тока небольшого напряжения ( 6 — 12 в) к тому же исключает возможность обратной трансформации. [23]
Это значит, что, в го время как большинство последовательностей прямых трансформаций ведут к правильным поверхностным структурам, многие последовательности обратных трансформаций не ведут к допустимым глубинным структурам, и много напрасных усилий тратится на тупики. Анализ Митре преодолевает недетерминированность обратного трансформационного процесса путем построения ad hoc для той или иной частной грамматики детерминированных множеств обратных трансформационных правил. Этот метод, однако, не гарантирует получения всех допустимых глубинных структур, и не существует формальной процедуры для построения необходимого множества обратных трансформаций. [24]
Силовые и измерительные трансформаторы необходимо отключать как со стороны первичных, так и со стороны вторичных обмоток, что обеспечивает невозможность обратной трансформации напряжения. [25]
При работах во вторичных устройствах и цепях трансформаторов напряжения с подачей напряжения от постороннего источника должны быть приняты меры, исключающие возможность
Трансформаторы напряжения и силовые трансформаторы, связанные с выделенным для работ участком электроустановки, должны быть отключены также и со стороны напряжения до 1000 В для исключения возможности обратной трансформации. [27]
Наложения заземления не требуется при работе на оборудовании, если от него со всех сторон отсоединены шины, провода и кабели, по которым может быть подано напряжение путем обратной трансформации или от постороннего источника и при условии, что на этом оборудовании не наводится напряжение. Концы отсоединенного кабеля при этом должны быть замкнуты накоротко и заземлены. [28]
При испытании необходимо принять меры, чтобы напряжение от нагрузочного трансформатора не было подано на вторичные обмотки трансформаторов испытываемой сети во избежание появления высокого напряжения в магнитосвязанных цепях из-за обратной трансформации. [30]
Страницы: 1 2 3
Большая Энциклопедия Нефти и Газа. Обратная трансформация силового трансформатора чем опасна
Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии. Большинство силовых трансформаторовоборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков. Настройка может производиться с помощью (анцапфы) переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе. Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора. Принципы регулирования. При эксплуатации трансформаторов довольно часто возникает необходимость регулирования вторичного напряжения. При этом различают два основных случая:
1) стабилизация вторичного напряжения при незначительном (на 5 — 10%) изменении первичного напряжения, что происходит обычно из-за падения напряжения в линии;
2) регулирование вторичного напряжения (из-за особенностей технологического процесса) в широких пределах при неизменном (или мало изменяющемся) первичном напряжении.
В обоих случаях вторичное напряжение регулируется путемизменения коэффициента трансформации, т. е. соотношения между числами витков первичной и вторичной обмоток.
В первом случае при небольших изменениях первичного напряжения можно изменять число витков либо первичной, либо вторичной обмотки. Например, при снижении первичного напряжения соответственно уменьшают число витков первичной обмотки так, чтобы ЭДС витка осталась неизменной. Поскольку число витков вторичной обмотки не изменяется, неизменной останется и ЭДС вторичной обмотки. При возрастании первичного напряжения соответственно увеличивают число витков первичной обмотки.
Во втором случае, когда требуется регулировать вторичное напряжение при неизменном первичном, изменяют число витков вторичной обмотки. Изменять число витков первичной обмотки в этом случае нельзя, так как это приведет к изменению магнитного потока трансформатора и, как следствие, к его перегреву или плохому использованию. Кроме того, очевидно, что получить малое выходное напряжение U2 = U1w2/w1 при неизменном числе витков вторичной обмотки практически невозможно, так какпри этом необходимо иметь большое число регулировочных витков*.
Переключение ответвлений обмоток w1 и w2 может осуществляться при отключении трансформатора от первичной и вторичной сетей (переключение без возбуждения) или под нагрузкой (регулирование под нагрузкой). Существуют также трансформаторы с плавным регулированием напряжения, в которых плавно изменяют число витков w2 или магнитный поток Ф2, охватываемый этой обмоткой.
* При очень больших мощностях иногда применяют регулирование по высоковольтной первичной стороне (чтобы избежать применения регулирующей аппаратуры на большие токи), используя специальные автотрансформаторные схемы.
Переключение ответвлений без возбуждения. Регулирование напряжения этим способом применяют в масляных и сухих силовых трансформаторах общепромышленного назначения, а также в трансформаторах, предназначенных для вентильных преобразователей. Напряжение регулируют на ±5% от Uном ступенями по 2,5 %, т. е. трансформатор имеет пять ступеней регулирования напряжения. В трансформаторах сравнительно небольшой мощности используют три ступени регулирования напряжения ( + 5; 0; —5%). В силовых трансформаторах большой мощности обычно напряжение регулируют на стороне ВН. Это позволяет упростить конструкцию переключателя ответвлений, так как токи в обмотке ВН меньше, чем в обмоткеНН. Кроме того, число витков обмотки ВН больше, чем обмотки НН, вследствие чего изменение числа витков на 1,25 — 2,5 % можно осуществлять с большей точностью. В трансформаторах, предназначенных для вентильных преобразователей, часто напряжение регулируют на стороне НН; при этом переключающую аппаратуру выполняют на большие токи, что сильно усложняет ее конструкцию.
При регулировании напряжения отключают часть витков только одной (первичной или вторичной) обмотки, что нарушает равномерность распределения МДС по высоте обмотки. Это приводит к искажению магнитного поля рассеяния и возникновению поперечной составляющей потока рассеяния, которая, взаимодействуя с током обмоток, создает электромагнитные силы, действующие на обмотку в осевом направлении (см. § 2.19). При аварийных режимах (короткое замыкание) эти силы могут достигать больших значений и вызывать разрушение обмотки. Поэтому стремятся равномерно распределить отключаемые витки обмотки по высоте или расположить их по возможности в середине высоты обмотки симметрично относительно обоих ярм. В трехфазных трансформаторах сравнительно небольшой мощности, где электромагнитные силы при коротких замыканиях невелики, для упрощения конструкции переключателя ответвлений целесообразно выполнять ответвления вблизи заземленной нулевой точки обмотки, так как при этом уменьшается напряжение, на которое должна быть рассчитана изоляция переключателя. Если ответвл
Обратная трансформация — Большая Энциклопедия Нефти и Газа, статья, страница 1
Обратная трансформация
Cтраница 1
Обратная трансформация осуществляется при помощи таблиц трансформаций или приемами, рассмотренными в специальной математической литературе. [1]
Обратная трансформация может происходить не только через силовые трансформаторы, но и через трансформаторы напряжения. [2]
Примером обратной трансформации может служить следующий: на основе сметной стоимости объектов — выхода системы ( нефтегазового строительства) определяются составные части входов этой системы — потребность ( или сколько израсходовано) материальных, трудовых, технических и других ресурсов. [4]
Во избежание обратной трансформации
Для предотвращения обратной трансформации фазные провода должны быть отсоединены от трансформатора, а выводы закорочены и заземлены. Для создания петли фазный провод присоединяют к корпусу проверяемого оборудования. [7]
Во избежание обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать их как со стороны первичных, так и со стороны вторичных обмоток. [8]
Во избежание опасности обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать эти трансформаторы со стороны как высшего, так и низшего напряжения. [10]
Во избежание опасности обратной трансформации напряжения силовыми и измерительными трансформаторами необходимо отключать их со стороны как первичных обмоток высшего напряжения, так и низшего напряжения. В ряде случаев следует отсоединять от зажимов ремонтируемых электроприемников провода питающей линии. [11]
При этом во избежание обратной трансформации в силовом трансформаторе последний должен быть отсоединен от фазных проводов, его выводы закорочены и заземлены. [13]
Иначе говоря, благодаря обратной трансформации в фазе А появляется дополнительное напряжение. [15]
Страницы: 1 2 3
Большая Энциклопедия Нефти и Газа. Обратная трансформация силового трансформатора это
Обратная трансформация — Большая Энциклопедия Нефти и Газа, статья, страница 2
Обратная трансформация
Cтраница 2
При этом, во избежание обратной трансформации в силовом трансформаторе, последний отключается от фазовых проводов. [17]
Если схема построена так, что возможна обратная трансформация напряжения, что бывает, например, при параллельной работе трансформаторов, то разъединители устанавливаются по обе стороны выключателей. [19]
Вторая трудность с алгоритмом Петрика состоит в росте числа возможных последовательностей обратных трансформаций, которые могут быть применены к заданному поверхностному дереву. Хотя многие из трансформаций, когда они применяются в прямом направлении, являются обязательными, так что только одно возможное действие может быть проделано, почти все обратные трансформации факультативны. Поэтому, когда какая-то обратная трансформация может быть применена, должны быть опробованы обе альтернативы: как применение обратной трансформации, так и неприменение ее. С ростом числа применяемых трансформаций число возможных активных путей может расти экспоненциально. [20]
Если при автоматическом отключении выключателя в РП оперативная бригада обнаружит на отключившейся линии напряжение от обратной трансформации, то необходимо найти кабель напряжением до 1 кв, связывающий разные линии, и отключить его с одной стороны. [21]
Это необходимо для того, чтобы не было случайной подачи на шины РУ высокого напряжения вследствие обратной трансформации. [22]
Применение постоянного тока небольшого напряжения ( 6 — 12 в) к тому же исключает возможность обратной трансформации. [23]
Это значит, что, в го время как большинство последовательностей прямых трансформаций ведут к правильным поверхностным структурам, многие последовательности обратных трансформаций не ведут к допустимым глубинным структурам, и много напрасных усилий тратится на тупики. Анализ Митре преодолевает недетерминированность обратного трансформационного процесса путем построения ad hoc для той или иной частной грамматики детерминированных множеств обратных трансформационных правил. Этот метод, однако, не гарантирует получения всех допустимых глубинных структур, и не существует формальной процедуры для построения необходимого множества обратных трансформаций. [24]
Силовые и измерительные трансформаторы необходимо отключать как со стороны первичных, так и со стороны вторичных обмоток, что обеспечивает невозможность обратной трансформации напряжения. [25]
При работах во вторичных устройствах и цепях трансформаторов напряжения с подачей напряжения от постороннего источника должны быть приняты меры, исключающие возможность обратной трансформации. [26]
Трансформаторы напряжения и силовые трансформаторы, связанные с выделенным для работ участком электроустановки, должны быть отключены также и со стороны напряжения до 1000 В для исключения возможности обратной трансформации. [27]
Наложения заземления не требуется при работе на оборудовании, если от него со всех сторон отсоединены шины, провода и кабели, по которым может быть подано напряжение путем обратной трансформации или от постороннего источника и при условии, что на этом оборудовании не наводится напряжение. Концы отсоединенного кабеля при этом должны быть замкнуты накоротко и заземлены. [28]
При испытании необходимо принять меры, чтобы напряжение от нагрузочного трансформатора не было подано на вторичные обмотки трансформаторов испытываемой сети во избежание появления высокого напряжения в магнитосвязанных цепях из-за обратной трансформации. [30]
Страницы: 1 2 3
www.ngpedia.ru
Обратная трансформация — Большая Энциклопедия Нефти и Газа, статья, страница 1
Обратная трансформация
Cтраница 1
Обратная трансформация осуществляется при помощи таблиц трансформаций или приемами, рассмотренными в специальной математической литературе. [1]
Обратная трансформация может происходить не только через силовые трансформаторы, но и через трансформаторы напряжения. [2]
Примером обратной трансформации может служить следующий: на основе сметной стоимости объектов — выхода системы ( нефтегазового строительства) определяются составные части входов этой системы — потребность ( или сколько израсходовано) материальных, трудовых, технических и других ресурсов. [4]
Во избежание обратной трансформации отключаются не только силовые, но и измерительные трансформаторы со стороны как низшего, так и высшего напряжения. [5]
Для предотвращения обратной трансформации фазные провода должны быть отсоединены от трансформатора, а выводы закорочены и заземлены. Для создания петли фазный провод присоединяют к корпусу проверяемого оборудования. [7]
Во избежание обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать их как со стороны первичных, так и со стороны вторичных обмоток. [8]
Во избежание обратной трансформации напряжения на трансформаторе напряжения должны быть сняты предохранители или он должен быть отключен с высшей и низшей сторон. [9]
Во избежание опасности обратной трансформации напряжения силовыми или измерительными трансформаторами необходимо отключать эти трансформаторы со стороны как высшего, так и низшего напряжения. [10]
Во избежание опасности обратной трансформации напряжения силовыми и измерительными трансформаторами необходимо отключать их со стороны как первичных обмоток высшего напряжения, так и низшего напряжения. В ряде случаев следует отсоединять от зажи
что это такое, как определить, формула
Трансформатор — электронное устройство, способное менять рабочие величины, измеряется коэффициентом трансформации, k. Это число указывает на изменение, масштабирование какого-либо параметра, например напряжения, тока, сопротивления или мощности.
Что такое коэффициент трансформации
Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.
В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.
Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:
- первичной;
- вторичной.
Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.
Коэффициент трансформации трансформатора
По специальной формуле определяется число проводов в обмотке, учитываются все особенности используемого сердечника. Поэтому в разных приборах в первичных катушках число витков будет разным, несмотря на то что подключаются к одному и тому же источнику питания. Витки рассчитываются относительно напряжения, если к трансформатору необходимо подключить несколько нагрузок с разным напряжением питания, то количество вторичных обмоток будет соответствовать количеству подключаемых нагрузок.
Зная число витков провода в первичной и вторичной обмотке, можно рассчитать k устройства. Согласно определения из ГОСТ 17596-72 “Коэффициент трансформации — отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.” Если этот коэффициент k больше 1, то прибор понижающий, если меньше — повышающий. В ГОСТе такого различия нет, поэтому большее число делят на меньшее и k всегда больше 1.
В электроснабжении преобразователи помогают снизить потери при передаче электроэнергии. Для этого напряжение, вырабатываемое электростанцией, увеличивается до нескольких сотен тысяч вольт. Затем этими же устройствами напряжение понижается до требуемого значения.
На тяговых подстанциях, обеспечивающих производственный и жилой комплекс электроэнергией, установлены трансформаторы с регулятором напряжения. От вторичной катушки отводятся дополнительные выводы, подключение к которым позволяет менять напряжение в небольшом интервале. Это делается болтовым соединением или рукояткой. В этом случае коэффициент трансформации силового трансформатора указывается в его паспорте.
Определение и формула коэффициента трансформации трансформатора
Получается, что коэффициент — это постоянная величина, показывающая масштабирование электрических параметров, она полностью зависит от конструкторских особенностей устройства. Для разных параметров расчет k производится по-разному. Существуют следующие категории трансформаторов:
- по напряжению;
- по току;
- по сопротивлению.
Перед определением коэффициента необходимо замерить напряжение на катушках. ГОСТ указано, что производить такое измерение нужно при холостом ходе. Это когда к преобразователю не подключена нагрузка, показания могут быть отображены на паспортной табличке этого устройства.
Затем показания первичной обмотки делят на показания вторичной, это и будет коэффициентом. При наличии сведений о количестве витков в каждой катушке производят дробление числа витков первичной обмотки на число витков вторичной. При этом расчете пренебрегают активным сопротивлением катушек. Если вторичных обмоток несколько, для каждой находят свой k.
Трансформаторы тока имеют свою особенность, их первичная обмотка включается последовательно нагрузке. Перед вычислением показателя k измеряют ток первичной и вторичной цепи. Производят разложение значения первичного тока на ток вторичной цепи. При наличии паспортных данных о количестве витков допускается произвести вычисление k путем деления числа оборотов провода вторичной обмотки на число оборотов провода первичной.
При расчете коэффициента для трансформатора сопротивления, его еще называют согласующим, сначала находят входное и выходное сопротивление. Для этого вычисляют мощность, которая равняется произведению напряжения и тока. Затем мощность делят на квадрат напряжения и получают сопротивление. Дробление входного сопротивления трансформатора и нагрузки по отношению к его первичной цепи и входного сопротивления нагрузки во вторичной цепи даст k прибора.
Есть другой способ вычисления. Необходимо найти коэффициент k по напряжению и возвести его в квадрат, результат будет аналогичным.
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
- силовой;
- автотрансформатор;
- импульсный;
- сварочный;
- разделительный;
- согласующий;
- пик-трансформатор;
- сдвоенный дроссель;
- трансфлюксор;
- вращающийся;
- воздушный и масляный;
- трехфазный.
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
- стержневой;
- броневой.
В броневом сердечнике магнитные поля оказывают большее влияние на масштабирование.
О трансформаторе импульсном замолвите слово / Habr
Несмотря не то, что не так давно проскакивали довольно неплохо написанные статьи о расчете трансформатора импульсного источника питания, я предложу вашему вниманию свою методику, и не просто голую методику, а максимально прозрачное описание принципов, в ней использующихся.Картинок не будет, будет около 18 несложных формул и много текста. Всех желающих приобщиться прошу на борт.
Я хочу поведать вам о том, как расчитать такого хитрого зверя, как импульсный трансформатор обратноходового источника питания. Обратноходовик, или FlyBack — это, наверное, самая популярная топология импульсного преобразователя. По моему мнению, в ИИП есть два очень важных и тонких момента — это трансформатор и петля обратной связи. В данной статье я хочу показать один из возможных наборов несложных математических уравнений, решая которые мы можем получить данные вполне реального трансформатора для флайбэка.
В интернете, в различных авторских статьях, или в AppNotes различных производетелей, можно найти различные методики расчета, которые зачастую максимально «сжаты», так, что из формул совершенно не понятно, как они получается. Я хочу сделать упор не на точность, а на максимальную наглядность и прозрачность производимых расчетов, так чтобы вы поняли, «почему так».
Далее постараюсь писать кратко и емко, так, чтобы вы смогли сесть и посчитать сразу после прочтения статьи. Эпюры напряжений и токов в обратноходовом источнике рисовать не буду, считаю, что вы достаточно подготовлены для того, что бы такие термины, как «индуктивность рассеяния», «отраженное напряжение», «пиковое значение тока через силовой ключ», «размагничивание магнитопровода» вам понятны.
Итак, считать будем трансформатор обратноходового источника питания, без корректора коэфициента мощности, как наиболее распространенный, да и «расчётка» моя пока только под него заточена.
Отдельно сделаю примечание, что подразумевается т.н. квазирезонансный режим работы преобразователя, когда накачка энергии в трансформатор начинается сразу после полного размагничивания магнитопровода. Т.е. т.н. «коэффициент безразрывности тока» =1, т.е. как только вся энергия вытекла через вторичную обмотку(и рассеялась в снабберной цепи), сразу включаем ключ и накачиваем снова. Такой режим в последнее время очень популярен в обратноходовых источниках питания, т.к. позволяет чуток поднять КПД.
Заранее оговорюсь — нижеприведенная методика весьма груба, но она «железобетонно» работает, многократно проверена на реальных трансформаторах в реальных источниках питания.
Для начала скачайте расчетку, откройте, пробегитесь глазами. В нее уже «вбиты» значения для расчета трансформатора источника питания, с выходной мощностью 100Вт.
Расчетка: к сожалению, по какой-то неведомой мне причине, публичная ссылка не отображается.
Возможно публикация публичных ссылок противоречит правилам. Надеюсь на то, что модераторы услышат этот крик души и снизошлют на меня персональную настройку фильтра, а пока можете переписать в Эксель, или маткад, все нижеприводимые формулы и получить годный результат.
Итак, поехали. Для того, чтобы начать расчет нам потребуется задаться несколькими исходными параметрами (все они выделены зеленым цветом в расчетке), а именно:
1. Выходная мощность источника питания для которого делаем трансформатор (POUTmax).
2. Выходное напряжение источника (Uout)(1).
3. Выходное напряжение служебной обмотки (Ubias)(2).
4. Минимальное напряжение питающей сети (UACmin)(3).
5. Максимальное напряжение в сети (UACmax)(3).
6. Уровень пульсаций на фильтрующем конденсаторе сетевого выпрямителя (Urpl)(4).
7. Ожидаемый КПД трансформатора (берите 0,85 и не прогадаете) (ŋ).
8. Частота работы преобразователя (5).
9. Пиковое значение тока протекающего через ключ коммутирующий первичную обмотку (ILPRpeak) (6).
(1) Если выходные напряжения достаточно низкие- учитывайте прямое падение напряжения на диоде.
(2) В подавляющем большинстве конструкций источников питания, требуется третья обмотка, от которой будет питаться управляющая микросхема.
(3) Всегда берите с запасом, т.е. если указан диапазон 180-264, берите от 160 до 280.
(4) Этот параметр зачастую можно только угадать, берите 10% от постоянной составляющей на нем и не ошибетесь, по факту полученного рабочего прототипа «подрихтуете» расчет.
(5) Частота к преобразователях с ожиданием размагничивания сердечника- плавающая, берем «с потолка» такую, которую хотим получить при полной нагрузке.
(6) Я надеюсь вы в курсе, что форма тока треугольная, что коммутирует ключ, что такое ключ и т.п.
Итак, первая формула:
Начнем с определения индуктивности первичной обмотки, Lpr.
Lpr=(1000×2×POUTmax)/(ŋ×F×ILPRpeak^2 ) (1)
Для упрощения я выкину КПД, и множитель 1000, который нужен только для приведения результата к микроГенри от Генри, получится нижеследующее уравнение:
Lpr=(2×POUTmax)/(F×ILPRpeak^2 ) (1.1)
На первый взгляд совершенно непонятно как так получается. Давайте попробуем ее преобразовать. Перенеся множители справа-налево, получим.
(Lpr×ILPRpeak^2)/2=POUTmax/F (1.2)
Преобразуем правую часть, получим:
(Lpr×ILPRpeak^2)/2=POUTmax×T (1.3)
Итак, в левой части у нас энергия содержащаяся в индуктивности (учебник физики, если не понятно). В правой части имеем мощность которая расходуется за период работы преобразователя. Т.е. энергия запасенная в индуктивности первичной обмотки (на этапе накачки, от начала периода до размыкания ключа) равна мощности передаваемой в нагрузку за весь период T (от начала накачки, до полного исчерпания энергии в трансформаторе и начала нового импульса).
В установившемся режиме то, что закачали в трансформатор из сети, должно равняться тому, что слили в нагрузку. Т.е. все рассуждения предполагают, что наш источник уже работает, а не стартует.
Оставим-же пока эту формулу (1), мы потом воспользуемся ею в расчётке, я лишь хотел продемонстрировать как она так получается.
Теперь о параметрах. Присмотримся к формуле. Зафиксировав (выбрав на свое усмотрение) три из четырех неизвестных, мы можем получить значение четвертой.
Мощность (POUTmax), мы уже задали.
Частота, ее можно просто выбрать по своему желанию. Не мудрствуя лукаво тыкнем скажем 50кГц и не проиграем. Лезть за 150кГц не стоит, так как потери на переключение станут неоправданно высокими, да еще скинэффект, не нужно это нам во флайбэке.
Пиковое значение тока через первичную обмотку, и одновременно ключ- ILPRPeak, это параметр на нервах которого мы будем играть. Выбирая его значение ILPRPeak, мы изменяем Lpr, а вместе с ней еще много чего другого. В моей расчетке будем менять ILPRpeak и наблюдать за другими ячейками таблицы, в которых будут находится результаты других формул. Опять-же, ближе к реальности, для 100Вт источника можно задаться для начала ILPRpeak= 3…4A.
Просто попробуйте подставить в ячейку различные числа, и вы увидите, как изменятся другие производные параметры. В частности, выбирая пиковый ток «первички», мы смотрим на «отраженное» напряжение, и исходим из соображений наличествующих у нас ключей. Так же этот параметр влияет на пиковое значение тока «вторички», что тоже важно, ибо во флайбэках токи имеют форму прямоугольного треугольника, и пиковые значения в разы превышают действующие, т.е. если ток нагрузки 5А, то пиковое может быть и 50, ориентируйтесь на наличествующие диоды и потери в меди обмотки.
Вторая формула:
UDCmin=UACmin×1.41-Urpl (2)
Тут упрощать нечего, думаю понятно, что мы получаем самое худшее значение постоянного напряжения, с учетом просадки на буферном конденсаторе, что стоит за сетевым выпрямителем, или за ККМ.
Ton=(Lpr×ILPRpeak)/UDCmin (3)
В формуле (3) мы вычисляем, сколько времени должен быть открыт ключ, чтоб ток в индуктивности, при приложении к ней нашего самого худшего UDCmin вырос от нуля до желаемого ILPRpeak.
T=1/F×1000 (4)
Частотой мы задались ранее, период посчитали в (4). На 1000 умножаем потому, что желаемую частоту мы записали в кГц а не в 1000-х Герц.
Toff=T-Ton (5)
Оставшаяся часть периода, которая будет посвящена передаче энергии в нагрузку, вычисляется по формуле (5).
Q=Toff/Ton (6)
Максимальный коэффициент заполнения для худшего напряжения в сети и максимальной просадки на фильтрующем конденсаторе вычисляем в (6).
Urv=UDCmin×Ton/Toff (7)
«Отраженное» напряжение. Наш трансформатор, хоть и обратноходовый, но таки трансформатор, а значит коэффициент трансформации к нему так-же применим. Если на нашей вторичной обмотке во время протекания тока через выпрямительный диод, апряжение (например) 12.7В, то через соотношение количества витков это напряжение трансформируется в первичную обмотку (ведь магнитный поток «омывает» одновременно все обмотки).
Формула (7), немного хитрая, попробуем ее «раскрутить». Получим:
UDCmin×Ton=Urv×Toff (7.1)
(7.1) Демонстрирует один очень важный момент, называемый в народе «равенство вольт*секундных интервалов». Возможно справедливость утверждения (7.1) не очевидна, или не сразу понятна, пока используем полученное с помощью (7) численное значение как есть, в его правомерности не сомневайтесь.
UVTmax=UACmax×1.41+Urv (8)
Надеюсь вы хорошо понимаете, что на обратном ходу, первичная обмотка, для постоянного напряжения, что на фильтрующем конденсаторе- просто кусок проволоки, т.е. если наш фильтрующий конденсатор все еще заряжен до 310В, то при разомкнутом силовом ключе, протекании тока через вторичную обмотку, постоянка попросту «проходит» через первичку и прикладывается к ключу, но вместе с ней, к ключу добавляется еще отраженное напряжение. И самое печальное, что оно суммируется с постоянкой. И это без учета выброса от индуктивности рассеяния, имейте это ввиду, в расчетке данное обстоятельство специально выделено красным шрифтом.
Тогда (8) показывает, какое напряжение будет приложено к силовому ключу на обратном ходу. Можно сразу прибавить к максимальному напряжению, на которое расчитан ключ, еще сверху вольт этак 200 и не ошибетесь. Макетирование покажет реальную амплитуду выброса напряжения порожденного индуктивностью рассеяния.
Теперь можем посчитать коэффициент трансформации трансформатора, например таким образом:
Kfb=Uout/Urv (9)
Я называю этот коэффициент трансформации «обратным», т.к. считается он задом наперед. Теперь классический коэффициент трансформации, который можно получить:
K=1/Kfb (10)
Далее посчитаем максимальное напряжение, которое будет приложено к выпрямительному диоду на прямом ходу преобразователя. Думаю вы хорошо понимаете, что оно будет складываться из напряжения на фильтрующем конденсаторе нагрузки, которое в рабочем режиме, можно считать постоянным, и трансформированного, через коэффициент трансформации, напряжения приложенного к первичной обмотке.
UVDmax=Uout+(VACmax×1.41)/K (11)
И не забываем, что выбросы от паразитных индуктивностей обмоток трансформатора, действуют и на диод в т.ч. Если речь идет о источниках с высокими выходными напряжениями, берите запас по напряжению минимум 200В. Для низковольтных, как минимум 1.5, и внимательно смотрите осциллографом на выпрямитель.
Далее.
Lsec=Lpr/K^2 (12)
Из (12) получаем индуктивность вторичной обмотки трансформатора. Правило которое используется в формуле гласит, что «индуктивности обмоток трансформатора соотносятся как квадраты их витков», т.к. выражение можно представить как:
Lsec/Lpr=N2^2/N1^2 (12.1) ( N2^2/N1^2 =K^2)
Далее посчитаем пиковый ток вторичной обмотки. Готовьтесь получить тут достаточно большие цифры, потому, что это «обратноход», и ток у него во «вторичке» — треугольный, и пиковое значение может быть ощутимо больше тока нагрузки.
ILSECpeak=√(1000×2×POUTmax)/(F×ŋ×Lsec) (13)
Данная формула преобразуется точно также как и первая формула для ILPRpeak.
ILSECrms=ILSECpeak√(1-Q)/3 (14)
В (14) вычисляется действующее значение тока через вторичную обмотку трансформатора. Обяснить почему корень из (1-Q)/3 я не могу, вероятно это можно объяснить построив эпюры и прибегнув к геометрии. Тут же прикинем и действующее значение тока первичной обмотки.
ILPRrms=ILPRmax√Q/3 (15)
Итак, индуктивности, токи, частоты посчитали. А как выбрать магнитопровод, спросите вы, как расчитать немагнитный зазор? Для начала мы его «прикинем», основываясь на своем жизненном опыте, а «загнав» его параметры в расчетку, поглядев посчитанную индукцию, можно выбрать другой магнитопровод. Вот захотелось мне источник мощностью 100Вт, с выходным напряжением 12В. Беру я «с потолка» магнитопровод типоразмера PQ2620.
Из его Datasheet выписываю Ae, предполагаемый зазор, и Коэффициент индуктивности для данного зазора (в даташитах Epcos, часто приводится таблица со стандартными зазорами для данного магнитопровода, и значениях Al и эквивалентной проницаемости). Если-же данных о коэфициенте Al для желаемого вами зазора, нет, придется его(зазор) изготовить, намотать пробные 100 витков, и посчитать по простой формуле Al=√(L/N^2), где L- измеренное значение индуктивности на сердечнике с пропиленным вами зазором, N — количество витков, что вы набросали(рекомендую мотать пробных 100 витков).
Объяснять что Такое Ae, G, и Al не буду, предполагая, что вы и сами знаете, зачем нужен зазор в магнитопроводе, и что такое Al. Также в расчетку можно вписать эквивалентную проницаемость сердечника с зазором, но она там не используется, чисто для красоты). В формуле (16) считаем необходимое количество витков.
Npr=√Lpr/Al (16)
Один из самых важных параметров для трансформатора- пиковое значение потока магнитной индукции.
B=(Lpr×ILPRpeak)/(Npr×Ae) (17)
Превышать значение 0,3 я категорически не рекомендую, а 0,4 это уже катастрофа. Так совпало, что данный магнитопровод вроде как вполне подходит под наши нужды. Индукция меньше 0,3Тл, так и хочется его заложить под наши нужды. К сожалению, расчетка не содержит формул для расчета заполненности окна магнитопровода медью, поэтому дать по ней окончательный вердикт — нельзя.
Если же индукция больше 0,3Тл, можем или выбрать более крупный магнитопровод, или увеличить зазор. Увеличив зазор мы получим уже другое значение Al и соотв. значение потока индукции.
Вообще, жизненный опыт показывает, что лучше не лезть в зазоры более 1.5мм., ибо им свойственны свои паразитные явления, такие как выпучивание линий магнитного поля, разогрев витков находящихся вблизи зазора, до температур, при которых им может настать «хана», короче от 0.2мм до 1.5мм. Меньше 0.2- температурное расширение материала может существенно изменить параметры трансформатора. Больше 1.5мм — написал выше.
Выбирая магнитопровод, а именно сравнивая различные модели, только по поперечному сечению керна (Ae), можно упустить из виду то, что длина магнитной линии тоже влияет на Al при том-же сечении, и зазоре.
Например магнитопровод PQ2620 имеет площадь сечения керна 122мм.кв, а ETD34 только 97мм.кв., но длины магнитных линий этих магнитопроводов различны, и через ETD34 можно так-же успешно прокачать 100Вт, как и через PQ2620. Я к тому, что берите и подставляйте в расчетку все феррриты, что находятся вблизи тех размеров, что, как вам кажется, могут прокачать желаемую мощность.
После расчета магнитной индукции в расчетке идет расчет количества витков вторичной обмотки и вспомогательной обмотки, на них специально останавливаться не буду, методология та-же, что и ранее.
Я надеюсь написанное выше будет вам полезно. Разработка ИИП это огромный пласт прикладной науки, и сия «расчетка» лишь маленький листик одного из талмудов, в котором собран весь опыт человечества, но она крайне полезна в прикладном плане, для разработки простеньких «флайбэков».
Моя «расчетка» (а на самом деле не моя, а унаследованная от идейного вдохновителя) довольно примитивный инструмент, поэтому я могу порекомендовать использовать сборник программ Владимира Денисенко, что легко находятся через поисковик. Тех, кто «рубит» в «силовой» теме, и имеет что сказать- вэлкам в коменты. Любая критика приветствуется!
Что непонятно — спрашивайте, я дополню статью более детальными объяснениями.
Обратная трансформация — Большая Энциклопедия Нефти и Газа, статья, страница 3
Обратная трансформация
Cтраница 3
Трансформаторы напряжения и силовые трансформаторы, связанные с выделенным для производства работ участком электроустановки, должны быть отключены также и со стороны напряжения до 1000 В, чтоб исключить обратную трансформацию. [31]
Трансформаторы напряжения и силовые трансформаторы, связанные с выделенным для производства работ участком электроустановки, должны быть отключены также и со стороны напряжения до 1000 В, чтобы исключить обратную трансформацию. [32]
Силовые трансформаторы и трансформаторы напряжения, связанные с выделенным для работ участком электроустановки, должны быть отключены и схемы их разобраны также со стороны других своих обмоток для исключения возможности обратной трансформации. [33]
Вдумчивый читатель мог заметить, что в то время как существует множество способов восстановительных трансформаций различных функций с образованием насыщенного углеводородного фрагмента, мы ни разу не упомянули о возможности обратной трансформации — перехода с уровня 0 к производным более высокого уровня окисления. [34]
Силовые трансформаторы и трансформаторы напряжения, связанные с выделенным для работ участком электроустановки, должны быть отключены и схемы их разобраны также со стороны других своих обмоток для исключения возможности обратной трансформации. [35]
Вдумчивый читатель мог заметить, что в то время как существует множество способов восстановительных трансформаций различных функций с образованием насыщенного углеводородного фрагмента, мы ни разу не упомянули о возможности обратной трансформации — перехода с уровня 0 к производным более высокого уровня окисления. [36]
Во время монтажа первичные и вторичные обмотки трансформаторов напряжения с целью безопасности должны быть закорочены, так как случайные соприкосновения с временными проводками, предназначенными для освещения, сварки, измерений, могут вызвать обратную трансформацию, а следовательно, и напряжение, опасное для жизни людей. [37]
Наложение заземлений не требуется при работе на электрооборудовании, если от него со всех сторон отсоединены шины, провода и кабели, по которым может быть подано напряжение; если на него не может быть подано напряжение путем обратной трансформации или от постороннего источника и при условии, что на этом оборудовании не наводится напряжение. Концы отсоединенных кабелей при этом должны быть замкнуты накоротко и заземлены. [38]
Не требуется наложение заземлений при работе на электрооборудовании, когда от него со всех сторон отсоединены шины, провода и кабели, по которым может быть подано напряжение; когда на него не может быть подано напряжение путем обратной трансформации или от постороннего источника, и при условии, что на этом оборудовании не наводится напряжение. При этом концы отсоединенных кабелей должны быть замкнуты накоротко и заземлены. [39]
Страницы: 1 2 3