Набор дросселей CDRh204R и небольшой экскурс в историю.
Понадобились мне для одного проекта дроссели, больше всех подходили дроссели типа CDRh204R.Надо было немного и проще было пойти и купить в оффлайне, но полазив по Али решил купить набор из 10 номиналов, по 5 штук каждого. Дроссель вещь в хозяйстве радиолюбителя довольно нужная и я посчитал, что сделал правильно, пригодятся.
Но это все присказка, сказка будет дальше.
Стоят у нас эти дроссели заметно дороже, а применяются довольно часто, и не всегда нужен только один номинал, собственно потому и заказал набор.
Я уже делал как то обзор с участием дросселей, только те были побольше и мощнее.
Пришел он в небольшом белом конверте, внутри плотный пакет с защелкой.
Набор дросселей CDRh204R и небольшой экскурс в историю.Внутри пакета собственно сами дроссели.
10 номиналов, 5 штук каждого.
номиналы в микроГенри — 10, 15, 22, 33, 47, 68, 100, 150, 220, 330.
Ну измерение будет немного позже, а пока фото как это пришло.
Все идет в ленте, кроме одного номинала.Набор дросселей CDRh204R и небольшой экскурс в историю.
После этого я протестировал по одному дросселю каждого номинала. Измерения я спрячу под спойлер, так как фоток много.Все фото идут по порядку увеличения индуктивности.
10мкГн, 8.98 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
15мкГн, 12, 76 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
22мкГн, 20, 76 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
33мкГн, 33,1 в реальностиНабор дросселей CDRh204R и небольшой экскурс в историю.
47мкГн, 42,5 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
100мкГн, 96,1 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
150мкГн, 150,6 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
220мкГн, 218.6 в реальностиНабор дросселей CDRh204R и небольшой экскурс в историю.
Ну и 330мкГн, 334 в реальности.Набор дросселей CDRh204R и небольшой экскурс в историю.
На мой взгляд нормально, силовые дроссели не являются прецизионными элементами и такой разброс параметров вполне нормален.
Самый большой размер в районе контактов.Набор дросселей CDRh204R и небольшой экскурс в историю.
Маркировка нанесена по разному, где более жирно, где блекло, но в целом нормально.Набор дросселей CDRh204R и небольшой экскурс в историю.
Сечение провода отличается соответственно индуктивности дросселя, чем меньше индуктивность, тем на больший ток рассчитан дроссель и тем толще провод, в дросселях с маленькой индуктивностью обмотка сделана в два провода.Набор дросселей CDRh204R и небольшой экскурс в историю.
Я не буду утверждать, оригинальные ли это дроссели или нет, но качество изготовления, размеры и основные параметры вполне соответствуют .pdf]даташиту от фирмы Sumida.
К сожалению я не могу проверить активное сопротивление, пока нечем, так что увы 🙁
Дроссели производятся и применяются очень давно, они бывают разных размеров, типов, номиналов и т.д.
Применяются они и как элементы фильтров от помех и как балласт в люминесцентных (и не только) светильниках, и как элемент, который может накапливать энергию.
В типичном бытовом компьютере их запросто может быть более полусотни.
Входной дроссель фильтра питания, дроссель пассивного корректора мощности, дроссель групповой стабилизации, выходные дроссели. Так же много их на материнской плате, в узле питания процессора, на плате жесткого диска и на видеокарте. Даже на аудиокарте, но там чаще дроссели выполняют функцию защиты от помех.
Применялись они и раньше, но большое распространение получили с приходом импульсных преобразователей напряжения.
С их применением легко строить повышающие, понижающие и понижающеповыщающие преобразователи, а так как преобразователи импульсные, то на их выходе опять же стоит дроссель, в общем без них сейчас никуда.
Но что-то я увлекся.
Пора перейти к практической части. Но должен предупредить сразу, в этом обзоре не будет суперсовременных преобразователей, работающих на частотах в несколько МГц.
Все будет гораздо проще, но может от того и интереснее.
Аксакалы наверняка знают данную схему, но я почти уверен, что многим новичкам она будет неизвестна.
Довольно давно, когда я еще паял АОНы народу, то как и сейчас была потребность в получении напряжения в 5 Вольт для питания электроники.
В основном применялись стабилизаторы серии КРЕН, если быть точнее, то КР142ЕН5А.
но все прекрасно знают, что при большой простоте и низкой цене он имеет большой недостаток, низкий КПД. Особенно проявляющийся при большой разнице между входным и выходным напряжением.
И тогда я случайно встретил данное схемное решение, интернета тогда еще не было и я уже не помню где я его нашел.
Хитрость решения заключается с том, что стандартная КРЕНка, транзистор КТ973, дроссель и еще несколько мелких деталей образуют ключевой понижающий стабилизатор.
Нет, микросхемы ШИМ стабилизаторов уже были, даже были книги по их применению, но эти микросхемы обычно были или очень дорогие или очень редкие.
Схема ключевого понижающего преобразователя очень проста.
Характеристики у нее конечно слабенькие, не чета современным ШИМам с диапазоном под 100 Вольт или с током под 12-15 Ампер.
Схема нормально работает в диапазоне 10-20 Вольт, ток нагрузки около 0.5 Ампера (а больше мне и не требовалось), макс 1 Ампер.
По данной схемке я страссировал печатную плату, но уже под современные компоненты.
КТ973 я дома не нашел, потому заменил его на MJD117, это так же составной транзистор по схеме Дарлингтона, отличающийся большим усилением, но и увеличенным падением напряжения в открытом состоянии.Набор дросселей CDRh204R и небольшой экскурс в историю.
Спаял платку.Набор дросселей CDRh204R и небольшой экскурс в историю.
Платка получилась очень компактная, длина платы равняется ширине коробка спичек.Набор дросселей CDRh204R и небольшой экскурс в историю.
Заработала плата сразу после подачи питания, правда напряжение немного завышено.Набор дросселей CDRh204R и небольшой экскурс в историю.
Испытание платы я спрячу под спойлер, так как фотографий много.
Нагрузил плату на резистор 10 Ом, ток соответственно 0.5 Ампера, напряжение на выходе стабильно.Набор дросселей CDRh204R и небольшой экскурс в историю.
Ток возрос, как же без этого, но на выходе у нас 500мА, а на входе 250.
Входное напряжение я выставил 14 Вольт. КПД получился около 71%Набор дросселей CDRh204R и небольшой экскурс в историю.
Грузим преобразователь еще на 500мА, итого ток нагрузки около 1 Ампера.
Напряжение стоит как вкопанное.Набор дросселей CDRh204R и небольшой экскурс в историю.
Ток по входу возрос до 514мА, КПД немного упало, 69%. Негусто, но и преобразователь работает на максимальном токе.Набор дросселей CDRh204R и небольшой экскурс в историю.
Распаковал новенький преобразователь, выставил на выходе такое же напряжение как и с предыдущим преобразователем.
Набор дросселей CDRh204R и небольшой экскурс в историю.Включил без нагрузки, ток ХХ такой же, 9мА :)Набор дросселей CDRh204R и небольшой экскурс в историю.
Как и в прошлый раз, сначала проверил с нагрузкой в 0.5 Ампера.
Ток по входу 230мА, КПД конечно повыше, ведь почти 20 лет разницы, 78%Набор дросселей CDRh204R и небольшой экскурс в историю.
Ну что же, нагрузим на 1 Ампер.
Ну что можно сказать.
Данная схема и плата приведены скорее для того, что бы показать как даже при использовании обычной КРЕНки можно получить небольшой преобразователь с КПД ненамного хуже, чем у современных (пусть и недорогих) преобразователей. Я не буду брать в расчет схемы на хороших микрухах, с синхронным выпрямлением и т.п.
Понятно, что сейчас даже копеечная схема на MC34063 будет дешевле, компактнее, мощнее и лучше, но я хотел показать, как было, когда их не было.:)
Какой то особой практической цели данный вариант не несет, разве что если вдруг окажетесь на необитаемом острове и в наличии будет только КРЕНка, транзистор, несколько деталей, автомобильный аккумулятор и вам захочется зарядить свой любимы смартфон что бы поиграть в любимых птичек. :)))
Итак резюме.
Дроссели вполне нормальные, качество достойное.
Цена в 2-3 раза меньше, чем в наших оффлайн магазинах.
Недостатки только в том, что платить деньги придется все равно, хоть и меньше.
Номиналы в наборе подобраны довольно удобно, охватывают большинство любительских применений.
Надеюсь, что мой обзор был полезен, а может и интересен, я старался.
Набор дросселей CDRh204R и небольшой экскурс в историю.
Понадобились мне для одного проекта дроссели, больше всех подходили дроссели типа CDRh204R.Но это все присказка, сказка будет дальше.
Стоят у нас эти дроссели заметно дороже, а применяются довольно часто, и не всегда нужен только один номинал, собственно потому и заказал набор.
Я уже делал как то обзор с участием дросселей, только те были побольше и мощнее.
Пришел он в небольшом белом конверте, внутри плотный пакет с защелкой.
Внутри пакета собственно сами дроссели.
10 номиналов, 5 штук каждого.
номиналы в микроГенри — 10, 15, 22, 33, 47, 68, 100, 150, 220, 330.
Ну измерение будет немного позже, а пока фото как это пришло.
Все идет в ленте, кроме одного номинала.
Кусок ленты. Все аккуратно, пока претензий нет.
После этого я протестировал по одному дросселю каждого номинала. Измерения я спрячу под спойлер, так как фоток много.
Проверка
Все фото идут по порядку увеличения индуктивности.10мкГн, 8.98 в реальности.
15мкГн, 12, 76 в реальности.
22мкГн, 20, 76 в реальности.
33мкГн, 33,1 в реальности
47мкГн, 42,5 в реальности.
68мкГн, 66,5 в реальности.
100мкГн, 96,1 в реальности.
150мкГн, 150,6 в реальности.
220мкГн, 218.6 в реальности
Ну и 330мкГн, 334 в реальности.
На мой взгляд нормально, силовые дроссели не являются прецизионными элементами и такой разброс параметров вполне нормален.
Самый большой размер в районе контактов.
Толщина 3.78мм.
Маркировка нанесена по разному, где более жирно, где блекло, но в целом нормально.
Сечение провода отличается соответственно индуктивности дросселя, чем меньше индуктивность, тем на больший ток рассчитан дроссель и тем толще провод, в дросселях с маленькой индуктивностью обмотка сделана в два провода.
Я не буду утверждать, оригинальные ли это дроссели или нет, но качество изготовления, размеры и основные параметры вполне соответствуют даташиту от фирмы Sumida.
К сожалению я не могу проверить активное сопротивление, пока нечем, так что увы 🙁
Дальше, как я писал в начале обзора, небольшой экскурс в историю.
Дроссели производятся и применяются очень давно, они бывают разных размеров, типов, номиналов и т.д.
Применяются они и как элементы фильтров от помех и как балласт в люминесцентных (и не только) светильниках, и как элемент, который может накапливать энергию.
В типичном бытовом компьютере их запросто может быть более полусотни.
Входной дроссель фильтра питания, дроссель пассивного корректора мощности, дроссель групповой стабилизации, выходные дроссели. Так же много их на материнской плате, в узле питания процессора, на плате жесткого диска и на видеокарте. Даже на аудиокарте, но там чаще дроссели выполняют функцию защиты от помех.
Применялись они и раньше, но большое распространение получили с приходом импульсных преобразователей напряжения.
С их применением легко строить повышающие, понижающие и понижающе\повыщающие преобразователи, а так как преобразователи импульсные, то на их выходе опять же стоит дроссель, в общем без них сейчас никуда.
Но что-то я увлекся.
Пора перейти к практической части. Но должен предупредить сразу, в этом обзоре не будет суперсовременных преобразователей, работающих на частотах в несколько МГц.
Все будет гораздо проще, но может от того и интереснее.
Аксакалы наверняка знают данную схему, но я почти уверен, что многим новичкам она будет неизвестна.
Довольно давно, когда я еще паял АОНы народу, то как и сейчас была потребность в получении напряжения в 5 Вольт для питания электроники.
В основном применялись стабилизаторы серии КРЕН, если быть точнее, то КР142ЕН5А.
но все прекрасно знают, что при большой простоте и низкой цене он имеет большой недостаток, низкий КПД. Особенно проявляющийся при большой разнице между входным и выходным напряжением.
И тогда я случайно встретил данное схемное решение, интернета тогда еще не было и я уже не помню где я его нашел.
Хитрость решения заключается с том, что стандартная КРЕНка, транзистор КТ973, дроссель и еще несколько мелких деталей образуют ключевой понижающий стабилизатор.
Нет, микросхемы ШИМ стабилизаторов уже были, даже были книги по их применению, но эти микросхемы обычно были или очень дорогие или очень редкие.
Схема ключевого понижающего преобразователя очень проста.
Характеристики у нее конечно слабенькие, не чета современным ШИМам с диапазоном под 100 Вольт или с током под 12-15 Ампер.
Схема нормально работает в диапазоне 10-20 Вольт, ток нагрузки около 0.5 Ампера (а больше мне и не требовалось), макс 1 Ампер.
По данной схемке я страссировал печатную плату, но уже под современные компоненты.
КТ973 я дома не нашел, потому заменил его на MJD117, это так же составной транзистор по схеме Дарлингтона, отличающийся большим усилением, но и увеличенным падением напряжения в открытом состоянии.
Изготовил плату, подобрал жменьку деталей, в том числе и дроссель из описываемых в начале обзора.
Спаял платку.
Платка получилась очень компактная, длина платы равняется ширине коробка спичек.
Заработала плата сразу после подачи питания, правда напряжение немного завышено.
Испытание платы я спрячу под спойлер, так как фотографий много.
Собственно испытание
Собственный ток потребления без нагрузки получился около 9мАНагрузил плату на резистор 10 Ом, ток соответственно 0.5 Ампера, напряжение на выходе стабильно.
Ток возрос, как же без этого, но на выходе у нас 500мА, а на входе 250.
Входное напряжение я выставил 14 Вольт. КПД получился около 71%
Грузим преобразователь еще на 500мА, итого ток нагрузки около 1 Ампера.
Напряжение стоит как вкопанное.
Ток по входу возрос до 514мА, КПД немного упало, 69%. Негусто, но и преобразователь работает на максимальном токе.
Ну а дальше я решил сравнить схему из середины 90-х и современного, пусть и китайского, преобразователя.
Распаковал новенький преобразователь, выставил на выходе такое же напряжение как и с предыдущим преобразователем.
Включил без нагрузки, ток ХХ такой же, 9мА 🙂
Как и в прошлый раз, сначала проверил с нагрузкой в 0.5 Ампера.
Ток по входу 230мА, КПД конечно повыше, ведь почти 20 лет разницы, 78%
Ну что же, нагрузим на 1 Ампер.
Ток по входу стал 462мА, КПД составил 77%.
Ну что можно сказать.
Данная схема и плата приведены скорее для того, что бы показать как даже при использовании обычной КРЕНки можно получить небольшой преобразователь с КПД ненамного хуже, чем у современных (пусть и недорогих) преобразователей. Я не буду брать в расчет схемы на хороших микрухах, с синхронным выпрямлением и т.п.
Понятно, что сейчас даже копеечная схема на MC34063 будет дешевле, компактнее, мощнее и лучше, но я хотел показать, как было, когда их не было.:)
Какой то особой практической цели данный вариант не несет, разве что если вдруг окажетесь на необитаемом острове и в наличии будет только КРЕНка, транзистор, несколько деталей, автомобильный аккумулятор и вам захочется зарядить свой любимы смартфон что бы поиграть в любимых птичек. :)))
Но вдруг, если кому то захочется повторить мой вариант данного преобразователя, то прикладываю архив со схемой, трассировкой и даташитом на дроссель.
Итак резюме.
Дроссели вполне нормальные, качество достойное.
Цена в 2-3 раза меньше, чем в наших оффлайн магазинах.
Недостатки только в том, что платить деньги придется все равно, хоть и меньше.
Номиналы в наборе подобраны довольно удобно, охватывают большинство любительских применений.
Надеюсь, что мой обзор был полезен, а может и интересен, я старался.
Дроссель обозначение на схеме
Рассмотрим особенности условных графических обозначений катушек индуктивности и дросселей, которые могут потребоваться при работе с принципиальными электрическими схемами.
На электрических схемах катушки индуктивности и дроссели без отводов обозначаются условно цепочкой витков с выводами .
Обозначение, параметры и разновидности катушек индуктивности
Одним из самых известных и необходимых элементов аналоговых радиотехнических схем является катушка индуктивности. В цифровых электронных схемах индуктивные элементы практически потеряли свою актуальность и применяются только в устройствах питания как сглаживающие фильтры.
Катушки индуктивности на принципиальных схемах обозначаются латинской буквой “L” и имеют следующее изображение.
Разновидностей катушек индуктивности существуют десятки. Они бывают высокочастотные, низкочастотные, с подстроечными сердечниками и без них. Бывают катушки с отводами, катушки, рассчитанные на большие напряжения. Вот так, например, выглядят бескаркасные катушки.
Катушки для СВЧ аппаратуры называются микрополосковыми линиями. Они даже внешне не похожи на катушки. С катушками индуктивности связан такой эффект как резонанс и гениальный Никола Тесла получал на резонансных трансформаторах миллионы вольт.
Основной параметр катушки это её индуктивность. Величина индуктивности измеряется в Генри (Гн, англ. – «H»). Это достаточно большая величина и поэтому на практике применяют меньшие значения (мГн, mH – миллигенри и мкГн, μH– микрогенри) соответственно 10 -3 и 10 -6 Генри. Величина индуктивности катушки указывается рядом с её условным изображением (например, 100 μH). Чтобы не запутаться в микрогенри и миллигенри, советую узнать, что такое сокращённая запись численных величин.
Многие факторы влияют на индуктивность катушки. Это и диаметр провода, и число витков, а на высоких частотах, когда применяют бескаркасные катушки с небольшим числом витков, то индуктивность изменяют, сближая или раздвигая соседние витки.
Часто для увеличения индуктивности внутрь каркаса вводят сердечник из ферромагнетика, а для уменьшения индуктивности сердечник должен быть латунным. То есть можно получить нужную индуктивность не увеличением числа витков, что ведёт к увеличению сопротивления, а использовать катушку с меньшим числом витков, но использовать ферритовый сердечник. Катушка индуктивности с сердечником изображается на схемах следующим образом.
В реальности катушка с сердечником может выглядеть так.
Также можно встретить катушки индуктивности с подстроечным сердечником. Изображаются они вот так.
Катушка с подстроечным сердечником вживую выглядит так.
Такая катушка, как правило, имеет сердечник, положение которого можно регулировать в небольших пределах. При этом величина индуктивности также меняется. Подстроечные катушки индуктивности применяются в устройствах, где требуется одноразовая подстройка. В дальнейшем индуктивность не регулируют.
Наряду с подстроечными катушками можно встретить и катушки с регулируемой индуктивностью. На схемах такие катушки обозначаются вот так.
В отличие от подстроечных катушек, регулируемые катушки индуктивности допускают многократную регулировку положения сердечника, а, следовательно, и индуктивности.
Ещё один параметр, который встречается достаточно часто это добротность контура. Под добротностью понимается отношение между реактивным и активным сопротивлением катушки индуктивности. Добротность обычно бывает в пределах 15 – 350.
На основе катушки индуктивности и конденсатора выполнен самый необходимый узел радиотехнических устройств, колебательный контур. На схеме изображён входной контур простого радиоприёмника рассчитанного на работу в диапазонах средних и длинных волн.
В настоящее время в этих диапазонах станций практически нет. Катушка индуктивности L1 имеет достаточно большое число витков, чтобы перекрыть диапазон по максимуму. Для улучшения приёма к первой обмотке L1 подключается внешняя антенна. Это может быть простой кусок проволоки длиной в пределах двух метров.
Благодаря большому числу витков в индуктивности L1 присутствует целый спектр частот и как минимум пять — шесть работающих радиостанций. Две индуктивности L1 и L2 намотанные на одном каркасе представляют собой высокочастотный трансформатор. Для того чтобы выделить на катушке индуктивности L2 станцию, работающую, допустим на частоте 650 КГц необходимо с помощью переменного конденсатора C1 настроить колебательный контур на данную частоту.
После этого выделенный сигнал можно подавать на базу транзистора усилителя высокой частоты. Это одно из применений катушки индуктивности. Точно на таком же принципе построены выходные каскады радио- и телевизионных передатчиков только наоборот. Антенна не принимает слабый сигнал, а отдаёт в пространство ЭДС.
Примеров использования катушки индуктивности великое множество. На рисунке изображён весьма несложный, но хорошо зарекомендовавший себя в работе сетевой фильтр.
Фильтр состоит из двух дросселей (катушек индуктивности) L1 и L2 и двух конденсаторов С1 и С2. на старых схемах дроссели могут обозначаться как Др1 и Др2. Сейчас это редкость. Катушки индуктивности намотаны проводом ПЭЛ-0,5 – 1,5 мм. на каркасе диаметром 5 миллиметров и содержат по 30 витков каждая. Очень хорошо параллельно сети 220V подключить варистор. Тогда защита от бросков сетевого напряжения будет практически полной. В качестве конденсаторов лучше не использовать керамические, а поискать старые, но надёжные МБМ на напряжение не менее 400V.
Вот так выглядит дроссель входного фильтра компьютероного блока питания ATX.
Как видно, он намотан на кольцеобразном сердечнике. На схеме он обозначается следующим образом. Точками отмечены места начала намотки провода. Это бывает важно, так как это влият на направление магнитного потока.
Выходные выпрямители современного импульсного блока питания всегда конструируют по двухполупериодным схемам. Широко известный выпрямительный диодный мост, у которого большие потери практически не используют. В двухполупериодных выпрямителях используют сборки из двух диодов Шоттки. Самая важная особенность выпрямителей в импульсных блоках питания это фильтры, которые начинаются с дросселя (индуктивности).
Напряжение, снимаемое с выхода выпрямителя обладающего индуктивным фильтром, зависит кроме амплитуды ещё и от скважности импульсов, поэтому очень легко регулировать выходное напряжение, регулируя скважность входного. Процесс регулирования скважности импульсов называют широтно-импульсной модуляцией (ШИМ), а в качестве управляющей микросхемы используют ШИМ контроллер.
Поскольку амплитуда напряжения на входах всех выпрямителей изменяется одинаково, то стабилизируя одно напряжение, ШИМ контроллер стабилизирует все. Для увеличения эффекта, дроссели всех фильтров намотаны на общем магнитопроводе.
Именно таким образом устроены выходные цепи компьютерного блока питания формата AT и ATX. На его печатной плате легко обнаружить дроссель с общим магнитопроводом. Вот так он выглядит на плате.
Как уже говорилось, этот дроссель не только фильтрует высокочастотные помехи, но и играет важную роль в стабилизации выходных напряжений +12, -12, +5, -5. Если выпаять этот дроссель из схемы, то блок питания будет работать, но вот выходные напряжения будут «гулять» причём в очень больших пределах – проверено на практике.
Так магнитопровод у такого дросселя общий, а катушки индуктивности электрически не связаны, то на схемах такой дроссель обозначают так.
Здесь цифра после точки (L1.1; L1.2 и т.д.) указывает на порядковый номер катушки на принципиальной схеме.
Ещё одно очень хорошо известное применение катушки индуктивности это использование её в системах зажигания транспортных средств. Здесь катушка индуктивности работает как импульсный трансформатор. Она преобразует напряжение 12V с аккумулятора в высокое напряжение порядка нескольких десятков тысяч вольт, которого достаточно для образования искры в свече зажигания.
Когда через первичную обмотку катушки зажигания протекает ток, катушка запасает энергию в своём магнитном поле. При прекращении прохождения тока в первичной обмотке пропадающее магнитное поле индуцирует во вторичной обмотке мощный короткий импульс напряжением 25 – 35 киловольт.
Импульсный трансформатор из тех же катушек индуктивности является основным узлом хорошо известного устройства для самообороны как электорошокер. Схем может быть несколько, но принцип один: преобразование низкого напряжения от небольшой батарейки или аккумулятора в импульс слабого тока, но очень высокого напряжения. У серьёзных моделей напряжение может достигать 75 – 80 киловольт.
Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.
Что такое дроссель, внешний вид и устройство
Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.
Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.
Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без
Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.
Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.
Схематическое изображение дросселя с магнитным сердечником и без
Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.
Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).
Свойства, назначение и функции
Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.
Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток
Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.
У дросселя есть два свойства, которые тоже используют в схемах.
- так как это подвид катушки индуктивности, то он может запасать заряд;
- отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).
В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.
Виды и примеры использования
Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:
- Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
- Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
- Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
- Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.
Практически в любой схеме есть этот элемент
Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.
Дроссель в лампах дневного света
Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:
- При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
- Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света
В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.
В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.
Зачем нужен дроссель в блоке питания
Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.
Дроссель для сглаживания пульсаций
Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.
Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.
Гидравлический дроссель — Википедия
Материал из Википедии — свободной энциклопедии
Гидравлический дро́ссель — регулирующий гидроаппарат, предназначенный для создания гидравлического сопротивления потоку жидкости. Дополнительное гидравлическое сопротивление создаётся за счёт изменения проходного сечения потока жидкости. Изменением гидравлического сопротивления гидродросселя создаётся необходимый перепад давлений на тех или иных элементах гидросистем, а также изменяется величина потока жидкости, проходящего через гидродроссель.
Условное графическое обозначение гидродросселя: а) регулируемый гидродроссель; б) нерегулируемый гидродроссельГидродроссели по типу запорного элемента подразделяются на игольчатые, золотниковые, щелевые, тарельчатые и др.
Регулируемый дроссель — это такой дроссель, у которого площадь его проходного сечения можно менять путём воздействия на его запорно-регулирующий элемент извне.
Иногда функцию гидродросселя выполняют гидрораспределители.
Гидродроссели используются в системах дроссельного регулирования гидропривода. Также гидродроссели используются в системах водоснабжения.
- Гидравлический дроссель — статья из Большой советской энциклопедии
- Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
- Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.
- Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.
- Башта Т. М. «Машиностроительная гидравлика», М.: «Машиностроение», 1971
Для чего нужны дроссели и их цветовая маркировка
В электрических схемах среди других деталей используются катушки, намотанные изолированным проводом. В этой статье рассказывается, что такое дроссель, или катушка индуктивности, а также, как работает дроссель.
Интересно. Так называют также заслонку карбюратора автомобиля, но к электрическому дросселю она не имеет отношения.
Дросселя
Принцип действия
Катушка индуктивности обладает сопротивлением переменному току, причем, чем выше частота тока, тем выше сопротивление.
Ток, текущий через обмотку, вследствие законов Ленца и электромагнитной самоиндукции, не может измениться мгновенно. Это основной принцип работы дросселя. Чем выше скорость изменения тока, тем выше ЭДС, наводимая в катушке. При разрыве цепи с мгновенным исчезновением тока, идущего через обмотку, ЭДС стремиться к бесконечности. На практике напряжение на разрыве цепи или концах катушки достигает нескольких киловольт, что может привести к пробою изоляции или выгоранию контактов.
На этом принципе основана работа автомобильного зажигания.
Ток и напряжение
Изменение величины переменного напряжения на экране осциллографа выглядит как синусоида. Если оно не строго синусоидальной формы, то его можно разложить на сумму синусоидальных колебаний различной частоты. При росте напряжения происходит индуцирование тока в обмотке, поэтому он отстаёт от напряжения. Во второй фазе при уменьшении напряжения он также уменьшается с опозданием. Это связано с наличием магнитного поля, согласно закону самоиндукции, противодействующему изменениям тока, текущего через обмотку. Отставание тока от напряжения можно увидеть на экране двулучевого осциллографа. Таким образом, индуктивность оказывает сопротивление переменному току, причём тем выше, чем выше его частота.
Ток отстаёт от напряжения
В отличие от обычного резистора, имеющего активное сопротивление и выделяющего при работе тепло, катушка индуктивности имеет индуктивное сопротивление. Избыточная энергия превращается в ЭДС самоиндукции, направленной встречно приложенному напряжению.
Для увеличения магнитного потока и индуктивности обмотки её наматывают на сердечнике разной формы из различных материалов.
Устройство катушки индуктивности
Дроссель – это катушка, имеющая некоторое количество витков из изолированного провода. Изоляция необходима, чтобы ток шёл по всему проводу последовательно, создавая при этом магнитное поле.
Обмотка может быть намотана на магнитопроводе или без него. Это зависит от назначения устройства. Его форма может быть квадратной, Ш-образной или тороидальной. Материал зависит от частоты напряжения. Работающее устройство иногда издаёт гул с частотой напряжения питания.
На электронных платах такие элементы имеют корпус SMD. Так же устроен элемент R68.
Низкочастотные устройства
Обмотки этих приборов наматываются на сердечник, собранный из пластин, изготовленных из трансформаторной стали. Пластины покрываются лаком для изоляции друг от друга. Переменное магнитное поле наводит ЭДС в магнитопроводе, из-за чего потери на нагрев становятся неоправданно большими. Для того чтобы их уменьшить, голые пластины, а также сердечник из цельного металла не используются.
Внешне такое устройство похоже на трансформатор. Обмотка может быть намотана совсем без сердечника. Такие приборы используются для ограничения тока короткого замыкания.
Высокочастотные элементы
Катушки, предназначенные для работы в сетях высокой частоты, мотаются на стальные ферритовые сердечники, а также совсем без них.
Намотка встречаются однослойная и многослойная, одно,- и многосекционная. Внешне могут быть похожи на трансформатор, резистор или конденсатор с соответствующей маркировкой. Например, так выглядит элемент R68.
Применение катушки индуктивности
Так для чего нужен электрический дроссель? Зачем он применяется? Используются такие устройства в самых разных местах.
Токоограничивающие приборы
В катушках индуктивности избыточная энергия превращается в ЭДС. Поэтому, в отличие от обычных резисторов, они меньше по размеру и не требуют охлаждения. Их используют:
- Для ограничения тока короткого замыкания – наматываются без сердечника. Их индуктивное сопротивление невелико, однако при КЗ каждая десятая часть Ома имеет значение для увеличения токоограничивающего эффекта;
- Для запуска электродвигателей большой мощности, где подключаются на время пуска. После запуска закорачиваются специальным пускателем;
- В лампах ДРЛ, ДНаТ (дуговых натриевых трубчатых) и пусковой аппаратуре люминесцентных ламп. Дроссель днат должен соответствовать по мощности лампе. Вместо дросселя в лампе ДРЛ 250 или ДРЛ 400 может использоваться встроенное сопротивление.
Дросселя для люминесцентных ламп
Интересно. Сейчас вместо старой пусковой аппаратуры люминесцентные лампы включаются через электронный дроссель. Вместо него можно использовать электронный дроссель от сгоревшей энергосберегающей лампы такой же или большей мощности.
Катушки насыщения
При росте тока, протекающего через обмотки, магнитопровод насыщается магнитным полем, и свыше определённой величины сопротивление не растёт. Раньше использовались в стабилизаторах напряжения. Сейчас в этом нет необходимости – используются электронные схемы.
Сглаживающие фильтры
Предназначены для устранения пульсаций выпрямленного переменного напряжения. Использовались в транзисторных блоках питания и сварочных трансформаторах. Сегодня вместо катушки блоки питания используют электронные схемы. Их называют «электронный дроссель». Используется электронный дроссель аналогично обычному.
«Бочонок» на USB-кабеле – это тоже катушка с ферритовым сердечником и одним витком обмотки.
В электронных схемах для этих целей используются малогабаритные элементы, например, R68.
Магнитные усилители (МУ)
До появления тиристорных систем управления электродвигателями использовались магнитные усилители – МУ. В них сердечник из трансформаторной стали намагничивался постоянным током дополнительной обмоткой. Таких обмоток могло быть несколько. Это приводило к насыщению железа магнитным полем, изменению индуктивного сопротивления и тока в основной обмотке.
После появления тиристоров такие устройства вышли из применения.
Магнитный усилитель
Резонансный контур
При включении катушки индуктивности параллельно с конденсатором получившаяся цепь будет иметь минимальное сопротивление на определённой частоте. Такие схемы используются в радиоприёмниках.
Элементы электронных схем и компьютерных плат
На платах катушки индуктивности, такие, как R68, используются для выделения сигналов определённой частоты, защите от помех и отделении частей схемы друг от друга.
Маркировка малогабаритных устройств
На деталях небольшого размера, используемых в электронной технике, недостаточно места для нанесения надписей, указывающих номинальные характеристики устройства. Поэтому используется специальная цветовая маркировка дросселей. По этой кодировке при помощи онлайн-калькуляторов можно узнать параметры элемента.
Цветовая кодировка состоит из 3 или 4 колец, нанесённых на корпус. По первым двум кольцам видна индуктивность элемента в миллигенри, следующее – показывает множитель, на который необходимо умножить первое число, а четвёртое – допустимое отклонение реальной индуктивности от номинала. Если колец всего три, то отклонение составляет 20%. Первое кольцо обычно шире остальных.
Цветовая маркировка дросселей
Например, на корпусе следующие полосы:
- коричневый – 1;
- жёлтый – 4;
- оранжевый – 1mH;
- серебряный – допуск 10%.
Таким образом, номинал этого элемента составляет 14 mH с допуском 10%.
Катушка индуктивности как электрический прибор и принцип её действия известны много десятков лет. Но без устройств разных типов и номиналов, использующихся в самых разных местах, невозможно существование ни электротехники, ни электроники, в том числе компьютерной техники.