Site Loader

Применение асинхронных электродвигателей в промышленности | Полезные статьи

Агрегат, преобразующий электрическую энергию в механическую, называется электродвигателем. Эти машины могут применяться в бытовой технике (маломощные асинхронные двигатели) и в промышленности (краны и лебедки общепромышленного значения и прочее).

Рисунок 1. Классический пример трехфазного асинхронного электродвигателя — двигатель серии АИР Наибольшее распространение получили трехфазные асинхронные электродвигатели — они используются во всех сферах народного хозяйства (станки и оборудование, автоматика, телемеханика и т. д.).

На сегодняшний день именно этот тип электрических машин наиболее распространен. Объясняется это простотой эксплуатации, надежностью этих машин, небольшим весом и удачными габаритными размерами.

Электродвигатель с короткозамкнутым ротором используется в электроприводах разных станков (металлообрабатывающих, грузоподъемных, ткацких, деревообрабатывающих), в вентиляторах, землеройных машинах, в лифтах, насосах, бытовых приборах и т.д.

Электродвигатель асинхронный с короткозамкнутым ротором позволяет значительно снизить энергопотребление оборудованием, которое он питает, обеспечить высокий уровень его надежности, увеличить срок службы. Совокупность этих характеристик, как правило, сразу положительно отражается на модернизации всего производства.

 

Основные виды и некоторые характеристики электродвигателя асинхронного однофазного и трехфазного

Сегодня самыми востребованными в разных отраслях промышленности и любого производства являются следующие виды машин:

  • общепромышленные — применяются на производстве и в агропромышленном секторе;
  • взрывозащищенные — предназначены для использования в отраслях промышленности взрывоопасной: химическая, добыча нефти, газовая и угледобывающая промышленность;
  • электродвигатели крановые, подходящие для работы в составе любых поворотных и крановых механизмов.

Рисунок 2. Двигатель с фазным ротором — крановый серии МТF. Электродвигатели прочно вошли в современную промышленность. От их надежности и качества зависит все производство. Не важно, стиральная машина или ткацкий станок, складское оборудование или система вентиляции — работа многих машин невозможна без исправной работы электромотора. В этой связи важно не просто купить электродвигатель, например у надежного поставщика, но и неукоснительно соблюдать все указанные в сопроводительных документах условия эксплуатации. Для северного сурового климата, к примеру, требуются специальные двигатели, которые рассчитаны на эксплуатацию в условиях низких температур. Для эффективной работы в электродвигателях может использоваться встроенная температурная защита. Такое конструктивное решение позволяет отключить двигатель от сети, если температура обмоток или подшипников превысит норму, или включить дополнительные вентиляторы обдува.

 

Свойства и область применения асинхронных электродвигателей

Электродвигатели применяются достаточно широко. Асинхронные электродвигатели могут применяться как в бытовой технике, так и на промышленных предприятиях.

Асинхронный электродвигатель благодаря простоте в производстве и надёжности в эксплуатации широко применяют в электрическом приводе. Электродвигатели асинхронные имеют свои специфические свойства, области применения и ограничения использования.

У асинхронного электродвигателя ограничен диапазон регулирования частоты вращения и значительное потребление реактивной мощности в режиме малых нагрузок. Создание регулируемых статических полупроводниковых преобразователей частоты существенно расширяет область применения электродвигателей асинхронных в автоматических регулируемых электроприводах.

Электродвигатель состоит из двух основных частей – статора и ротора. Статором называется неподвижная часть машины. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротором, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности). 

В зависимости от конструкции ротора асинхронные электродвигатели бывают с короткозамкнутым и с фазным роторами. 

Электродвигатели с короткозамкнутым ротором наиболее распространены, они достаточно просты по устройству и удобны в эксплуатации.

Свойства и область применения 

Электродвигатели асинхронные с короткозамкнутым ротором имеют следующие преимущества: 

  • Электродвигатели асинхронные имеют практически постоянную скорость при разных нагрузках; 
  • Есть возможность непродолжительных механических перегрузок; 
  • Электродвигатели асинхронные просты в конструкции; 
  • Простота пуска электродвигателя асинхронного, легкость его автоматизации; 
  • Более высокие cos φ и КПД, чем у двигателей с фазным ротором. 

Однако асинхронные электродвигатели с короткозамкнутым ротором имеют и свои недостатки. К ним относятся: 

  • затруднения в регулировании скорости вращения электродвигателя; 
  • большой пусковой ток; 
  • низкий cos φ при недогрузках. 

Применение асинхронных электродвигателей с короткозамкнутым ротором ограничено, они применяются в тех случаях, когда не требуется регулирование скорости вращения двигателя. 

Преимущества асинхронных электродвигателей с фазным ротором

  • большой начальный вращающий момент; 
  • возможность кратковременных механических перегрузок; 
  • приблизительно постоянная скорость при различных перегрузках; 
  • меньший пусковой ток по сравнению с двигателями с короткозамкнутым ротором; 
  • возможность применения автоматических пусковых устройств. 

Электродвигатели асинхронные с фазным ротором используются в тех случаях, когда требуется уменьшить пусковой ток и повысить пусковой момент, а также когда требуется регулирование скорости в небольших пределах. 

Перегрузочная способность электродвигателей асинхронныххарактеризуется отношением максимального момента двигателя Мм к его номинальному моменту Мн. В зависимости от величины мощности и назначения двигателя отношение Мм/Мн колеблется примерно в пределах 1-3.

Посмотреть ассортимент асинхронных электродвигателей

Электродвигатели асинхронные: электродвигатель 5АМ, 5АИ, АИР

Применение асинхронных электродвигателей с фазным ротором | Полезные статьи

Рис. 1. Асинхронный электродвигатель с фазным ротором Асинхронные электродвигатели с фазным ротором (рис. 1) характеризуются лучшими пусковыми и регулировочными свойствами. Основными компонентами любых электродвигателей являются статор и ротор. В качестве статора используется шихтованный магнитопровод, запрессованный в станину (рис. 2). Три катушки, оси которых расположены под углом 120 градусов друг к другу, уложены в пазах магнитопровода. В зависимости от используемого напряжения, фазы обмоток соединяются по одной из известных в электротехнике схем: «треугольник» или «звезда».

Ротор имеет вид цилиндра. Он собран из специальных листов, изготовленных из электротехнической стали, расположенных на валу. Обмотка ротора тоже трехфазная. При этом в ней содержится такое же количество пар полюсов, что и в обмотке статора. Концы фазных катушек соединяются с контактными кольцами, которые закреплены также на валу. Выход во внешнюю цепь осуществляется с помощью специальных металлографитовых щеток.

Рис. 2. Статор электродвигателя

Электродвигатели с фазным ротором характеризуются следующими особенностями, выгодно отличающими их от двигателей с короткозамкнутым ротором:

  • большим начальным вращающим моментом;
  • возможностью кратковременно перегружать механически;
  • практически постоянной скоростью вращения при возможных перегрузках;
  • меньшим пусковым током;
  • возможностью применять автоматические пусковые устройства.

Каталог асинхронных электродвигателей богат и разнообразен, так как они находят применение во многих отраслях народного хозяйства. Такие электродвигатели отличаются как своими характеристиками, так и назначением. Так, если рассматривать условия их работы, то двигатели бывают открытого, защищенного, закрытого и взрывоопасного исполнения. Если за основу брать способ охлаждения, то их можно поделить на 4 группы:

  • естественного воздушного охлаждения;
  • с внутренней самовентиляцией;
  • с наружной самовентиляцией;
  • независимого охлаждения.

По рабочему положению, двигатели бывают горизонтального и вертикального исполнения.

Двигатели снабжаются техническим паспортом, который содержит основные характеристики асинхронных электродвигателей. Рассмотрим расшифровку этих данных на примере двигателя типа 4А10082УЗ, относящегося к асинхронным двигателям серии 4А. Из маркировки следует, что высота оси вращения равна 100 мм, корпус короткий; является двухполюсным, климатическое исполнение — У, категория — 3. Кроме того, принято указывать количество фаз и частоту переменного тока, а также номинальную мощность и коэффициент мощности двигателя (cos φ).

Асинхронные двигатели широко применяются в различных сферах: металлургии, экструдерах, машинах для литья, печатных и упаковочных оборудованиях, в станках с ЧПУ, в пищевой и текстильной промышленности и так далее.

Использование электродвигателей в промышленности и других сферах

  1. Статьи
  2. Области применения электрических двигателей

Вследствие способности электрического двигателя переменного тока работать в двух режимах – двигательном и генераторном, асинхронные электродвигатели обычно используют именно в качестве двигателей, а синхронные в качестве генераторов.

Применение синхронных двигателей

В двигательном режиме синхронные задействуются в промышленности в крупных установках:

  • приводах поршневых компрессоров;
  • воздуховодах;
  • гидравлических насосах.

Применение асинхронных двигателей

Асинхронные в основном применяются в приводах крановых установок, в грузовых лебедках и других производственных устройствах, необходимых в производстве. К примеру, некоторые области применения асинхронных электродвигателей:

  • рольганговые для производства рольгангов – роликовых конвейеров для перемещения несыпучих грузов.
  • взрывозащищенные предназначены для работы во взрывоопасных средах химической, нефтеперерабатывающей, газовой и других областей промышленности.
  • крановые в устройстве подъемных, поворотных и передвижных кранов.

Однофазные асинхронные электродвигатели широко применяются в бытовой технике.

Применение электродвигателей постоянного тока

Электродвигатели постоянного тока недолговечны из-за быстрого износа коллектора, однако они имеют лучшие пусковые и регулировочные свойства по сравнению с двигателями переменного тока.
Этот тип двигателей применяется в приводах отличающихся высокой точностью, в которых необходимо плавное регулирование скорости вращения в широком диапазоне. В автомобилях, тракторах, самолетах с помощей двигателей постоянного тока приводится во вращение все вспомогательное оборудование.

Они задействованы в электроприводах подъемно-транспортных механизмов и механизмов экскаваторов, электрических стартерах автомобилей, тракторов и самосвалов, станков, прокатных станов, кранов, судовых установок. Миниатюрные низковольтные задействованы в производстве компьютерной техники, оргтехники, аккумуляторных электроинструментов и игрушек.

Компания Неринга-Сервис предлагает ремонт промышленных электродвигателей в Санкт-Петербурге! Обращайтесь прямо сейчас!

Назначение и области применения асинхронных машин

Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой со,, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота со2 является функцией угловой скорости ротора Q, которая, в свою очередь, зависит от вращающего момента, приложенного к валу.
Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.
Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».
Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.
Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.
Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5 %).
Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих номинальный ток).
Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами  избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости плавного регулирования частоты вращения.
Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.
В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки позволяют также замкнуть обмотку накоротко.
В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.
Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:
механическая мощность, развиваемая двигателем, частота сети, линейное напряжение статора, линейный ток статора. частота вращения ротора; коэффициент мощности; коэффициент полезного действия.
Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то указываются линейные напряжения и токи для каждого из возможных соединений   в виде дроби .
Кроме того, для двигателя с контактными кольцами приводятся напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.
Номинальные данные асинхронных двигателей варьируются в широких пределах. Номинальная мощность — от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения 60f\fp при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах — до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2—5 % меньше синхронной; в микродвигателях — на 5—20 %). Номинальное напряжение — от 24 В до 10 кВ (большие значения при больших мощностях).
Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения; при мощности более 0,5 кВт он составляет 0,65—0,95, в двигателях малой мощности 0,2—0,65.
Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потребляемой из сети, также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в двигателях малой мощности 0,3—0,7.

История создания и область применения асинхронных двигателей — КиберПедия

Асинхронные машины

История создания и область применения асинхронных двигателей

В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.

Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.

Режимы работы трёхфазной асинхронной машины

Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.

Режим двигателя

Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.


Рис. 2.9

Пусть обмотка статора создаёт магнитное поле, вращающееся с частотой n0 в указанном направлении (рис. 2.9). Это поле будет наводить согласно закону электромагнитной индукции в обмотке ротора ЭДС. Направление ЭДС определяется по правилу правой руки и показано на рисунке (силовые линии должны входить в ладонь, а большой палец нужно направить по направлению движения проводника, т.е. ротора, относительно магнитного поля). В обмотке ротора появится ток, направление которого примем совпадающим с направлением ЭДС. В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 2.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n. Направление вращения ротора совпадает с направлением вращения магнитного поля. Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля. Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.



Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n=n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2=0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой S. Скольжение может измеряться в относительных единицах и в процентах.

S=(n0−n)/n0 или S=[(n0−n)/n0]100%.

При пуске в ход асинхронного двигателя n=0,S=1. В режиме идеального холостого хода n=n0,S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

0<S≤1.

При работе асинхронных двигателей в номинальном режиме:

Sн=(2÷5)%.

В режиме реального холостого хода асинхронных двигателей:



Sхх=(0,2÷0,7)%.

Режим генератора

Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля (n>n0). Этот режим может наступить, например, при регулировании частоты вращения ротора.

Пусть n>n0. При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента (рис. 2.10). Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).


Рис. 2.10

При n>n0,S=0.

При n→+∞,S→−∞.

Таким образом, в режиме генератора скольжение изменяется в пределах:

0>S>−∞.

Цепь статора

а) ЭДС статора.

Магнитное поле, создаваемое обмоткой статора, вращается относительно неподвижного статора с частотой n0=60f)/p и будет наводить в обмотке статора ЭДС. Действующее значение ЭДС, наводимой этим полем в одной фазе обмотки статора определяется выражением:

E1=4,44w1k1fΦ,

где: k1=0.92÷0.98 – обмоточный коэффициент;
f1=f – частота сети;
w1 – число витков одной фазы обмотки статора;
Φ – результирующее магнитное поле в машине.

б) Уравнение электрического равновесия фазы обмотки статора.

Это уравнение составлено по аналогии с катушкой с сердечником, работающей на переменном токе.

.

Здесь Ú и Ú1 – напряжение сети и напряжение, подведённое к обмотке статора.
R1 – активное сопротивление обмотки статора, связанное с потерями на нагрев обмотки.
x1 – индуктивное сопротивление обмотки статора, связанное с потоком рассеяния.
z1 – полное сопротивление обмотки статора.
İ1 – ток в обмотке статора.

При анализе работы асинхронных машин часто принимают I1z1=0. Тогда можно записать:

U1≈E1=4,44w1k1fΦ.

Из этого выражения следует, что магнитный поток Φ в асинхронной машине не зависит от её режима работы, а при заданной частоте сети f зависит только от действующего значения приложенного напряжения U1. Аналогичное соотношение имеет место и в другой машине переменного тока – в трансформаторе.

Цепь ротора

а) Частота ЭДС и тока ротора.

При неподвижном роторе частота ЭДС f2 равна частоте сети f.

f2=f=(n0p)/60.

При вращающемся роторе частота ЭДС ротора зависит от частоты вращения магнитного поля относительно вращающегося ротора, которая определяется соотношением:

n’=n0−n.

Тогда частота ЭДС вращающегося ротора:

.

Частота ЭДС ротора изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.

Пусть при f=50Гц, номинальное скольжение Sн=2%. Тогда при номинальной частоте вращения ротора f2=f×Sн=1Гц.

Таким образом, в обмотке ротора асинхронной машины частота наводимой ЭДС зависит от частоты вращения ротора.

б) ЭДС ротора.

При неподвижном роторе f2=f и действующее значение ЭДС определяется по аналогии с E1.

E2=4,44w2k2fΦ,

где: w2 и k2 – соответственно число витков и обмоточный коэффициент обмотки ротора.

Если ротор вращается, то f2=f×Sн и ЭДС вращающегося ротора определяется соотношением:

E2S=4,44w2k2f2Φ=E2S.

ЭДС, наводимая в обмотке ротора, изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход.

Отношение ЭДС статора к ЭДС неподвижного ротора называется коэффициентом трансформации асинхронной машины.

в) ток ротора.

Запишем уравнение равновесия для одной фазы короткозамкнутого ротора.

При неподвижном роторе.

,

где: x2=2πfL2 – индуктивное сопротивление обмотки неподвижного ротора, связанное с потоком рассеяния;
R2 – активное сопротивление обмотки ротора, связанное с потерями на нагрев обмотки.

При вращающемся роторе.

где: x2S=2πf2L2=2πfL2S=x2S – индуктивное сопротивление обмотки вращающегося ротора.

Для тока ротора в общем случае можно получить такое соотношение:

.

Отсюда следует, что ток ротора зависит от скольжения и возрастает при его увеличении, но медленнее, чем ЭДС.

г) поле ротора

Обмотка ротора, как и обмотка статора, является многофазной и при появлении в ней тока создаёт своё вращающееся магнитное поле. Обозначим через n2 частоту вращения магнитного поля ротора относительно ротора.

n2=(60f2)/p=(60fS)/p.

Здесь p – число пар полюсов обмотки ротора, оно всегда равно числу пар полюсов обмотки статора.

Относительно статора магнитное поле ротора вращается с частотой

.

Из полученного соотношения следует, что магнитное поле ротора относительно статора вращается с той же частотой, что и магнитное поле статора. Таким образом, магнитные поля ротора и статора относительно друг друга неподвижны. Поэтому при анализе работы асинхронной машины можно применить те же соотношения, что и трансформаторе.

Ток статора

Так как результирующее магнитное поле асинхронной машины не зависит от её режима работы, можно составить для одной фазы уравнение магнитодвижущих сил, приравняв магнитодвижущую силу в режиме холостого хода к сумме магнитодвижущих сил в режиме нагрузки.

İ0w1k1=İ1w1k1+İ2w2k2

Отсюда İ1=İ0+İ’2.

Здесь I0 – ток в обмотке статора в режиме идеального холостого хода, I’2=−I2(w2k2)/(w1k1) – составляющая тока статора, которая компенсирует действие магнитодвижущей силы обмотки ротора. Полученное выражение для тока статора отражает свойство саморегулирования асинхронной машины. Чем больше ток ротора, тем больше ток статора. В режиме холостого хода ток статора минимальный. В режиме нагрузки ток статора возрастает. Ток реального холостого хода асинхронной машины I0=(20÷60)%I1н и значительно больше по сравнению с номинальным током, чем у трансформатора. Это объясняется тем, что величина тока I0 зависит от магнитного сопротивления среды, в которой создаётся магнитное поле. У асинхронной машины, в отличие от трансформатора, есть воздушный зазор, который создаст большое сопротивление магнитному полю.

Прямое включение в сеть

Это самый простой и самый дешевый способ пуска. На двигатель вручную или с помощью дистанционного управления подается номинальное напряжение. Прямое включение в сеть допускается, если мощность двигателя не превышает 5% от мощности трансформатора, если от него питается и осветительная сеть. Ограничение по мощности объясняется бросками тока в момент пуска, что приводит к снижению напряжения на зажимах вторичных обмоток трансформатора. Если от трансформатора не питается осветительная сеть, то прямое включение в сеть можно применять для двигателей, мощность которых не превышает 25% от мощности трансформатора.

Изменение скольжения

Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение (рис. 2.21).

На рис. 2.21 приведены механические характеристики асинхронного двигателя при разных сопротивлениях регулировочного реостата Rр3>Rр2>0,Rр1=0.

Рис. 2.21

Как следует из рис. 2.21 при этом способе можно получить большой диапазон регулирования частоты вращения в сторону понижения. Основные недостатки этого способа:

  1. Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.
  2. Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.
  3. Невозможно плавно регулировать частоту вращения.

Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.

Изменение числа пар полюсов

Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.

На рис. 2.22 показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.

Рис. 2.22

У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.

У четырехскоростного двигателя на статоре должно размещаться две независимые обмотки с разным числом пар полюсов. Каждая из обмоток позволяет в два раза изменять число пар полюсов. Например, у двигателя, работающего от сети c частотой f=50 Гц, со следующими частотами вращения 3000/1500/1000/500 [об/мин] с помощью одной из обмоток статора можно получить частоту вращения 3000 об/мин и 1500 об/мин (при этом p=1 и p=2). С помощью другой из обмоток можно получить частоту вращения 1000 об/мин и 500 об/мин (при этом p=3 и p=6).

При переключении числа пар полюсов изменяется и магнитный поток в зазоре, что приводит к изменению критического момента Mкр (рис. 2.23.б). Если при изменении числа пар полюсов одновременно изменять и подведенное напряжение, то критический момент может остаться неизменным (рис. 2.23.а). Поэтому при этом способе регулирования могут быть получены два вида семейства механических характеристик (рис. 2.23).

Достоинства этого способа регулирования: сохранение жесткости механических характеристик, высокий К.П.Д. Недостатки: ступенчатое регулирование, большие габариты и большая стоимость двигателя.

Рис. 2.23

Генераторное торможение

Машина переходит в режим генератора, если n>n0, т.е. если ротор вращается быстрее магнитного поля. Этот режим может наступить при регулировании скорости вращения увеличением числа пар полюсов или уменьшением частоты источника питания, а также в подъемно-транспортных машинах при опускании груза, когда под действием силы тяжести груза ротор начинает вращаться быстрее магнитного поля.

В режиме генератора изменяется направление электромагнитного момента, т.е. он становится тормозным, под действием чего происходит быстрое снижение скорости вращения. Одновременно изменяется фаза тока в обмотке статора, что приводит к изменению направления передачи электрической энергии. В режиме генератора происходит возврат энергии в сеть.

На рис. 2.25 представлены механические характеристики при генераторном торможении за счет опускания груза (а) и понижении частоты источника питания (б).


Рис. 2.25

Пусть двигатель с заданной нагрузкой на валу работал в точке A (рис. 2.25.а). Если под действием опускаемого груза ротор начнет вращаться быстрее магнитного поля и рабочая точка попадает в точку B, то nв>n0, машина будет развивать тормозной момент и частота вращения снизится до величины меньшей n0. Одно из достоинств генераторного торможения у асинхронных машин заключается в том, что переход в режим генератора происходит автоматически, как только ротор начинает вращаться быстрее магнитного поля. Это защищает асинхронные двигатели от аварийной ситуации, которая может наступить у двигателей постоянного тока. Асинхронные двигатели не могут пойти в разнос. Максимальная частота вращения ротора ограничивается частотой вращения магнитного поля.

Пусть двигатель работает с заданной нагрузкой на валу в точке A характеристики 1 (рис. 2.25.б). При снижении частоты источника питания рабочая точка должна перейти в точку C характеристики 2. Но если nА окажется больше новой пониженной частоты вращения магнитного поля n02, то машина из точки A переходит в точку B, работая на участке B–n02 в режиме генератора. За счет этого происходит быстрое снижение частоты вращения. На участке n02–C машина работает в режиме двигателя, но происходит дальнейшее уменьшение частоты вращения ротора, пока вращающий момент не станет равным моменту нагрузки (т. C). Новое состояние равновесия с заданной нагрузкой наступает в точке C. Генераторное торможение является самым экономичным режимом, т.к. происходит преобразование механической энергии в электрическую и возврат энергии в сеть. Одним из достоинств этого тормозного режима является его самопроизвольное появление, т.е. не требуется никакая контролирующая аппаратура.

Динамическое торможение

Этот тормозной режим используется для точной остановки мощных двигателей. На время торможения обмотка статора отключается от сети переменного напряжения и подключается и источнику с постоянным напряжением. При этом обмотка статора будет создавать постоянное неподвижное магнитное поле. При вращении ротора относительно этого магнитного поля изменяется направление ЭДС и тока ротора, что приведет к изменению направления электромагнитного момента, т.е. он станет тормозным. Под действием этого момента происходит торможение. Изменяя величину подведенного к обмотке статора напряжения, можно регулировать время торможения. Основным достоинством этого тормозного режима является точная остановка. Постоянное напряжение можно подводить к обмотке статора только на время торможения. После остановки двигатель нужно отключить от сети постоянного тока.

На рис. 2.26 показаны схемы включения асинхронного двигателя и механические характеристики при динамическом торможении.

Пусть двигатель работает с нагрузкой в точке A. При подаче на обмотку статора постоянного напряжения рабочая точка перейдет из точки A в точку B тормозной характеристики 2.

Рис. 2.26

Под действием тормозного электромагнитного момента будет происходить снижение частоты вращения до полной остановки (точка 0).

Основные недостатки динамического торможения: необходим источник постоянного тока и неэкономичность.

Асинхронные машины

История создания и область применения асинхронных двигателей

В настоящее время асинхронные машины используются в основном в режиме двигателя. Машины мощностью больше 0.5 кВт обычно выполняются трёхфазными, а при меньшей мощности – однофазными.

Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована нашим русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.

Область применения синхронных электродвигателей

В статье  рассмотрены некоторые области применения синхронных электродвигателей, которые обладают отличными характеристиками при вращении мощных приводов. Сами синхронные электрические машины могут развивать мощность до 20 тысяч кВт.

Синхронные электродвигатели отличаются от асинхронных гораздо большей мощностью и полезной нагрузкой. Изменения тока возбуждения позволяет регулировать в них нагрузку. В отличие от асинхронных двигателей в синхронных при ударных нагрузках сохраняется постоянство частоты вращения, что позволяет их использовать в различных механизмах в металлургической и металлообрабатывающей промышленности.

Двигатели с синхронным типом действия способны развивать мощность до 20 тысяч кВт, что очень важно для приведения в действие исполнительных механизмов мощных обрабатывающих станков в машиностроении и других отраслях производства. Например, в высокопроизводительных гильотинных ножницах, где имеются большие ударные нагрузки на ротор электродвигателя.

Синхронные электрические двигатели с успехом используются в качестве источников реактивной мощности в узлах нагрузки для поддержания стабильного уровня напряжения. Довольно часто двигатели с синхронным принципом действия используются в качестве силовых машин в компрессорных установках большой производительности.

Мощные двигатели выполняются с использованием системы встречной вентиляции, при которой лопасти вентилятора расположены на роторе. Экономичный и надежный синхронный двигатель обеспечивает производительную и экономичную работу насосного оборудования.

Важной характеристикой синхронных электрических машин является сохранение постоянной скорости вращения, что важно для вращения приводов в виде насосов, компрессоров, вентиляторов, и различных генераторов переменного тока. Ценным также является возможность регулирования реактивного тока за счет вариаций тока возбуждения обмоток якоря. Благодаря этому увеличивается показатель косинуса φ при всех диапазонах работы, что увеличивает кпд двигателей и снижает потери в электрических сетях.

Сами двигатели с синхронным принципом действия устойчивы к колебаниям напряжения в сети, и обеспечивают постоянство скорости вращения при их возникновении. Синхронные электродвигатели при понижении питающего напряжения сохраняют большую перегрузочную способность, по сравнению с асинхронными. Способность к форсированию тока возбуждения при понижениях напряжения повышает надежность их работы при аварийных снижениях питающего напряжения в электрической сети.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, компрессоров и других силовых установок. В качестве недостатков синхронных машин можно отметить их конструктивную сложность, наличие внешнего возбуждения обмоток ротора, сложность запуска и довольно высокие стоимостные характеристики.

Принцип действия синхронного электродвигателя основывается на взаимодействии вращения магнитного поля якоря с магнитными полями полюсов индуктора. Якорь обычно располагается на статоре, а индуктор на подвижном роторе. При больших мощностях полюсами служат электромагниты, при этом постоянный ток подается на ротор через скользящие кольцевые контакты.

В маломощных двигателях используются постоянные магниты, расположенные на роторе. Существуют также синхронные машины с обращенным принципом работы, когда якорь размещен на роторе, а индуктор на статоре. Однако такая конструкция применяется в двигателях старых конструкций.

Синхронные электрические машины могут работать в генераторном режиме, когда якорь расположен на статоре для удобства отбора генерируемого электричества. На этом принципе основаны мощные генераторы, работающие на гидроэлектростанциях.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *