Site Loader

Содержание

Что такое обмотка трансформатора: принципы работы, задачи, возможности

Все прекрасно понимают, что основная задача трансформатора – это преобразовывать получаемые импульсы, и в этом немаловажную роль играет обмотка трансформатора, позволяющая принципиально правильно работать агрегату. В сфере радиоэлектроники, электротехники и энергетики практически невозможно обойтись без трансформатора, ведь в создаваемой цепи обязательным является звено, отвечающее за преобразование переменного напряжения одного (входящего) значения обязательно через обмотку трансформатора в переменное (выходящее) напряжение уже с заданными по нормам показателями.

трансформатор

По предпочтениям выбираются пользователями трансформаторы либо однофазные, либо трехфазные. А в чем между ними разница? Все очень просто, в их техническом комплектовании. Так, в трехфазном агрегате ток проходит по четырем проводам, три из которых – фазные, а один – нейтраль, то есть нулевой. Соответственно, однофазный трансформатор работает, основываясь на двух кабелях, один – фазный, а второй – нулевой. И применяется последний вид трансформаторов чаще всего в быту, обеспечивает электропитание в розетках, трансформируя электрический ток с показателями 220 В.

Как функционирует однофазный трансформатор: основные принципы работы

Первоначально уточним, какие существуют основные комплектующие однофазного трансформатора: магнитопровод, состоящий из пластин стали, по которым и протекает магнитный поток, первичная и вторичная обмотки трансформатора.

Физически объяснимо, что появляются и снимаются в первой обмотке потоки благодаря переменному напряжению. Находясь рядом, вторичная обмотка ловит эти потоки и преобразовывает в переменное напряжение, сохраняя ту же частоту. Напряжение, которое выдается агрегатом со вторичной обмотки, всецело зависит от витков, которые намотаны на имеющиеся в трансформаторе первичные и вторичные обмотки (катушки).

Как правильно понять: что такое виток обмотки?

Виток – это основной технический элемент обмотки, представляющий собой единичные или групповые проводки, расположенные параллельно на стержне магнитопровода. Взятая за единицу измерения совокупность витков, которая, соответственно, образовывается в той или иной электроцепи, и является обмоткой трансформатора.

Сама же обмотка состоит с двух важных компонентов: первый – проводники, второй – изоляционные детали. Задача вторых элементов – защищать витки, предупреждать электрические сбои в сети, препятствовать смещению комплектующих в 1 обмотке трансформаторов.

Важно помнить! Обмотки трансформаторов различаются техническими характеристиками и параметрами. Так, обмотки трансформаторов различаются по способу размещения на стержне, могут быть различными по направлению и способу намотки. Специалисты еще оценивают обмотки трансформатора по числу витков, оценивают применяемый агрегат по классу напряжения, изучают перед применением схему соединения обмоток между собой. Следует учитывать каждый обозначенный фактор при выборе агрегата.

обмотка трансформатора

С понятием «виток обмотки» связан и другой термин – «слой обмотки». А что он обозначает, также постараемся раскрыть в данной статье.

Виток – это мера, а вот слой – это уже следствие технического процесса, в ходе которого витками формируются положенные слои, один, два или много. Но помните, что ничего нельзя воспринимать буквально, так как в одном слое может быть один или несколько десятков витков. А сам виток способен формироваться из 6-8 параллельных проводков положенной формы.

На какие эксплуатационные характеристики обмоток обязательно надо обращать внимание?

Когда запланированы работы с электрооборудованием, не стоит упускать из виду даже мелкие технические детали, например, принципы соединения обмоток трансформатора, иначе без сбоев в энергосистеме не обойтись при последующей длительной эксплуатации.

А по каким параметрам в основном оценивают работоспособность агрегата и как определить потенциал обмотки трансформатора? Ответ прост. Специалисты в основном обращают внимание на электрическую прочность элемента, механическую прочность обмотки, а также нагревостойкость, сопротивление обмотки трансформатора и изоляционные характеристики.

обмотка трансформатора

Все дело в том, что в процессе эксплуатации изоляция обмоток играет важную роль и отвечает за безопасность и противодействие возможным повреждениям сети из-за коммутационных или атмосферных перенапряжений. Рекомендовано адекватно оценивать и свойства вторичной обмотки трансформатора на ее механическую прочность и способность длительно противостоять в процессе эксплуатации деформациям и повреждениям из-за агрессивной внешней среды, импульсов тока, когда превышаются все нормативные показатели номинального рабочего тока силового агрегата.

Известно, что самый стандартный трансформатор может прослужить верной и правдой более 25 лет, но если его эксплуатация будет выполняться согласно его техническим характеристикам, и удастся избежать нестабильности в сети и перенагрева обмоток. Конечно же, нагрев обмоток и его сопряженных частей происходит при длительной работе агрегата, и это нормально, просто нельзя допускать скачков и повышения разрушительной температуры внутри агрегата, отвечающего за напряжение вторичной обмотки трансформатора. Перенагрев может привести к плачевным последствиям – разрушению и деформации изоляции обмоток, тепловому износу масла, как одной из важных составляющих силовой установки.

Чтобы ознакомиться с техническими эксплуатационными возможностями обмоток трансформаторов напряжения, можете обратить внимание на ряд документов и регламентированных положений. К ним относят «Стандарты по силовым трансформаторам общего назначения, а также на специальные агрегаты», «Инструкции по применению», «Технический паспорт».

Как оценивается электрическая прочность изоляции обмоток?

  • наличие правильно и верно разработанной конструкции агрегата, когда в схеме учтены все тонкости взаимодействия;
  • рассчитаны хорошо и четко изоляционные промежутки;
  • совершен разработчиками продуманный выбор изоляционных материалов;
  • внедрены прогрессивные, а значит, современные технологии обработки изоляции.

Как оценивается механическая прочность обмоток: о чем говорят показатели?

  • учитывается состояние расчета поля рассеяния в магнитостатических полях;
  • определяются соответствующие параметры типа используемой обмотки;
  • узнаются особенности конструкции обмотки, и главное, ее месторасположение;
  • обращается внимание на расположение витков в обмотке, конструктивные особенности катушки, так как этого зависит расчет и соотношение механической силы, возникающей в обмотке, и механической стойкости элемента трансформатора. Идеально, если первый параметр будет минимизирован, а второй – будет соответствовать нормам агрегата и не подводить в процессе эксплуатации.

Как достигается необходимая нагревостойкость обмоткам трансформатора?

Трансформатор в процессе эксплуатации переживает определенную нагрузку, и в дополнение переживает воздействие негативных факторов окружающей среды. И если не обеспечить нормальную теплоотдачу, то негативные последствия не заставят себя ждать. Отметим, что обмотки трансформаторов обладают определенной степенью нагревостойкости, и ее превышение не допускается, поэтому проводить монтажные работы трансформаторов необходимо с определенной тщательностью, учитывать внешние и внутренние факторы, обеспечивать вентиляцию и охлаждение, не забывая о циркуляции воздушных масс и наличия масла внутри системы силового агрегата.Обычно контролирующие службы предприятия регулярно осматривают агрегат, оценивают состояние его контактов, а также всех основополагающих комплектующих.

Чтобы избежать перегрева обмоток трансформатора, необходимо учитывать особенности эксплуатации агрегата и обеспечить нормальную и технически выверенную теплоотдачу, а для этого обязательно надо обеспечить должную площадь поверхности соприкосновения обмоток трансформатора с окружающей средой. Причем способ охлаждения трансформаторов может быть соответствующий его заводским параметрам, предусматривающих систему охлаждения при помощи воздуха или масла.

Какие существуют основные типы обмоток трансформатора: определим общепринятую классификацию

Чтобы правильно выполнить расчет обмоток трансформатора, прежде нужно понимать, с чем придется иметь дело и какой тип обмотки внедрен в агрегат, какие он имеет преимущества. Постараемся в этом детально разобраться.

Итак, какие существуют типы обмоток трансформаторов?

  • Одно-двухслойная обмотка цилиндрической формы, изготовленная из прямоугольного провода. Это элементарный образец обмотки трансформатора, который отличается простотой технологии изготовления, должной и надежной системой охлаждения, но при этом имеет один немаловажный недостаток – низкую механическую прочность, поэтому быстро изнашивается от агрессивного воздействия окружающей среды, а перепады в сети могут вообще стать губительными для энергосистемы, в которой применен агрегат с подобной обмоткой.
  • Многослойная обмотка трансформатора цилиндрической формы, созданная из прямоугольного провода. Данный образец обмотки отличается нормальным сопротивлением первичной обмотки трансформатора, высоким функционалом магнитной системы и элементарной технологией изготовления. Но вот при длительной эксплуатации агрегата могут возникать проблемы, связанные с малой эффективностью системы охлаждения. Основная причина такого недостатка теплоотдачи – отсутствие радиальных каналов на обмотке.

Интересно знать! В классификации обмоток также упоминаются многослойные обмотки. А в чем их особенность! Все просто. В процессе их формирования обязательно слои располагаются концентрически, в соответствии с заданным количеством слоев, но при этом развернутая длина остается одинаковой, без нарушения заводских параметров. Все «наматывается» правильно по отношению к полю рассеяния трансформатора. А когда необходимо переходит при обмотке на новый слой, то используемые провода не обрываются, не заламываются, только на новом витке меняется направление укладки слоя.

  • Многослойная обмотка или катушка, также имеющая форму цилиндра, но уже изготовленная из круглого провода. В этой ситуации агрегат отличается повышенной мощностью, но при этом проигрывает в функционале теплоотдачи и не может похвастаться механической прочностью. Из-за этого износ оборудования значительно ускоряется, требуя от обслуживающего персонала частых контролей оборудования и профилактических осмотров комплектующих.

Интересно знать! Почему некоторые обмотки называют цилиндрическими, то есть имеющими форму цилиндра. Секрет кроется в особенностях витков и слоев. Когда начинают формировать цилиндрическую обмотку, то для ее правильного создания на цилиндрическую поверхность наносят слои витков плотно, ни в коем случае не допуская интервалов.

  • Винтовая обмотка, созданная из прямоугольного провода. Трансформатор с такой катушкой будет стоить дороже, но отличаться высокой механической прочностью, надежной защитной изоляцией. А во время длительной работы агрегата даже не стоит думать о его системе охлаждения. Все сработает на 100%, как это заложено в технические характеристики трансформатора с данным видом обмоток.
  • катушечная обмотка непрерывного типа, когда материалом служит прямоугольный провод. Существует и такой образец обмоток, которые отличаются высокой механической и электрической прочностью и степенью нагревостойкостью. Многие посчитают данный образец идеальной находкой, которую так и хочется ввести в эксплуатацию для эффективной работы предприятия.
  • многослойная катушечная цилиндрическая обмотка, сформированная из алюминиевой фольги. Имеет данный образец только положительные отзывы, но такая эффективность достигнута максимальными усилиями и внедрением сложных технологий изготовления, когда изоляция обмоток трансформатора внушает доверие и веру в длительную и эффективную эксплуатацию. А что еще нужно для успешного предприятия, где создается современная энергосистема или, по крайней мере, модернизируется.

Таким образом, можно сделать вывод, что классификация типов обмоток зависит от конструктивных особенностей детали трансформатора, материла и метода изготовления, а по сложности обмотки различают на простые, многослойные, многослойные, но уже изготовленные из фольги, а не провода.

Обмотки силовых трансформаторов

Конструкция силового трансформатора представляет собой сложную систему. Если вам нужно купить трансформатор сухой силовой, но вы сомневаетесь в том, по каким параметрами выбрать товар, обратитесь к специалистам компании «Терра-Ток» для получения консультации. Звоните нам по телефону 8-800-505-90-82.

Обмотки – это совокупность витков, которые образуют электрическую цепь, где складывается электродвижущая сила, индуктируя в отдельных витках. Эти конструктивные элементы состоят из обмоточных проводов и изоляционных деталей, которые предусмотрены конструкцией. Они не только защищают витки от электропробоя и препятствуют их смещению из-за электромагнитного воздействия, но и создают каналы для охладительных процессов. Рассмотрим подробнее.

Что представляют собой обмотки силовых трансформаторов

Эти элементы различаются по типу намотки, ее направлению, количеством витком, числу параллельных в витке проводов и схемой для соединения отдельных между собой отдельных элементов обмотки.

По взаимному расположению на стержне подразделяются на:

  • Концентрические. Изготовлены в виде цилиндров и располагаются на магнитном стержне концентрически;
  • Чередующиеся. Обмотки высокого напряжения и низкого напряжения, которые чередуются на стержне в осевом направлении.

Главным элементом трансформаторных обмоток является виток, в нем наводится электродвижущая сила. В зависимости от значений величины тока он может быть выполнен одним или несколькими параллельными проводами. Ряд из витков, который намотан на цилиндрическую поверхность, имеет название слоя. По количеству витков значение может варьироваться от одного до нескольких десятков.

Виды обмоток и их особенности

Однослойная или многослойная цилиндрическая обмотка образуется при намотке одного или несколько слоев провода круглого или прямоугольного сечения. Наиболее простой является однослойная обмотка из прямоугольного провода. Слой обмотки составляют витки, наматываемые по винтовой линии на бумажно-бакелитовый цилиндр. Каждый виток в слое укладывается вплотную к предыдущему в осевом направлении обмотки. Витки цилиндрической обмотки состоят из одного или нескольких параллельных проводов, располагаемых рядом и имеющих одинаковое положение по отношению к полю рассеяния трансформатора. Обычно обмотку из прямоугольного провода наматывают плашмя, но при необходимости возможна намотка и на ребро.

Винтовая или спиральная обмотка состоит из витков, которые наматываются по винтовой линии с расположенными между ними каналами. Для примера, первичная обмотка силового трансформатора для питания цепей радиоприемника будет иметь 1200 витков. Каждый такой виток состоит либо из одного (в редких случаях) провода, либо из нескольких одинаковых проводов прямоугольного сечения. Второй вариант распространен больше. В этом случае одинаковые провода располагаются друг к другу в радиальном направлении плашмя. Такая обмотка может быть одноходовой или многоходовой.

Учитывайте сопротивление обмоток силового трансформатора, при котором эксплуатация крайне не рекомендована.

Изоляция

Обмотки силового трансформатора изолируются от других обмоток и заземленных частей. Такая изоляция называется главной, помимо которой существует еще и продольная, представляющая собой изоляцию между отдельными компонентами конструкции обмотки – витками, слоями, катушками и так далее. Ее проводят еще в процессе изготовления. Главная же устанавливается при сборке.

От верхнего и нижнего ярм проводят изоляцию обмоток с помощью масляных каналов и барьеров, которые образуются ярмовой изоляцией, что перекрывает поверхность ярма, которая обращена в сторону обмоток. При ее проведении барьер с прикрепленными прокладками из прессованного электрокартона создает необходимые масляные промежутки.

Где купить силовой трансформатор?

Чтобы купить силовые трансформаторы в Терра-Ток, позвоните нам на бесплатную горячую линию. Мы не только поможем вам подобрать оптимальный продукт среди реализуемого, но и поможем с его установкой.

2.2. Обмотки трансформаторов

Все обмотки трансформаторов по характеру намотки можно подразделить на следующие основные типы: цилиндрические из круглого и прямоугольного провода, винтовые, непрерывно катушечные и др.

Эти типы обмоток в свою очередь могут подразделяться по ряду второстепенных признаков: числу слоев или ходов, наличию параллельных ветвей, наличию транспозиций и т. д.

Простой цилиндрической обмоткой называется обмотка, сечение витка которой составляет один провод, а витки расположены без интервалов на цилиндрической поверхности так, что для перехода от какого-либо витка к любому другому витку нужно двигаться в осевом направлении обмотки.

Цилиндрической параллельной обмоткой называется обмотка, сечение витка которой составляет несколько параллельных проводов, а витки расположены (без интервалов между витками и проводами) на цилиндрической поверхности так, что для перехода от какого-либо провода одного витка к любому проводу другого витка нужно двигаться в осевом направлении обмотки.

Двухслойной простой цилиндрической или двухслойной цилиндрической параллельной называется обмотка, составленная из двух концентрически расположенных простых цилиндрических параллельных обмоток.

Цилиндрическая обмотка может быть намотана из нескольких проводов прямоугольного сечения. При этом желательно все параллельные провода брать одного сечения. Если же приходится комбинировать сечение витка из разных проводов, то рекомендуется брать не более двух различных сечений проводов. Обычно применяется намотка «плашмя». Допускается намотка на «ребро», в радиальном направлении обмотки, размеры обоих проводов следует выбирать обязательно равными между собой.

В производстве при намотке на обмоточном станке цилиндрическая обмотка является самой простой и дешевой из применяемых типов обмоток. Цилиндрическая обмотка из прямоугольного провода может применяться при сечении витка не менее 5 мм2, равном минимальному сечению прямоугольного провода по сечению, что соответствует при наименьшей плотности тока в медном проводе нижнему пределу тока обмотки 15–18 А. Цилиндрическая двухслойная обмотка из прямоугольного провода широко применяется для обмоток НН трехфазных и однофазных масляных силовых трансформаторов с мощностью на один стержень

200 кВА при напряжении обмотки не выше 6 кВ.

В тех же пределах этот тип обмотки иногда применяется для обмоток ВН, однако более удобна в этом случае многослойная цилиндрическая обмотка из круглого провода.

Широкое применение находит цилиндрические многослойные обмотки из прямоугольного провода в одни или несколько параллельных проводов. Для таких обмоток напряжение составляет до 35 кВ, а мощность трансформатора до 80000 кВА.

Они используются для изготовления обмоток как низкого напряжения, так и обмоток высокого напряжения трансформатора. Основное достоинство этих обмоток состоит в простоте, малой стоимости и достаточно высокой электрической и механической прочности (рис. 2.5).

Рис. 2.5. Цилиндрические обмотки: а – однослойная; б – двухслойная; в – многослойная из круглого провода; 1 – витки из прямоугольного провода; 2 – разрезные выравнивающие кольца; 3 – бумажно-бакелитовый цилиндр; 4 – конец первого слоя обмотки; 5 – вертикальные рейки; 6 – внутренние ответвления обмотки

Обычно винтовая обмотка наматывается на бумажно-бакелитовом цилиндре на рейках, расположенных по образующим цилиндра. Радиальные каналы между витками образуются межвитковыми прокладками из электроизоляционного картона, нанизываемыми на рейки.

В параллельной винтовой обмотке параллельные провода наматываются на цилиндрические поверхности с разными диаметрами [2, 6]. Вследствие этого активные и реактивные сопротивления (в виду различной индукции поля рассеяния) параллельных проводов получаются неравными. Для выравнивания полных сопротивлений проводов во избежание неравномерного распределения тока в винтовой обмотке обязательно должна производиться транспозиция (перекладка) проводов (рис. 2.7).

Рис. 2.6. Винтовая обмотка: а – из одного провода в витке;

б – из нескольких параллельных проводов в витке

Рис. 2.7. Транспозиции проводов в винтовых обмотках: а – групповая; б – общая

Рис. 2.8. Схема транспозиции в винтовой обмотке из четырех параллельных проводов: 1–4 – провода

Применяются винтовые обмотки как обмотки НН в трансформаторах с напряжением на стороне НН от 230 В до 15,75 кВ включительно при мощности трансформатора на один стержень от 45 до 350 кВА [2, 8].

Благодаря простоте и дешевизне изготовления наиболее часто применяется многослойная цилиндрическая обмотка трансформаторов, мощностью на один стержень до 200 кВА при классе напряжения не выше 35 кВ.

Разновидностью многослойной цилиндрической обмоткиявляется катушечная обмотка, составленная из ряда отдельно расположенных в осевом направлении катушек, представляющих собой многослойные цилиндрические обмотки. Выполняется она, как правило, из одного круглого провода без применения параллельных проводов. Применяется для трансформатора с мощностью на один стержень не выше 350 кВА, при токе 40–45 А, и только для выполнения обмоток ВН.

О

Рис. 2.9. Непрерывная

катушечная обмотка

собое внимание уделяется междуслойной изоляции, так как вследствие большого числа витков и последовательного соединения слоев между соседними витками, лежащих в разных слоях, возникают значительные напряжения. Так, например, в трансформаторах с мощностью на один стержень до 200 кВА при классе напряжения от 3 до 35 кВ суммарное рабочее напряжение двух слоев может достигнуть 5000–6000 В, а испытательное 10000–12000 В. В качестве междуслойной изоляции хорошие результаты дает кабельная бумага, положенная в несколько слоев.

Применение меньшего числа слоев более толстого электрокартона не оправдывает себя, так как картон менее эластичен, чем кабельная бумага, а при намотке сильно натянутого провода дает листные изломы, что в дальнейшем приводит к прибою междуслойной изоляции.

Простой непрерывной катушечной обмоткойназывается обмотка, составленная из ряда расположенных в осевом направлении и соединенных последовательно катушек, намотанных из прямоугольного провода по плоской спирали, с радиальными охлаждающими каналами между всеми или частью катушек. Высота катушки равна высоте провода.

Непрерывная катушечная обмотканазывается параллельной, если сечение каждого витка составлено двумя или более параллельными проводами и число витков в катушке более одного (рис. 2.9).

Обмотка называется непрерывной, если ее намотка ведется одним (двумя, тремя и более) проводом без перепайки концов последовательно соединенных катушек. Непрерывная катушечная обмотка не имеет обрывов и паек провода.

Благодаря высокой механической прочности, легкости распределения витков обмотки по катушкам, удобству выполнения регулировочных ответвлений, сравнительной простоте намотки, отсутствию перепаек между катушками и простоте насадки на сердечник, непрерывная катушечная обмотка находит широкое применение в качестве обмотки ВН для трансформаторов с мощностью на один стержень от 50 до 20000 кВА и выше, при токах нагрузки от 10–15 А и выше. Этот тип обмотки находит применение также и в качестве обмоток НН при токах от 17–20 и до 300 А (рис. 2.10, 2.11).

Рис. 2.10. Часть катушки непрерывной

обмотки с двумя параллельными

проводами в витке

Рис. 2.11. Переходы в катушках

непрерывной обмотки

При напряжении 110 кВ и выше применяется только непрерывная катушечная обмотка. Если виток обмотки выполняется из нескольких параллельных проводов, то необходимо проводить транспозицию параллельных проводов аналогично, как это производится в винтовых параллельных обмотках.

Более подробно правила выполнения обмоток различного типа приводится ниже при пояснении методики расчета.

Основные узлы силового трансформатора

К основным узлам трансформатора относятся: магнитопровод (остов) с магнитной цепью из активной стали со всеми креплениями и деталями; обмотки с изоляцией, отводами и креплениями; переключатель ответвлений; бак с арматурой и элементами охлаждения; вводы; защитные и контрольно-измерительные устройства. На рисунке 1 показан общий вид силового трансформатора. силовой трансформатор1 — бак; 2 — радиатор; 3 — расширитель; 4 — маслоуказатель; 5 — ввод ВН; 6 — привод переключающего устройства; 7 — ввод НН. Рисунок 1 — Внешний вид силового трансформатора.

Магнитопровод.

В трехфазных трансформаторах I—II габаритов наибольшее распространение получили несимметричные магнитопроводы трехстержневого шихтованного типа. Магнитопровод собран из отдельных тонких пластин электротехнической стали, изолированных друг от друга пленкой специального жаростойкого покрытия или лака КФ-965. Шихтовка — сборка пластин в переплет (рисунок 2), получается при чередовании слоев: пластины стержней переходят в ярма, а пластины ярм — в стержни. Поперечное сечение стержней — многоступенчатое, приближающееся по форме к кругу для лучшего использования пространства внутри обмоток (рисунок 3). Сечение ярм может применяться разное: многоступенчатое (повторяющее форму стержней) , прямоугольное (рисунок 4,а), Т-образное (рисунок 4,б) и крестообразное (рисунок 4,в). пластины магнитопровода трансформатора
Рисунок 2 — Сборка пластин магнитопровода в переплет D0 — диаметр описанной окружности стержня Рисунок 3 — Форма поперечного сечения стержней магнитопровода ярма магнитопроводов трансформатораРисунок 4 — Поперечные сечения ярм магнитопроводов Пластины ярм как верхнего, так и нижнего скрепляют ярмовыми балками, стянутыми тремя горизонтальными прессующими шпильками. Шпильки изолируют от стали ярма бумажно-бакелитовыми трубками и изоляционными шайбами. Активную сталь магнитопровода заземляют луженой медной лентой 2 (рисунок 5), вставленной одним концом между пластинами первого пакета, а другим — между электрокартонной прокладкой и ярмовой балкой стороны низшего напряжения (НН). заземления магнитопровода трансформатораРисунок 5 — Установка заземления магнитопровода

Обмотки трансформаторов

Трансформаторы I—II габаритов имеют в основном цилиндрические двух- и многослойные обмотки (рисунок 6). Обмотки НН наматывают проводом прямоугольного сечения, а ВН — круглого. Сечение витка обмотки НН значительно больше, чем ВН, так как число витков у обмотки НН меньше, а ток в ней больше (отношение токов в обмотках НН и ВН связано с отношением их напряжений и в зависимости от схемы и группы соединений обмоток входит в определение коэффициента трансформации). Виток обмотки НН с низким номинальным напряжением (230 В), изображенной на рисунке 6, состоит из двух параллельных проводов. Провода изолируют бумажной изоляцией, которая достаточна для изоляции между витками. Соседние слои изолируют дополнительно кабельной бумагой. Число слоев зависит от мощности трансформатора. Начиная с мощности 100 кВА все слои каждой обмотки разделяют на две части охлаждающим каналом, образуемым деревянными или электрокартонными рейками. Обмотки трансформаторова — обмотка НН — двухслойная с двумя параллельными проводами; б — обмотка ВН — многослойная Рисунок 6 — Обмотки трансформаторов I—II габаритов Трансформаторные заводы изготовляют обмотки НН и ВН раздельно. Каждую обмотку наматывают на бумажно-бакелитовый цилиндр толщиной 1,5—2,5 мм, а затем в обмотку ВН с натягом впрессовывают обмотку НН (вместе с рейками, образующими канал между обмотками). Раньше собранные и проверенные обмотки пропитывали глифталевым лаком, а затем запекали в печах при атмосферном давлении и температуре 80—90° С. Обмотки становились жесткими, монолитными, что, как предполагалось, должно было предохранить их от механических повреждений. Однако специальными испытаниями было доказано, что механическая прочность обмоток благодаря пропитке повышается незначительно, но это создает некоторое удобство при сборке. Но динамическую устойчивость обмоток при коротких замыканиях в трансформаторе пропитка не повышает. Более действенными мерами, которые сейчас применяют как трансформаторные, так и электроремонтные заводы, являются: введение магнитосимметричных схем обмоток; пофазная намотка, при которой непосредственно на обмотку НН, не снимая ее со станка, наматывают обмотку ВН, и др. Следует также учитывать, что трансформаторное масло с применяемыми сейчас присадками с течением времени растворяет глифталевый лак, который уходит в шлам. Была изготовлена опытная партия трансформаторов с непропитанными обмотками, она успешно прошла серию специальных испытаний. И сейчас обмотки трансформаторов I—II габаритов не пропитывают. Некоторые трансформаторы старых серий имели обмотки других типов: винтовые (ТСМАН), непрерывные (типа ТМ-560/10). Внутренняя изоляция трансформатора состоит из главной изоляции обмоток, продольной изоляции обмоток, изоляции отводов и переключателя ответвлений относительно бака и других заземленных частей. Главная изоляция обмоток изолирует обмотки друг от друга и от заземленных частей (рисунок 7). Это, кроме цилиндров обмоток и масляных каналов между стержнем магнитопровода и обмоткой НН и между обмотками НН и ВН, междуфазная перегородка (между обмоткой ВН разных фаз) из листа электрокартона толщиной 2—3 мм, а также ярмовая и уравнительная изоляции. изоляции обмоток в трансформатораа — схема изоляции обмоток фазы А; б — размещение деталей главной изоляции обмоток в трансформаторе Рисунок 7 — Главная изоляция обмоток Ярмовая изоляция изолирует обмотки от ярма и располагается вверху и внизу между торцовой частью обмотки и уравнительной изоляцией. Последняя выравнивает плоскость ярмовых балок с горизонтальной плоскостью ярма. Конструкции ярмовой и уравнительной изоляции у трансформаторов I—II габаритов самые различные. На рисунке 8 изображена ярмовая изоляция, представляющая собой кольцеобразную шайбу из электрокартона толщиной 2—3 мм с прикрепленными по обеим сторонам подкладками. Уравнительную изоляцию изготовляют в виде настила из деревянных планок. Иногда этот настил служит одновременно и ярмовой и уравнительной изоляцией, а между обмоткой и ярмом устанавливают электрокартонные щитки. Ярмовая изоляция трансформатораРисунок 8 — Ярмовая изоляция Продольная изоляция обмотки включает в себя витковую изоляцию и изоляцию между слоями обмотки. Изоляцией отводов и переключателя ответвлений относительно бака и других заземленных частей у трансформаторов I—II габаритов является только масляный промежуток, его величина зависит от напряжения и от формы заземленной и токоведущей частей: при заостренной форме масляный промежуток больше, а при плоской меньше. У трансформаторов 10 кВ обмотка ВН отстоит от стенки бака не менее чем на 25 мм; отвод с твердой изоляцией толщиной 2 мм на сторону — не менее чем на 10 мм. Отводы — это провода, соединяющие концы обмоток между собой, с вводами и с переключателем ответвлений. Отводы НН выполняют из алюминиевых шин. При напряжении до 525 В их не изолируют. Сечение отводов выбирают из расчета плотности тока не более 4,8 А/мм2. Отводы ВН выполняют из медных прутков или гибкого медного кабеля. Прутки диаметром до 5,2 мм изолируют кабельной бумагой, при большем диаметре на них насаживают бумажно-бакелитовые трубки. Для изолированных медных отводов допускаемая плотность тока составляет 2,5 А/мм2.

Переключатель ответвлений трансформатора

Все трансформаторы для распределительных сетей имеют устройства переключения ответвлений обмоток: либо под нагрузкой (устройства РПН), либо без возбуждения (устройства ПБВ). Устройства РПН для трансформаторов I—II габаритов практически не применяются. Устройства ПБВ применяются на стороне ВН для регулирования напряжения в диапазоне ±5% номинального значения. Устройство состоит из переключателя ответвлений, расположенного внутри трансформатора, на ярмовой балке магнитопровода или под крышкой бака, и ручного привода, выведенного наружу, на крышку бака. Переключатели ответвлений выполняют на три или на пять ступеней регулирования: «номинал» и два крайних положения или «номинал» и ±2X2,5%. На трансформаторах, выпущенных в разное время разными заводами, могут встретиться самые различные переключатели ответвлений. Это как «нулевые» так и строенные трехфазные системы. На рисунках 9—11 показаны наиболее распространенные переключатели трансформаторов I—II габаритов: ламельный «нулевой», сегментный «нулевой» и реечный строенный. переключатель ответвлений трансформатора1, 9, 18, 26 — шайбы; 2 — винт; 3 — втулка; 4 — сальниковая набивка; 5 — гайка сальника; 6 — гайка фланца; 7 — болт; 8 — колпак; 10 — фланец; 11 и 12 — прокладки; 13, 21 — колпаки; 14 — корпус переключателя; 15 — неподвижный контакт; 16 — пружинная шайба; 17 — гайка; 19 — звезда; 20 — пружина; 22 — диск; 23 — контргайка; 24 — шплинт; 25 — вал Рисунок 9 — Высоковольтный переключатель ответвлений переключатель ответвлений трансформатора
а — внешний вид; б — схема контактов; 1 — неподвижные контакты; 2 — цилиндр; 3 — коленчатый вал; 4 — подвижные контакты; 5 — приводной вал; 6 — фланец; 7 — колпак; 8 — стопорный болт; 9 — стрелка; 10 — ось Рисунок 10 — Переключатель ответвлений типа ТПСУ-9-120/10
переключатель ответвлений трансформатора
1 — бумажно-бакелитовая трубка; 2 — неподвижный контакт: 3 —подвижный контакт; 4 — пружина; 5 — болт; 6 — рейка; 7 — винт; 8 — держатель; 9 — колпак; 10 — указатель ступеней; 11 — фиксатор; 12 — шестерня; 13, 15 — валы; 14 — бумажно-бакелитовая трубка; 16, 19 — втулки; 17 — сальниковая набивка; 18, 21 — гайки; 20, 22 — винты; 23 — кольцо Рисунок 11 — Реечный переключатель ответвлений типа ПТО-10/63-65

Вводы трансформатора

Вводы служат для подключения трансформатора к сети. Вводы устанавливают в отверстиях на крышке или реже на боковой стенке бака. Существуют разные конструкции вводов, они зависят от электрических параметров (класса напряжения и величины тока), рода установки (внутренней или наружной) и от способа присоединения к обмоткам трансформатора. Токоведущий стержень или провод изолируют от крышки фарфоровыми изоляторами. Фарфор и металл крышки имеют разное объемное расширение при колебаниях температуры и поэтому жесткое крепление между ними не может обеспечить необходимой маслоплотности. Ранее применяли соединение изоляторов с металлическими деталями через специальную армировочную замазку. На рисунке 12 показан ввод ВН. Изолятор армирован в круглый фланец. Вводы НН рассчитаны на большие токи порядка сотен и тысяч ампер, и во избежание нагрева фланцев возникающими в них вихревыми токами, все три изолятора вводов НН (рисунок 13) армируют в обойму, которая крепится в общем отверстии крышки шпильками и гайками на уплотнении. высоковольтный ввод трансформатора1 — фарфоровый изолятор; 2 — токоведущая шпилька: 3 — резиновая шайба: 4 — колпак; 5 — фланец; б — прокладка; 7 — электрокартонная шайба; 8— стальная шайба; 9— крышка трансформатора; 10 — армировочная замазка Рисунок 12 — Армированный ввод ВН НН ввода трансформатораРисунок 13 — Установка вводов НН в обойме Теперь все трансформаторные заводы перешли на изготовление съемных вводов, которые более технологичны в ремонте: для замены поврежденного фарфорового изолятора не требуется разборка трансформатора и отсоединение отводов внутри бака. Изолятор (рисунок 14) ввода ВН крепится к крышке через кулачки из алюминиевого сплава. Их фиксирует в строгом положении стальной фланец. ВН ввод трансформатора1 — контактный наконечник; 2 — болт с гайками и шайбами; 3 — болт наконечника; 4 — специальная гайка; 5 — латунная втулка; 6 — резиновое кольцо; 7 — латунный колпак; 8 — винт для выпуска воздуха; 9 — резиновая шайба; 10 — выступ шпильки: 11 — электрокартонная шайба; 12 — буртик шпильки; 13 — фарфоровый изолятор; 14 — токоведущая шпилька; 15 — установочная шпилька; 16 — гайка; 17 — фланец; 18 — кулачок; 19 — резиновая прокладка; 20 — крышка трансформатора; 21 — гетинаксовая втулка; 22 —медная шайба; 23 — гайка Рисунок 14 — Съемный ввод ВН Отверстия в крышке для вводов НН соединяются прорезью, заваренной немагнитным металлом. Магнитопровод с обмотками, внутренней изоляцией, переключателем ответвлений и отводами в собранном виде называют активной частью трансформатора. Активную часть устанавливают в баке трансформатора, закрывают крышкой и заливают трансформаторным маслом. Существуют две принципиально различные конструкции установки активной части в баке. В трансформаторах старых выпусков активная часть механически связана с крышкой при помощи вертикальных шпилек. После установки крышки производят полную сборку деталей и частей, компонуемых на ней: привода переключателя и вводов во фланцах или в обоймах. Затем активную часть вместе с крышкой опускают в бак, от перемещений она удерживается деревянными планками и раскосами. Такая конструкция имеет ряд недостатков. Требуется очень тщательная подгонка длины шпилек по месту; изменение размеров баков и магнитопроводов даже в пределах допусков ведет либо к вспучиванию крышки, либо к появлению зазора между активной частью и дном бака. В обоих случаях трансформатор при транспортировке может выйти из строя. Другим недостатком является необходимость уплотнять соединения шпилек с крышкой, что создает дополнительные возможности для просачивания масла. Теперь у всех трансформаторов I—II габаритов активную часть механически с крышкой не связывают; она крепится в баке двумя или четырьмя крюками. Бак закрывают крышкой и только затем собирают все наружные элементы.

Бак с арматурой.

Бак трансформатора выполняет много функций. Это, во-первых, механическая основа, на ней внутри и снаружи крепятся все элементы трансформатора; это также и элемент охлаждения, передающий в окружающий воздух тепловые потери, и резервуар для масла, обладающий достаточной маслоплотностью. Ранее изготовлялись волнистые и трубчатые баки. Теперь все баки гладкие, овальной или прямоугольной формы. Для охлаждения используются ребра, приваренные к баку, или радиаторы из тонколистовых труб овального сечения (см. рисунок 1). Радиаторы могут быть съемными или вваренными. Съемные радиаторы легче ремонтировать, но от вибрации в их уплотнениях часто возникает течь масла. На баке крепится табличка паспортных данных. На ней обозначены все данные, требуемые при включении трансформатора в сеть, а также основные массы. К арматуре трансформатора относятся все вспомогательные устройства для нормальной длительной работы в условиях, для которых этот трансформатор предназначен: термосифонный фильтр для постоянной очистки масла от продуктов старения и случайно попадающей в него влаги; расширитель, обеспечивающий заполнение бака маслом и отсутствие в нем воздуха при колебаниях наружной температуры от +40 до —45°С; воздухоосушитель, через который сообщается воздушная полость расширителя с окружающим воздухом. Сорбент, засыпанный в воздухоосушитель, отбирает влагу из воздуха, поступающего в трансформатор при охлаждении и понижении уровня масла в расширителе. Об увлажнении и необходимости замены сорбента или его восстановления свидетельствует изменение цвета с голубого на розовый индикаторного силикагеля, засыпанного в прозрачный колпак воздухоосушителя. У современных трансформаторов воздухоосушитель встраивают в расширитель. К арматуре относятся также все сливные и заливные пробки с уплотнениями и пробка для взятия пробы масла (она, как правило, совмещается со сливной пробкой).
Защитные и контрольно-измерительные устройства — несложные, но весьма ответственные; от их исправности зависят надежность работы трансформатора и безопасность людей, находящихся в непосредственной близости от подстанции.

Трансформаторы с низшим напряжением до 525 В снабжают пробивным предохранителем (рисунок 15), который при пробое изоляции между обмотками ВН и НН или между отводами и появлении высокого потенциала на стороне НН соединяет цепь с землей (показано пунктиром). Рабочий элемент предохранителя — слюдяная прокладка с отверстиями, образующими искровые промежутки, которые пробиваются, т. е. перекрываются электрической дугой. Правильно налаженная релейная защита должна своевременно отключить трансформатор от сети, чтобы повреждение не распространялось и его легко можно было устранить.
Пробивной предохранитель
1 — обмотка ВН; 2 — обмотка НН; 3 — болт крепления крышки бака; 4 — перемычка; 5 — скоба; 6 — верхняя часть контактной головки; 7 — цокольный контакт; 8 — слюдяная прокладка с искровыми промежутками; 9 — нижняя часть контактной головки; 10 — центральный контакт; 11 — нулевой ввод; 12 — стенка бака; 13 — заземление бака Рисунок 15 — Пробивной предохранитель
Контрольно-измерительными приборами у трансформаторов I—II габаритов являются маслоуказатель и стеклянный термометр. Маслоуказатель (см. рисунок 1) у современных трансформаторов выполнен почти заподлицо со съемным дном расширителя. Он показан на рисунке 16. На масломерном стекле или на дне расширителя имеются три риски, соответствующие нормальному уровню масла в расширителе (при +15°С), минимальному (при —45° С) и максимальному (при +40° С). У трансформаторов старых выпусков маслоуказатели делались трубчатые. Риски на дне расширителя соответствовали другим минимальному и максимальному значениям температуры: —35 и +35° С.
маслоуказатель трансформаторов
1 — продольное окно в дне расширителя; 2 — плоский фасонный фланец; 3 — резиновая прокладка; 4 — плоское стекло; 5 — шпилька; 6 — гайка; 7 — шайба Рисунок 16 – Маслоуказатель трансформаторов
Термометр, показывающий температуру масла под крышкой трансформатора, устанавливают в специальной гильзе, пропущенной через крышку внутрь бака. Дно гильзы завальцовывают. Ранее допускалось применение ртутных термометров. Однако в связи со случаями их поломки и попаданием ртути внутрь бака на токоведущие части, что явилось причиной аварий трансформаторов, в настоящее время применяют только спиртовые термометры или электронные датчики.

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:
  • По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
  • По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
  • По количеству обмоток. Двухобмоточные и трехобмоточные.
  • По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии.

Вот некоторые области применения силовых трансформаторов:
  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

Определение характеристик силового трансформатора без маркировки

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.
Определение характеристик силового трансформатора без маркировки

Наиболее важные параметры силовых трансформаторов


Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:
  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?

Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
Для выполнения работы понадобятся простейшие инструменты и расходные материалы:
  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.

Определение характеристик силового трансформатора без маркировки
Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток


Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.
Определение характеристик силового трансформатора без маркировки
Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.
Определение характеристик силового трансформатора без маркировки
Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки


Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.
Определение характеристик силового трансформатора без маркировки
Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.
Определение характеристик силового трансформатора без маркировки
Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.
Определение характеристик силового трансформатора без маркировки

Простые способы вычисления мощности силового трансформатора


С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.
Определение характеристик силового трансформатора без маркировки

Заключение


Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

Масляные трансформаторы – что это такое, устройство и принцип работы

Масляный трансформатор – электрический агрегат, состоящий из двух или более обмоток. Основная задача этого устройства – преобразование электрического тока. Предельная частота в этом случае не изменяется. Процесс преобразования происходит электромагнитной индукцией.

Трансформаторы – вторичный источник питания. Они обеспечивают подачу энергии от электросети. Масляный тип трансформатора имеет ряд отличий. Их выпускают различных размеров, что делает возможным их размещение в любом помещении и на открытом пространстве. Корпус имеет защиту от негативного влияния внешней среды.

В статье мы рассмотрим, как сделать статичный повышающий трансформатор своими руками для монтажа в бытовую электросеть. В качестве бонуса читатель найдет интересный видеоматериал и обучающее пособие Л.С. Герасимова, А.И. Майорец “Обмотки и изоляция силовых масляных трансформаторов”.

Изображение масляного трансформатора.

Масляный трансформатор.

Принцип работы

Силовой трансформатор с заливкой масла в своей работе использует маслорасширитель, который компенсирует нагревание масла в процессе эксплуатации. Самой главной частью является воздухоочиститель, который способствует защите от попадания инородных тел в бачок с маслом. Также такой тип трансформатора обязательно должен иметь термометр, определяющий уровень нагрева жидкости. Эти устройства имеют отличные показатели надёжности, что является главным свойством в энергосети.

схема устройства масляного трансформатора

Принцип работы масляного трансформатора.

Преимуществом масляных трансформаторов перед сухими, является высокая степень защиты внешней обмотки, так же они имеют меньшее реактивное сопротивление.

Эти и многие другие свойства, обеспечивают высокие показатели надёжности, так же они позволяют существенно уменьшить надзор за ними. При хороших условиях трансформаторы такого типа могут прослужить порядка двадцати лет и не разу не требовать технического обслуживания, что безусловно является существенным плюсом в решение о покупке.

По статистике самой часто встречаемой поломкой трансформатора силового масляного типа является перегрев бочка с жидкостью, что вызывает разгерметизацию корпуса трансформатора. Но стоит заметить, что по сравнению с сухими трансформаторами, эту поломку будет не так уж и сложно устранить в сервисном центре.

Масляные трансформаторы – что это такое, устройство и принцип работы

Силовые трансформаторы масляного типа пользуются огромной популярностью во всём мире. Связано это с их не очень сложным устройством, а чем проще устройство, тем сложнее сломаться. Так же высокая износоустойчивость достигается благодаря погружению обмотки в техническое масло, это обеспечивает высокую степень защиты от внешних факторов.

Критерии выбора оборудования

Существует множество различных аспектов, которые должны быть учтены при использовании силового оборудования. Так на выбор модели трансформатора влияют условия его потенциальной эксплуатации и в частности:

  • сфера применения;
  • место установки;
  • суммарная мощность потребителей.

Рассмотрим специфику выбора с учетом каждого из них. Одним из главных параметров является сфера применения. Ориентируясь на нее нужно определиться с такими характеристиками, как:

  • мощность, она должна соответствовать предполагаемым нагрузкам и позволять агрегату справляться с перегрузками;
  • возможность эксплуатации прибора при росте нагрузки;
  • стоимость и срок службы.

Однако выбирая трансформатор нужно уметь правильно определять его основные параметры:

  • первичное и вторичное напряжение;
  • частоту тока;
  • фазность;
  • нагрузку;
  • способ расположения;
  • особенности размещения.
Масляные трансформаторы – что это такое, устройство и принцип работы

Промышленный масляный трансформатор.

Но кроме всех, перечисленных характеристик должны учитываться и функционал агрегата, а также его непосредственное назначение. Если предполагается подключение трансформатора к цепи измерительных приборов, то используют соответствующий вид устройства.

Для защиты от скачков в сети выбирают агрегат, не отличающийся высокой точностью, но обладающий необходимыми функциями. Наибольшей популярностью в последнее время пользуются сухие трансформаторы, они часто используются вместо масляных и имеют большое количество плюсов.

Интересно почитать: как собрать катушку тесла самостоятельно.

Конструкция устройства

Силовые трансформаторы предназначены для преобразования (трансформирования) переменного тока одного напряжения в переменный ток другого напряжения — более низкого или более высокого. Трансформаторы, понижающие напряжение, называют понижающими, а повышающие напряжение — повышающими.

Трансформаторы изготовляют двухобмоточные и трехобмоточные. Последние кроме обмотки НН и ВН имеют обмотку СН (среднего напряжения). Трехобмоточный силовой трансформатор позволяет снабжать потребителей электроэнергией разных напряжений.

Масляные трансформаторы – что это такое, устройство и принцип работы

Схема устройства масляного трансформатора.

Обмотка, включенная в сеть источника электроэнергии, называется первичной, а обмотка, к которой присоединены электроприемники,— вторичной. В рассматриваемых распределительных устройствах и подстанциях промышленных предприятий применяют трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в 0,23 и 0,4 кВ.

В зависимости от изолирующей и охлаждающей среды различают трансформаторы масляные ТМ и сухие ТС. В масляных основной изолирующей и охлаждающей средой являются трансформаторные масла, в сухих — воздух или твердый диэлектрик.

В специальных случаях применяют трансформаторы с заполнением баков негорючей жидкостью — совтолом. Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода с расположенными на нем обмотками низшего напряжения 3 и высшего напряжения 2 отводов и переключающего устройства.

Магнитопровод, набранный из отдельных тонких листов специальной трансформаторной стали, изолированных друг от друга покрытием, состоит из стержней, верхнего и нижнего ярма. Такая конструкция способствует уменьшению потерь на нагрев от перемагничивания (гистерезис) и вихревых токов.

Соединительные провода, идущие от концов обмоток и их ответвлений, предназначенные для регулирования напряжения, называют отводами, которые изготовляют из неизолированных медных проводов или проводов, изолированных кабельной бумагой либо гетинаксовой трубкой.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

Переключающие устройства

Служат для ступенчатого изменения напряжения в определенных пределах, поддерживания номинального напряжения на зажимах вторичной обмотки при изменении напряжения на первичной или вторичной обмотке. С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями, которые подсоединяют к переключателям.

Необходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников, преждевременному износу и сокращению сроков их службы.

Особенно чувствительны к повышению напряжения электролампы, радиолампы и лампы телевизоров: срок их службы резко сокращается при систематическом увеличении напряжения. В трансформаторах могут быть два вида переключений ответвлений: под нагрузкой — РПН (регулирование под нагрузкой) и без нагрузки после отключения трансформатора — ПБВ (переключение без возбуждения). С помощью ПБВ и РПН можно поддерживать напряжение, близким к номинальному во вторичных обмотках трансформаторов.

Масляные трансформаторы – что это такое, устройство и принцип работы

Переключение осуществляют изменением числа витков с помощью регулировочных ответвлений обмоток, т. е. изменением коэффициента трансформации, который показывает, во сколько раз напряжение обмотки ВН больше напряжения обмотки НН или во сколько раз число витков обмотки ВН больше числа витков обмотки НН. Пределы регулирования вторичных напряжений для разных трансформаторов различны: на ±10% 12 ступенями по 1,67% или 16 ступенями по 1,25% с помощью РПН; на ±5% четырьмя ступенями по 2,5% с помощью ПБВ.

Устройство и назначение бака 

В  него  погружена активная часть, представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом. Масло, являясь охлаждающей средой, отводит теплоту, выделяющуюся в обмотках и магнитопроводе, и отдает ее в окружающую среду через стенки и крышку бака. Кроме охлаждения активной части трансформатора масло повышает степень изоляции между токоведущими частями и заземленным баком.

Для увеличения поверхности охлаждения трансформатора баки изготовляют ребристыми, вваривают в них трубы или снабжают съемными радиаторами (только у трансформаторов мощностью до 25 кВ-А стенки бака гладкие). Радиаторы присоединяют к стенкам бака патрубками со специальными радиаторными кранами. У верхнего торца бака к его стенкам приваривают раму из угловой или полосовой стали, к которой крепят крышку на прокладках из маслоупорной резины.

В нижней части бака всех типов трансформаторов имеется кран для взятия пробы и слива масла, а в его днище (в трансформаторах мощностью выше 100 кВ-А) — пробка для спуска осадков после слива масла через кран. Второй кран устанавливают на крышке бака, через который заливают в него масло. Оба крана служат одновременно для присоединения к ним маслоочистительных аппаратов.

К дну баков трансформаторов массой выше 800 кг приваривают тележку с поворотными катками, конструкция крепления которых позволяет изменять направление передвижения трансформаторов с поперечного на продольное. Для подъема трансформатора на баке имеется четыре кольца-рыма.

Активная часть поднимается за скобы в верхних консолях магнитопровода. На крышке бака размещены вводы, расширитель и защитные устройства (выхлопная предохранительная труба, реле давления, газовое реле, пробивной предохранитель). К стенкам бака приваривают подъемные крюки, прикрепляют манометрический сигнализатор (у трансформаторов мощностью свыше 1000 кВ- А) и устанавливают фильтры.

Масляные трансформаторы – что это такое, устройство и принцип работы

Схема работы трансформатора.

Расширитель

Расширитель имеет цилиндрическую форму, закрепляется на кронштейне, установленном на крышке 6 трансформатора, и сообщается с баком трансформатора трубопроводом, не выступающим ниже внутренней поверхности крышки трансформатора и заканчивающимся внутри расширителя выше его дна во избежание попадания осадков масла в бак 1. Внутренняя поверхность расширителя имеет защитное покрытие, предохраняющее масло от соприкосновения с металлической поверхностью и расширитель от коррозии. В нижней части расширителя имеется пробка для слива масла из него.

Объем расширителя определяют так, чтобы уровень масла оставался в его пределах как летом при 35 °С и полной нагрузке трансформатора, так и зимой при минимальной температуре масла и отключенном трансформаторе. Обычно объем расширителя составляет 11 —12% объема масла в баке трансформатора.

Для наблюдения за уровнем масла на боковой стенке расширителя устанавливают маслоуказатель, выполненный в виде стеклянной трубки в металлической оправе. Емкость расширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора от отключенного состояния до номинальной нагрузки и при колебаниях температуры окружающего воздуха, причем при допустимых перегрузках масло не должно выливаться.

Масляные трансформаторы – что это такое, устройство и принцип работы

Масляный трансформатор.

В герметичных масляных трансформаторах и трансформаторах с жидким негорючим диэлектриком поверхность масла защищают сухим азотом, а в заполненных совтолом -10 — сухим воздухом. Негерметичные масляные трансформаторы мощностью 160 кВ- А и более, в которых масло в расширителе соприкасается с окружающим воздухом, имеют термосифонный или адсорбционный фильтр, а трансформаторы мощностью 1 мВ • А и более с естественным масляным охлаждением и азотной подушкой — термосифонный фильтр (кроме трансформаторов с жидким негорючим диэлектриком).

Масляные трансформаторы мощностью 1 мВ * А и более с расширителем снабжают защитным устройством, предупреждающим повреждение бака при внезапном повышении внутреннего давления более 50 к Па. К защитным устройствам относят выхлопную трубу со стеклянной диафрагмой и реле давления. Масляные трансформаторы и трансформаторы с жидким диэлектриком с азотной подушкой без расширителя имеют реле давления, срабатывающее при повышении внутреннего давления более 75 кПа.

Нижний конец выхлопной трубы соединяют с крышкой бака, а на верхний ее конец устанавливают тонкую стеклянную мембрану (от 2,5 до 4 мм) диаметром 150, 200 и 250 мм, которая разрушается при определенном давлении и дает выход газу и маслу наружу раньше, чем произойдет деформация бака.

Реле давления размещают на внутренней стороне крышки трансформатора. Основными его элементами являются ударный механизм и стеклянная диафрагма. При достижении определенного давления в баке механизм срабатывает, разбивает диафрагму и обеспечивает свободный выход газам.

Трансформаторы мощностью 1 мВ * А и более, имеющие расширитель, снабжают газовым реле, которое реагирует на повреждения внутри бака трансформатора (электрический пробой изоляции, витковое замыкание, местный нагрев магнитопровода), сопровождающиеся выделением газа или резким увеличением скорости перетекания масла из бака в расширитель. Основные характеристики силовых масляных трансформаторов представлены в таблице ниже.

Характеристики масляных трансформаторов

Основные характеристики силовых масляных трансформаторов.

Выделение газообразных продуктов происходит в результате разложения масла и других изоляционных материалов под действием высокой температуры, возникающей в месте повреждения. На этом явлении основана работа газовой защиты трансформатора от внутренних повреждений, сопровождающихся выделением газов при их утечке, утечке масла и попадании воздуха в бак.

Основной элемент этой защиты — газовое реле, устанавливаемое обычно на трубопроводе, который соединяет расширитель с баком, имеющим наклон к горизонтали от 2 до 4 В газовом реле имеются две пары контактов для работы на сигнал или отключение.

Здесь можно почитать об устройстве силового трансформатора и сфере его применения.

Защита трансформатора

Пробивные предохранители служат для защиты от пробоя обмоток ВН на обмотки НН. Устанавливают их на крышке бака и подсоединяют к нулевому вводу НН, а при напряжении 690 В — к линейному вводу. При пробое изоляции между обмотками ВН и НН промежуток между контактами, в котором проложены тонкие слюдяные пластины с отверстиями, пробивается и вторичная обмотка оказывается соединенной с землей.

заземление сечением 12мм

Заземление масляного трансформатора.

Для заземления трансформаторов служит специальный заземляющий контакт с резьбой не менее Ml2, расположенный в доступном месте нижней части бака со стороны НН и обозначенный четкой несмывающейся надписью «Земля» или знаком заземления.

Поверхность заземляющего контакта должна быть гладкой и зачищенной; заземление осуществляют подсоединением стальной шины сечением не менее 40><4 мм.

Для измерения температуры масла на трансформаторах монтируют ртутные термометры со шкалой от 0 до 150° С или термометрические сигнализаторы ТС со шкалой от 0 до 100° С. Последние снабжены двумя передвижными контактами, которые можно установить на любую температуру в пределах шкалы.

Первый контакт, будучи включенным в сигнальную цепь, при определенной температуре масла дает сигнал; в случае дальнейшего повышения температуры масла второй контакт, соединенный с реле, отключает трансформатор. На трансформаторах мощностью 6300 кВ * А и выше установлены термометры сопротивления.

Для сушки и очистки увлажненного и загрязненного воздуха, поступающего в расширитель при температурных колебаниях масла, все трансформаторы снабжены воздухоочистительным фильтром — воздухоосушителем, который представляет собой цилиндр, заполненный силикагелем и размещенный на дыхательной трубке расширителя.

Заключение

В данной статье были рассмотрены основные функции масляных  трансформаторов и их устройство. Больше информации о них можно узнать в учебном пособии Л.С. Герасимова, А.И._Майорец “Обмотки и изоляция силовых масляных трансформаторов”.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *