Как правильно выбрать солнечные батареи
Мы не так часто в нашей жизни покупаем солнечные батареи или устанавливаем солнечную электростанцию у себя на крыше. И правильно подобрать такое дорогостоящее оборудование одновременно ответственная и сложная задача для покупателя. Давайте попробуем разобраться в некоторых нюансах и возможных подводных камнях перед желанной покупкой.
В первую очередь, необходимо обратить внимание на технические характеристики солнечного фотомодуля. Основные из них перечислены ниже. Также, необходимо проверить качество изготовления и отсутствие визуальных дефектов на фотоэлементах, защитном стекле, ну и конечно, раме солнечного модуля.
Как определить, какое напряжение у модулей?
В последние годы на рынке появились солнечные панели с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов, появилась путаница с указанием номинального напряжения солнечных модулей. Мы возьмём на себя смелость и постараемся дать несколько советов, как определить, какое напряжение у солнечной батареи.
Различают несколько напряжений, которые указываются в параметрах солнечных панелей.
- Напряжение в точке максимальной мощности (ТММ). Это напряжение при работе модуля с максимальной эффективностью, т.е. когда он выдает свою пиковую мощность при стандартных тестовых условиях (STC). Это напряжение указывается в спецификациях модулей. Нужно учитывать, что измерить напряжение ТММ не так просто. Более того, очень часто нагрузка или аккумуляторные батареи заставляют работать солнечный модуль при напряжении, отличном от напряжения ТММ (обычно на несколько вольт ниже). Номинальная мощность равна произведению напряжения в точке максимальной мощности на ток в ТММ.
- Напряжение холостого хода. Напряжение холостого хода измеряется на клеммах солнечной панели без нагрузки, т.е. когда ток равен нулю. Это напряжение указывается в спецификациях на солнечных модуль. Напряжение холостого хода важно для определения максимально возможного напряжения, которое может выдавать модуль и солнечная батарея, собранная из нескольких модулей. Используя коэффициент температурной коррекции напряжения можно вычислить максимально возможное напряжение солнечного модуля при низкой температуре. Это напряжение не должно превышать максимально допустимого напряжения контроллера или инвертора.
- Номинальное напряжение. Это напряжение используется для классификации и различения модулей. Этот параметр пришел к нам со времен, когда солнечные панели использовались только для заряда аккумуляторных батарей. Это напряжение часто не указывается в спецификациях солнечной панели. Параметр номинального напряжения был введен для облегчения подбора солнечных панелей к аккумуляторам. Например, 12 В аккумуляторы нужно заряжать солнечной панелью с номинальным напряжением 12 В, а батарею 24 В — солнечной панелью с номинальным напряжением 24 В.
Здесь ситуация аналогичная напряжениям, указываемым для аккумуляторов. Как известно, для заряда аккумулятора номинальным напряжением 12 В нужно зарядное устройство с напряжением примерно до 15 В. Поэтому 12-ти вольтовая солнечная панель должна выдавать такое напряжение при различной температуре.
Такой подход прекрасно работал до появления MPPT контроллеров и сетевых фотоэлектрических инверторов. Технология MPPT (поиска точки максимальной мощности солнечной батареи, англ. maximum power point tracking) позволяет «отвязать» напряжение солнечной батареи от номинальных напряжений инвертора и аккумулятора.
Напряжение солнечной батареи определяется количеством соединенных последовательно солнечных фотоэлементов. Каждый элемент имеет рабочее напряжение чуть менее полвольта. В настоящее время есть модули с количеством элементов 36 шт., 48 шт., 54 шт., 60 шт., 72 шт., 96 шт. и 120 шт. Самые распространённые панели с количеством фотоэлементов 36 шт., 60 шт. или 72 шт. В таблице ниже приведены основные напряжения этих солнечных панелей.
При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности с нестандартным номинальным напряжением 20 В. Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контроллерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным
Температурная коррекция напряжения
Напряжение при возможных низких рабочих температурах модуля важно знать, для того, чтобы правильно подобрать солнечный контроллер или инвертор. Как известно, напряжение солнечной батареи растет при понижении температуры. Температурный коэффициент обычно указывается в спецификациях солнечного модуля.
На что обращать внимание при выборе солнечных панелей для вашей солнечной электростанции?
Цена против качества
Кроме того, что не все производители и солнечные модули одинаковы, есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.
Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:
- Качество солнечного элемента — его эффективность может быть разной. Это зависит от множества его параметров — шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента — начиная от качества применённого кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
- Качество пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание.
- Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
- Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффузия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружу. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модуля и разрушает контакты и контактную сетку элементов. Это приводит к преждевременному выходу модуля из строя.
- Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и ее коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушению под нагрузками.
- В последнее время появились солнечные модули с двойным стеклом, т.е. вместо задней защитной пленки применено стекло. Такие модули имеют ряд преимуществ.
Крыша веранды изготовлена из солнечных панелей с двойным стеклом
Толеранс
Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть, как положительным, так и отрицательным. Например, модуль c паспортной мощностью 280 Вт может иметь мощность 275 Вт — это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 290Вт, но и даже больше.
Температурный коэффициент
Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.
Эффективность преобразования солнечного света
C этим понятно — чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.
Срок службы и гарантии
Заявленный срок службы солнечной панели важен по нескольким причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.
Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже «как карта ляжет» — в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается — покупайте у продавцов и производителей, которые давно на рынке и устойчиво «плывут» в бурном потоке рынка. Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.
Размеры и мощность
Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими — это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24 В обычно выше, чем с нестандартным количеством элементов в модуле 48 или 54. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.
Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектированием системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению.
Пиковая мощность всех модулей измерена при стандартных тестовых условиях:
Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют — модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модулей при NOCT (normal operation conditions) — обычно для температуры модуля 45-47 °C и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.
Типы солнечных элементов: монокристаллические, поликристаллические, аморфные и другие.
Основные типы солнечных элементов, которые сейчас массово продаются на рынке, следующие:
- Монокристаллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты.
- Поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристаллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
- Аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.
- CIGs — тонкопленочные модули из кадмий-индий-галлий теллурида. Многообещающая технология, но массового распространения пока не получила. Делают такие модули всего несколько производителей, и цена на них за ватт обычно выше, чем на массово выпускаемые модули из кристаллического кремния.
В последние годы появились солнечные модули, изготовленные с применение новых технологий: PERC, гетероструктурные и т.п. Они имеют больший КПД и улучшенную эффективность. Пока их стоимость превышает стоимость стандартных кристаллических модулей с токосъемными шинами, но технология совершенствуется и рынок постепенно переходит на новые типы модулей, цена которых снижается.
Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Были даже версии, что поликристаллические элементы лучше преобразуют рассеянный свет, потому что кристаллы в них «повернуты в разные стороны».
Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше, чем некоторые монокристаллические. Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями — можно найти как «доказательства» преимуществ моно перед поли, так и преимуществ поли перед моно. Однако большинство монокристаллических модулей немного лучше работают при нагреве — это подтверждает анализ большого количества данных по PTC мощности солнечных модулей различных производителей.
Что является фактами, так это следующее:
- Монокристаллические модули обычно имеют больший КПД при STC, т.е. можно получить больше мощности с единицы площади солнечной батареи при ярком солнце.
- Монокристаллические модули имеют меньшую деградацию со временем.
- Монокристаллические модули дороже за ватт.
- На эффективность стандартных модулей в общем случае влияет количество токосъемных шин. Чем их больше, тем лучше работают солнечные элементы. Солнечные элементы с 4 шинами (4BB) постепенно вытеснены элементами с 5 шинами (5BB). Эффективность их выше, чем у элементов с 3 или 4 шинами, но сравнивать при этом нужно элементы производителей одинакового уровня. Хороший (брендовый, Tier1) производитель делает модули с 4BB элементами лучше, чем noname или Tier3 c 5BB.
- Солнечные элементы, изготовленные по новой технологии (PERC, гетероструктурные и др.) имеют КПД примерно на 10-15% выше. Т.е. в размере стандартного 260-280Вт модуля можно получить до 320Вт.
Так что еще раз повторим — если хотите получить солнечные панели с прогнозируемыми параметрами — покупайте брендовые, с указанием реального производителя. Этот производитель должен быть в списке протестированных независимыми лабораториями или рекомендован независимыми агентствами.
На этом пока всё. И не забывайте поделиться прочитанным со своими друзьями!
Опыт эксплуатации cистемы бесперебойного питания с солнечными батареями в «дачных» условиях
Альтернативная «чистая» энергетика, за которой, несомненно, будущее, в некоторых случаях может быть естественным и практичным выбором уже сейчас. В первую очередь, в тех случаях, когда необходимо обеспечить электричеством маломощного потребителя, расположенного «в чистом поле». А частный дом, если всё выбрано и построено с учетом требований энергосбережения (и вы, например, не планируете использовать электричество для обогрева), как раз и является примером такого «маломощного» потребителя. Да, в отличие от квартиры, тут добавляются еще и, как правило, скважинные насосы для автономного водоснабжения и различная садовая техника, но задавшись целью, вполне реально запитать это всё от солнечной системы, дополненной ветрогенератором и для подстраховки — каким-нибудь газовым или дизельным генератором. Причем последний будет включаться крайне редко, если всё рассчитано верно.
И это может быть дешевле, чем подключаться к линии электропередач в индивидуальном порядке. Поэтому в российских условиях, наверное, отсутствие «коллективного» электроснабжения является самой частой причиной интереса к альтернативным источникам питания. Но на мой взгляд, есть, как минимум, еще один довод в пользу «зеленых» систем, причем именно солнечных, даже при наличии «общественных» 220 вольт.
Дело в том, что стабильность питания, даже в Подмосковье, за пределами городов может оставлять желать лучшего. И в случае моего дачного поселка узким местом является петляющая по соседним лесам от деревни к деревне высоковольтная линия. Деревья, увы, падают от ветра, и это обстоятельство неведомо, похоже, только тем, кто считает нормальным прокладку воздушных линий в просеках шириной от силы метров десять. Впрочем, может быть, прокладка кабеля в земле дороже, чем периодическая замена столбов, пострадавших от соседней сосны. И это всё мудро просчитано.
Хотелось бы верить, но никак не получается, потому что тут насквозь видна российская традиция: сначала сделать кое-как, но подешевле, а потом тратить время и ресурсы на латание дыр (и искренне удивляться: а почему на новое денег не хватает?). Соответственно, сделать подороже и получше «сначала», чтобы экономить «потом» — гораздо проще в частном порядке.
И поскольку примерно раз в сезон бывает «хорошая» гроза, после которой на подъем линии уходит неделя, а то и больше, не считая более кратковременных отключений, сильно захотелось получить собственный запас автономии. В идеале — такой, чтобы вообще не замечать всё это безобразие. Дизельный или бензиновый вариант практически сразу отпал, мы даже купили такой. Но желание гонять это воющее и воняющее чудо техники, приехав насладиться общением с природой, оказалось ниже, чем собственно потребность в электричестве. Лучше обойтись свечами или уехать в город. Соответственно, эта тема приобрела актуальность, когда захотелось поселиться в доме на более или менее постоянной основе.
Между тем, особенность летнего дома в том, что массовая активность там происходит летом, когда солнечной энергии, даже на широте Москвы, хоть отбавляй. Собственно, и деревья-то падают в основном летом. Так обычно и было: гроза прошла, солнце сияет, а электричества нет. А интерес к «солнечной» энергетике уже был подкреплен покупкой солнечного коллектора для подогрева воды. В частности, достаточно компактный (12 трубок по 1,8 м) уверенно справляется с задачей продления «купального сезона» в 12-кубовом бассейне примерно на месяц по сравнению с естественным нагревом.
Поэтому примерно год назад была собрана система, о которой я хочу рассказать. Специально уделил внимание предыстории, чтобы не вступать в дискуссии на тему выгодности солнечных систем по сравнению с традиционными. Иногда, как мы видим, аргументы есть и помимо стоимости киловатта.
Переходим к выбору компонентов для солнечных систем.
Солнечные панели
Итак, начнем с солнечных батарей. В порядке снижения эффективности и стоимости следуют батареи на основе монокристаллического, поликристаллического и аморфного кремния. Абсолютное большинство брендовых батарей относятся к первому типу, который и сам по себе считается наиболее долговечным, ячейки деградируют медленнее всего.
Между прочим, если дом небольшой, и у вас нет какого-нибудь удобно расположенного сарая с большим южным скатом, то на практике может оказаться, что места для батарей вовсе не так много. И есть смысл взять модель с самым большим КПД на единицу площади, если вы действительно хотите построить систему с достаточно высокой энергоотдачей. Поскольку размещать батареи необходимо именно на южном скате крыши, желательно под углом 45 градусов.
По способу монтажа есть батареи, монтируемые в крышу на манер мансардных окон (фактически только у фирмы Roto с совершенно невменяемой стоимостью). А остальное большинство представляет собой простые панели, встроенные в алюминиевую раму, которые крепятся к накладным рейлингам. Минус последних в том, что крышу приходится сверлить, и не всякое покрытие выдержит без протечек такое грубое вмешательство. Тем не менее, это единственный ходовой вариант, который и был выбран.
Что касается самих батарей, то неплохим вариантом по соотношению цены и качества оказались зеленоградские монокристаллические батареи. Все же их достаточно охотно покупают в Германии. Поэтому, находясь в России, логично и даже приятно иметь возможность воспользоваться хоть чем-то имеющим отношение к электронике, но местного производства.
Были приобретены три батареи (TCM-170B) мощностью по 170 Вт и размером 158×82 см. Расчет в данном случае был простой: получить достаточный зарядный ток в облачную погоду, а также утром и вечером, чтобы энергетический баланс, по минимуму, позволял работать холодильнику сколь угодно долго. Поскольку потребление холодильника — порядка 100-200 Вт, и работает он с перерывами, такая нагрузка описанному варианту вполне по силам — разумеется, при наличии буферных аккумуляторов.
В реальных условиях, когда солнце все же светит, а люди в доме живут, энергии должно хватать и на то, чтобы пользоваться бытовыми приборами, подкачивать воду и т. д. даже при длительном отсутствии внешнего электроснабжения. Без излишеств, но и без специального режима экономии. Во всяком случае, я так рассчитывал, и сейчас уже могу подтвердить, что расчет оправдался.
Солнечный контроллер
Стандартное напряжение солнечных панелей и напряжение, которое необходимо поддерживать для заряда аккумуляторов, не совпадает. Вернее, напряжение на выходе солнечной панели меняется от нуля до максимального в зависимости от освещенности, и без промежуточного преобразования тут не обойтись.
В самом простом случае нужен контроллер, который бы отключал аккумуляторы, когда их заряд достиг максимального, и подключал обратно, когда, во-первых, требуется подзарядка, и, во-вторых, выходное напряжение массива солнечных батарей соответствует требуемому для нормального заряда. Но это очень неэффективный метод.
Поэтому в современных недорогих контроллерах используется ШИМ-модуляция, которая позволяет получить приемлемое напряжение и ток для заряда в большем входном диапазоне. Недостаток тут в том, что все равно надо хотя бы примерно совместить выходное напряжение массива солнечных панелей с напряжением массива аккумуляторов.
Наконец, самый универсальный и эффективный метод предлагают MPPT-контроллеры, которые способны преобразовывать напряжение в гораздо большем диапазоне и во время работы отслеживают точку максимальной мощности, а соответственно, позволяют снять максимум энергии и обеспечивать зарядку ранним утром и до сумерек. В моем случае вариант с таким контроллером был единственно адекватным, поскольку три солнечные батареи, как их ни соединяй, давали нестандартное напряжение. Ну а с таким контроллером — можно соединять последовательно, что и удобнее (меньше проводов), и меньше потери при передаче, поскольку та же мощность передается при максимальном напряжении и, значит, меньшем токе. А это тоже важно, если дом высокий, и от солнечных батарей до остальной электроники и аккумуляторов будет метров десять кабеля, а то и больше.
Пожалуй, самые известные и популярные MPPT-контроллеры — производства MorningStar. Выбранная модель TriStar-MPPT-45 рассчитана на зарядный ток 45 А, что безусловно избыточно (но маломощных MPPT-контроллеров практически не найти, и к тому же требования NEC подразумевают запас в 25% по току, то есть реально допустимый ток получается не выше 36 А, и, грубо говоря, заряжать таким контроллером можно батарею аккумуляторов в пределах 360 А·ч). Напряжение батареи аккумуляторов можно произвольно выбирать из ряда: 12, 24, 48 и 36 В. И наконец, входное напряжение от солнечных панелей должно быть в пределах 150 В. Разумеется, при таких характеристиках сопряжение не составляет ни малейшей проблемы.
Инвертер + зарядное устройство
Соединив батареи с аккумуляторами, логично подумать и о второй половине цепи, то есть нам необходима возможность питать от аккумуляторов внешнюю сеть, а также заряжать их от этой самой сети.
В самом общем случае нужен инвертер, зарядное устройство и реле, которое бы переключало нагрузку при исчезновении входного напряжения. К счастью, есть модели инвертеров, где все эти функции объединены, что важно, если мы хотим добиться полностью автономной и необслуживаемой работы — поскольку отдельные инвертеры зачастую требуют перезапуска вручную после того, как они исчерпали ресурс батареи и отключились, и т. д.
Собственно, на алгоритм работы надо обращать внимание и при выборе универсального устройства. Важно, чтобы оно автоматически начинало заряд аккумуляторов после появления напряжения в сети. Также важно, чтобы напряжение отключения нагрузки для инвертера было выставлено выше напряжения отключения солнечного контроллера. В таком случае аккумуляторы начнут заряжаться сразу: либо как «дадут ток», либо когда наступит утро. Даже если под вечер аккумуляторы сядут.
Поскольку качественные модели инвертеров обычно имеют 2-3-кратный запас по пусковому току, и это не аварийный, а именно штатный режим работы, вполне корректно выбрать номинальную мощность в соответствии с реальным максимумом, который вам может потребоваться. Для этого обычно достаточно сложить мощность скважинного насоса в установившемся режиме работы и мощность компрессора холодильника и добавить 20-30% запаса на «лампочки» и прочую бытовую мелочевку, которую вы соберетесь подключить к резервной линии.
Да, разумеется, предполагается, что резервная линия прокладывается отдельным кабелем, и розетки имеет смысл обозначить так, чтобы в них не оказался случайно включенным какой-нибудь утюг. Вообще, «поработать» над тем, чтобы одновременная нагрузка была как можно меньше, имеет смысл в первую очередь ради ресурса аккумуляторов. Как известно, если разрядный ток превышает оптимальный для аккумулятора, его реальная емкость может оказаться существенно меньше заявленной. А это не в наших интересах.
В моем случае получилось 700+200 В·А «надо точно». А с учетом того, что насос со временем может потребоваться и помощнее, для резервной линии было оптимально выбрать модель мощностью в пределах 1500 В·А.
После очень непродолжительного раздумья я выбрал Outback GFX1424E. Эта модель безусловно дороговата для своей мощности в 1400 В·А. Но, как я уже отметил, гоняться за мощностью в случае с инвертерами для домашней резервной линии бессмысленно. Вряд ли кто будет ставить соответствующую батарею аккумуляторов, чтобы реально иметь возможность нагрузить их 2-3 киловаттами нагрузки. Гораздо интереснее в данном случае заплатить за дополнительные функции и, конечно же, качество.
Последнее особенно важно, учитывая, что устройству предстоит работать круглосуточно и в отдельном помещении без присмотра. Что именно привлекло в этом устройстве:
- Произведен в США. Так сложилось, что как синоним надежности техники чаще всего употребляется фраза «немецкое качество». Между тем, американская продукция зачастую еще и покрепче и служит подольше, поскольку технологический уровень страны, как минимум, не уступает, но при этом нет такой жесткой экономии на материалах, как в Европе.
- Герметичный корпус. Соответственно, прибор защищен от пыли, влаги и насекомых. Нет, в доме, безусловно, чисто, но в комнатах ставить стойку с электротехникой вряд ли разумно — лучше для этого подходит гараж или подвал. И устройство обычной компоновки с вентиляционными решетками обязательно насосет своим вентилятором пыли — пусть не сразу, но через год-два точно. Не исключено, что какой-нибудь паук устроит аварийную ситуацию еще раньше 🙂
- Низкий уровень шума. Инвертер не совсем бесшумный: высокочастотный писк в некоторых режимах есть, а также, несмотря на герметичный корпус, играющий роль радиатора, внутри есть и тихоходный вентилятор, который иногда включается и перегоняет воздух от более нагретых компонентов к радиатору. Но даже при максимальной нагрузке (то есть собственно в режиме резервирования) шум не превышает 40 дБА, а в дежурном режиме, когда идет зарядка батарей, а окружающая температура превышает 25 градусов — не более 35 дБА. Это очень мало, большинство настольных компьютеров во время работы шумят громче, ну а классические инвертеры с вентиляторами — заведомо более шумные.
- Низкая потребляемая мощность (18 Вт в простое, 6 Вт в режиме StandBy). Тут надо иметь в виду, что воспользоваться спящим режимом вы сможете, если в доме нет маломощных потребителей энергии, нуждающихся в постоянном питании. Самый распространенный пример такого потребителя — система охраны (сигнализация).
- Чистая синусоида. Формально, даже чувствительные к форме питающего напряжения приборы способны в большинстве своем терпеть аппроксимированную синусоиду. Во всяком случае, когда речь идет о двигателях — с учетом того, что в режиме резервного питания они будут работать лишь незначительную часть времени. Но, безусловно, корректная форма синуса — это та функция, за которую стоит доплатить. Вернее, тут соображения идут от обратного: инвертеры с аппроксимацией занимают на рынке самый нижний (начальный) сегмент, и у них много недостатков чисто конструктивного свойства, помимо собственно формы напряжения. Всерьез и надолго на такие изделия рассчитывать наивно.
- Ну а самая любопытная функция, которая окончательно склонила выбор в пользу этого устройства — возможность экспорта электроэнергии. Иными словами, когда аккумуляторы заряжены полностью, включается инвертер, и излишек энергии, поступающий от солнечных панелей (или других альтернативных источников, подключенных к низковольтному контуру цепи, параллельно батареям), отправляется во внешнюю цепь. Соответственно, сначала компенсируется внутренний расход, а если остается еще и для соседей, то можно понаблюдать, как счетчик крутится в обратную сторону. Это, конечно, приятно, потому что только ради резервирования собирать такую систему не очень интересно (всё же бо́льшую часть времени внешняя сеть исправна). Но почему бы не пользоваться своей энергией?
Надо добавить, что даже сблокированные с зарядным устройством инвертеры далеко не все имеют функцию экспорта. А если собирать систему из отдельных компонентов, придется докупать еще дополнительный контроллер и, возможно, повозиться с программированием и настройкой. Тут уже смысл в такой обвязке есть лишь при условии, что вы собрали достаточно серьезную альтернативную электростанцию.
В данном случае я тоже не совсем был уверен, что всё получится автоматически. Всё же солнечный контроллер взят другого производителя, и оба устройства предусматривают программирование (к инвертеру прилагается отдельная панелька, а солнечный контроллер подключается через COM-порт). И как раз есть возможность выбора пороговых напряжений для заряда аккумуляторов и режима экспорта.
Однако поскольку сборка всей системы затянулась за полночь, я отложил настройку и программирование до утра. А утром обнаружилось, что заряд аккумуляторов уже закончился, и поскольку в доме ничего серьезного в этот момент включено не было, счетчик действительно крутился в обратную сторону. Всё заработало как следует.
Про замеры, какие удалось сделать, я еще расскажу в конце; добавлю только, что возможность экспорта протестирована при использовании электромеханического счетчика, который легко отличить по вращающемуся диску. Электронные могут этот момент не отрабатывать как следует, то есть ток вы отдавать будете, но исключительно в благотворительных целях. А пока осталось несколько слов сказать о выборе аккумуляторов.
Аккумуляторы
Для построения домашних систем автономного энергоснабжения, как правило, используются свинцово-кислотные аккумуляторы закрытого типа. Так называемые VRLA — Valve Regulated Lead-Acid, то есть с клапанным регулированием выделяемых газов. Существуют два типа таких аккумуляторов: AGM (Absorbed Glass Mat), в которых электролит между пластинами находится в стеклопластиковых капсулах, и гелевые. В последнем случае в электролит добавляются загустители, и при производстве аккумулятора этот электролит намазывается на пластины.
И если в компактных источниках бесперебойного питания чаще используются гелевые аккумуляторы, то для систем большой емкости в настоящее время самыми популярными являются AGM-модели, которые и были выбраны.
Поскольку бюджет был отнюдь не резиновый, были взяты два аккумулятора бюджетного производителя Leoch DJM12-200 емкостью 200 А·ч каждый.
Такой большой запас необходим для того, чтобы кратковременная нагрузка высокой мощности (насос) создавала, тем не менее, ток в пределах благоприятного режима для аккумуляторов. Как мы видим на диаграмме, для того чтобы время резервирования действительно составляло часы, а не минуты, желательно, чтобы ток в низковольтной цепи не превышал 0,2C (то есть пятую часть емкости). Аккумуляторы были соединены последовательно, поскольку инвертер был выбран с поддержкой 24-вольтовой цепи, и это также благоприятно для снижения потерь в соединениях.
Соединяем в систему
Здесь все достаточно тривиально: общее правило — минимизировать длину низковольтных цепей. Поэтому инвертер, солнечный контроллер и аккумуляторы лучше разместить на одной стойке либо просто рядом.
В моем случае получилось вот так. Провода от солнечных батарей, соединенных последовательно, подключены к солнечному контроллеру (провода имеет смысл взять потолще — от 6 мм², а лучше 10, если дом высокий, а электронику вы собираетесь поместить в подвале). Выход солнечного контроллера, как и выход инвертера, подключены к аккумуляторам, соединенным, в свою очередь, последовательно. В цепь аккумуляторов также необходимо поставить специальный автомат постоянного тока для защиты инвертера и для удобства отключения системы, если это потребуется.
В качестве шин для положительного и отрицательного полюса оказалось удобнее всего использовать выходы инвертера. Сюда же можно подцепить и ветрогенератор и все остальные источники энергии, если увлечение альтернативной энергетикой перейдет в хроническую стадию болезни. Как уже отмечалось, балласт не потребуется и аккумуляторы не перезарядятся — инвертер просто будет отдавать избыточную электроэнергию во внешнюю сеть.
Несколько тестов
В первую очередь надо отметить, что поставленная цель — не замечать кратковременные отключения (на несколько часов) и не особенно менять свои планы на день из-за упомянутой ночной грозы — достигнута полностью. Было и длительное отключение (в пределах недели), когда мы были в отъезде, и раньше бы, несомненно, по возвращении обнаружили разморозившийся холодильник, в морозилке которого всякий уважающий себя дачник хранит часть собираемого урожая. И если бы в цепи не было солнечных батарей, то, разумеется, такой результат не мог бы быть достигнут.
Интересно посмотреть, сколько же фактически вырабатывается энергии при разных погодных условиях. Если замерить мгновенную мощность, когда счетчик стоит, то при условиях, близких к идеальным (температура около 25 градусов, малооблачно, полдень), удается питать нагрузку около 300 В·А. Да, это заметно меньше теоретического заявленного максимума, но упомянутый холодильник от батарей работать сможет, и при этом счетчик продолжает скручиваться, даже в облачную погоду, что уже радует. А ниже — наблюдения в течение одной недели и показатели счетчика.
Выработка, Вт | |
18 мая (облачно) | 730 |
19 мая (облачно) | 750 |
20 мая (малооблачно) | 900 |
21 мая (солнечно) | 1300 |
22 мая (облачно) | 600 |
23 мая (пасмурно) | 220 |
Итого 4,5 кВт. Поскольку в доме в это время работали только холодильник, ноутбук и освещение (энергосберегающими лампами, вечером), а также в пределах 30-40 минут в день работал скважинный насос, общее потребление составило 7,2 кВт. То есть, действительно, почти половину расхода, даже с учетом не самых благоприятных погодных условий, солнечные батареи скомпенсировали.
Хотя, подчеркну, это «побочный эффект», цели сэкономить на электричестве в данном случае не ставилось. Что касается именно вопросов экономии, то если присматриваться к альтернативной энергетике с этой точки зрения, в первую очередь имеет смысл перевести самую затратную статью — нагрев воды — с электричества на некий прямой источник тепла. То есть если уж говорить об экономии и привязывать ее к использованию энергии солнца, лучше начать с простого солнечного коллектора. И если опыт вам понравится, тогда наверняка захочется попробовать еще какой-нибудь источник альтернативной энергии. Поскольку занятие это заразное и увлекательное.
Дополнение (к обсуждению на форуме)
В первую очередь, надо добавить, что никакой опасности «для электриков» устройство в режиме экспорта мощности не представляет. Как нетрудно догадаться, выдача мощности в сеть прекращается при отсутствии внешнего напряжения (а вернее даже — после его снижения относительно запрограммированного пользователем минимального порога). В таком случае инвертер переходит в режим автономной работы и под напряжением остается только резервная линия, и соответственно, только то оборудование, которое вы к ней подключите. За год эксплуатации было довольно много отключений, и к корректности отработки этого состояния, к инвертору претензий нет.
Сами батареи не более нуждаются в обслуживании, чем обычные оконные стекла. Иными словами, если у вас мансардное окно явно своим видом указывает на необходимость мойки, не забудьте протереть и панели. В случае экологически чистого расположения вдали от трасс, по опыту, уборка требуется не чаще раза в год. В конце весны после цветения деревьев. Но в этом году, например, из-за обильных осадков, даже окна мыть не пришлось. Все же, в отличие от вертикальных стекол, наклонные хорошо очищаются дождем. Зимуют батареи у большинства пользователей, которых мне удалось опросить через одну из компаний установщиков таких систем, под снегом, проблем также нет. Хотя, разумеется, если вы планируете снимать напряжение и зимой, то размещать батареи лучше под большим углом или на каком-то поворотном кронштейне, чтобы снег не задерживался.
При выборе инвертора настоятельно рекомендую смотреть спецификации по стартовым токам, они у хороших моделей в несколько раз превосходят штатную мощность. Соответственно, не стоит доверять «ощущениям» или советам тех, кто хочет вам продать оборудование «с запасом». Запас необходим, но рассчитывать его необходимо не по «ощущениям», а по измерениям.
Кстати, буквально на днях сильная гроза опять «удивила» незадачливых подмосковных энергетиков падением сосен. И электричества не было примерно сутки. И как всегда на следующее утро ярко светило солнце, выполняя свою полезную работу.
.
Как устроены и работают солнечные батареи
Солнечная энергетика становится все более популярной во всем мире. Вместе с коллегами из специализированного портала Elektrik мы разбирались, как устроена солнечная батарея, из чего она состоит и куда отправляется получаемая энергия.
В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).
Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.
В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.
Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.
Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.
Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.
Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.
Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.
Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.
Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.
Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток.
Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.
Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила — последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.
Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.
Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.
При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.
Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.
Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.
Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.
При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.
Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.
При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.
Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 — 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!
Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.
Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.
Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.
Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.
Что можно запитать от солнечной батареи
От солнечных батарей можно запитать любую бытовую аппаратуру, но при условии использования вспомогательных электротехнических средств, в том числе, аккумуляторов и преобразователей.
Спроектированные с применением солнечных батарей (СБ) электросети:
- обеспечивают экономию электроэнергии от традиционных источников электроснабжения;
- характеризуются высокой надежностью и минимальными требованиями к обслуживанию;
- не наносят вреда экологии.
Солнечная батарея и ее технические характеристики
К солнечным батареям относятся все преобразователи части спектра излучения Солнца в ЭДС с определенным соотношением ее силы тока, напряжения и мощности. Независимо от типа СБ, на ее выходе генерируется постоянный электрический сигнал. Генерируемый солнечной батареей ток зависит от сопротивления нагрузки и текущего уровня освещенности активной поверхности СБ. Поэтому непосредственно от солнечной батареи можно запитать простейшее электрооборудование, некритичное к перепадам постоянного напряжения – радиоприемники, светодиодные светильники и т. п.
Следует учитывать, что максимальная мощность от различных типов солнечных батарей выделяется в нагрузку с определенным внутренним активным сопротивлением.
Если имеются СБ с напряжением и силой тока недостаточными для питания электроаппаратуры, то используется их последовательно-параллельное соединение.
- При последовательном соединении солнечных батарей их напряжения складываются, а максимальный рабочий ток ограничивается элементом с минимальным значением этого параметра.
- Параллельное соединение СБ приводит к суммированию их токов, характерных для рабочего напряжения при данном сопротивлении нагрузки.
Благодаря полупроводниковой структуре солнечных батарей, при их параллельном соединении между ними отсутствует ток перетекания, характерный для химических источников питания. Такой ток существует даже при отключенной нагрузке и снижает суммарную емкость составной батареи.
Для параллельного соединения солнечных батарей лучше отбирать компоненты с близкими значениями токов в рабочей точке. Наилучшее схематическое решение – формирование параллельных групп с требуемой выходной мощностью из последовательно соединенных СБ с заданным напряжением. Помимо рационального использования солнечных батарей, последовательно-параллельная схема их соединения отличается высокой эксплуатационной надежностью – при выходе нескольких компонентов из строя ее работоспособность не утрачивается (лишь несколько ухудшаются выходные параметры).
Системы энергоснабжения на солнечных батареях
Как самостоятельные источники питания, СБ используются нечасто. Более эффективно применять их совместно с определенными электротехническими устройствами.
Если требуется ограничение по величине напряжения и тока питания электрооборудования, то между СБ и нагрузкой необходимо включить соответствующий ограничитель. Это обеспечит защиту питаемых устройств от повреждения в результате скачков выходного напряжения батареи при резком увеличении интенсивности освещения ее поверхности.
Для того чтобы обеспечить стабильность электроснабжения от солнечных батарей по времени, используются аккумуляторы. В них накапливается электроэнергия, не расходующаяся в нагрузку. Эта запасенная электроэнергия используется ночью или в пасмурную погоду, благодаря чему достигается бесперебойность и повышается независимость процесса энергоснабжения. К аккумуляторам и нагрузке СБ подключается через зарядно-стабилизирующее устройство, обеспечивающее автоматическую коммутацию источников и потребителей электроснабжения.
А если требуется питать электронную аппаратуру, рассчитанную на переменное высоковольтное напряжение, то солнечная батарея должна подключаться к инвертору. Это электронный преобразователь постоянного напряжения в переменное с увеличением амплитуды.
Все эти дополнительные узлы, повышающие функциональность источников электропитания на солнечных батареях, могут комбинироваться в различных сочетаниях. Для их совместной сбалансированной работы используются микропроцессорные контроллеры, которые позволяют запрограммировать поддержку любых рабочих режимов.
Как запитать от солнечной батареи дом
Исходя из вышесказанного, наиболее оптимальным набором оборудования для электроснабжения дома за счет энергии солнечного излучения, является комбинация из:
- солнечных батарей;
- аккумуляторных батарей;
- инвертора;
- контроллера.
Солнечные батареи представляют собой плоские устройства, изготовленные из материалов, способных трансформировать энергию фотонов солнечного света в электроэнергию. Каждая батарея характеризуется:
- номинальным напряжением и силой тока на выходе;
- площадью активной поверхности;
- КПД.
Аккумуляторные батареи являются источниками электротока, способными при снижении внутреннего заряда восполнять его. Для этого используются внешние источники питания (в нашем случае солнечные батареи), подключаемые к аккумулятору через специальное зарядное устройство. Главные характеристики аккумулятора:
- номинальное выходное напряжение;
- максимальный ток нагрузки;
- электрическая емкость.
Инверторы состоят из высокочастотного генератора, умножителя переменного напряжения, выпрямителя, стабилизатора и выходного буферного каскада. Поступающее на вход инвертора постоянное напряжение выпрямляется и питает генератор ВЧ, сигнал с которого поступает на умножитель переменного напряжения. Затем амплитуда переменного напряжения стабилизируется и подается в нагрузку через буферный каскад, обеспечивающий требуемый ток потребления.
Контроллер обеспечивает согласованное функционирование инвертора, солнечных и аккумуляторных батарей. Он может управлять их работой в разных режимах, обеспечивая решение требуемых задач. При наличии на объекте линии централизованного электроснабжения ее выход тоже можно подключить к контроллеру, что позволяет при нехватке мощности солнечных батарей использовать ее недостающую часть из сети. Такая схема обеспечивает максимальную надежность и экономичность системы снабжения объекта электроэнергией.
Подбор всего необходимого оборудования производится как по его способности работать в требуемых условиях, так и по техническим характеристикам. Например, солнечные батареи должны выдерживать температурные и влажностные колебания, ветровые и механические нагрузки, а аккумуляторы – обеспечивать большое количество циклов «заряд-разряд» без снижения емкости и тока нагрузки.
По входным и выходным электрическим параметрам должна соблюдаться эквивалентность смежных узлов:
- напряжение и ток на выходе солнечных и аккумуляторных батарей должны соответствовать требованиям к входным сигналам инвертора;
- мощность солнечных батарей должна быть достаточна для полного заряда аккумуляторов;
- подключаемые к контроллеру устройства должны иметь эквивалентные технические параметры входов и выходов.
тестирование батареи ионисторов / Habr
Привет geektimes.В предыдущей части рассказывалось о тестировании литиевых батарей для хранения электроэнергии. В одном из комментариев был вопрос об использовании ионисторов для хранения запасенной энергии. Стало интересно проверить, как это работает.
Конечно, параметры ионисторов можно найти в даташите и посчитать все что надо. Но так не интересно, куда интереснее померять самостоятельно. Для этого на ebay была заказана плата с длинным названием 6Pcs Farad Capacitor 2.7V 500F with Protection Board.
Как это работает, подробности под катом.
Чем интересны ионисторы? Это, упрощенно говоря, конденсатор огромной емкости — которая может составлять сотни фарад. В отличие от аккумуляторов, ионисторы обладают следующими преимуществами:
— имеют практически неограниченное количество циклов,
— могут быть разряжены до нуля, не боятся разряда,
— могут работать при отрицательных температурах,
— могут отдавать очень большие токи, в десятки или даже сотни ампер,
— имеют основной компонент — активированный уголь, который является весьма экологически чистым и «возобновляемым» компонентом (если верить Википедии, его получают из кокосовых орехов).
В то же время, у ионисторов есть и недостатки:
— плотность энергии в 10-100 раз меньше чем у аккумуляторов,
— в отличие от аккумуляторов, напряжение при нагрузке падает сразу и линейно,
— высокая цена.
Справедливости ради, технология не такая уж и новая: еще мой старый Palm m105 умел работать от встроенного ионистора 1-2 минуты, пока пользователь менял батарейку. Однако цена на ионисторы большой емкости довольно-таки заметно упала, что позволяет купить их без больших финансовых затрат.
Заряд
Одна из особенностей ионисторов — напряжение каждого элемента не превышает 2.7В. Поэтому для получения больших напряжений, они соединяются в батарею, а чтобы не перезарядить каждый элемент, их оснащают схемой защиты. Принцип полностью аналогичен балансиру в литиевых аккумуляторах — при превышении напряжения, излишки стравливаются на резисторах. Схему защиты хорошо видно на фото сверху. В моем случае батарея состоит из 6 ионисторов, емкостью 500Ф и напряжением 2.7В каждый, таким образом максимальное напряжение батареи составляет около 16В.
Вторая интересная особенность ионисторов — очень малое внутреннее сопротивление. Ионистор может как принимать, так и отдавать токи в десятки ампер (есть познавательное видео на эту тему). В моем случае, при первой попытке зарядить ионистор от блока питания 12Вх8А, провод раскалился докрасна и перегорел. Пришлось достать блок питания с настройкой ограничения тока, тогда процесс заряда пошел нормально. В остальном, заряд ионистора ничем не отличается от заряда конденсатора.
Тестирование
В качестве первого теста, напрямую к ионистору была подключена светодиодная лента. Было интересно проверить возможность использования максимально простого «аварийного» освещения, безо всяких сложных драйверов. Чтобы не испортить светодиоды ленты, ионисторы были заряжены до 12В. Из предыдущих опытов было известно, что потребляемый ток этого куска ленты при 12В составляет 1А.
Результаты на фото:
1) 21:01, старт, напряжение 12В, лента горит в полный накал
2) 21:09, напряжение уже упало до 8.7В
Я думал, что лента вот-вот погаснет, но потребляемый ток явно уменьшился.
3) 21:17, напряжение 7.8В, лента еще светит
4) 21:31, прошло полчаса, но к моему удивлению, лента еще слегка светится, напряжение 7.3В.
Дальше ждать надоело, да и свечением это было назвать сложно. Было решено собрать buck/boost конвертор, способный питать ленту стабилизированным напряжением в 12В. Для этого был подключен step up конвертор на 24В, к выходу которого подключен второй step down конвертор, настроенный на 12В. Как бонус, это позволило зарядить ионисторы полностью до 16В.
Все вместе выглядит так (вечер, в комнате стало темнее, так что на фото лента ярче):
Система действительно работает, и когда напряжение на выходе стало уменьшаться, ионистор был разряжен до 3.8В.
Результат: лента действительно горела без визуального изменения яркости, время полного горения составило 8 минут.
Выводы
Если мерять в долларах на ватт, то за 45$ была куплена батарея, от которой светодиодная лента может гореть 8 минут. Честно говоря, не очень впечатляет, хотя что-то подобное в принципе и ожидалось.
Тем не менее, ионисторы достаточно интересны наличием весьма уникальных особенностей:
— Практически неограниченное число циклов. Представляется интересным сделать аварийное светодиодное освещение от солнечных батарей, с практически вечным сроком службы например для туалета в деревне. С развитием рынка IoT ионисторы могут быть весьма перспективны для питания устройств с малым потреблением.
— Возможность отдавать большие токи и возможность работы при отрицательных температурах.
Это позволяет использовать ионистор как буферный элемент, когда надо быстро отдать большой ток при слабом источнике. В youtube описывались вполне успешные опыты по использованию ионисторов в стартере автомобиля. Применительно к солнечной энергии, еще один интересный пример — кратковременное хранение энергии для работы мощных устройств (дрели, пилы) от солнечной батареи, можно посмотреть здесь:
— Потенциальная экологичность и простота конструкции ионистора. В youtube есть даже видео по самостоятельному изготовлению суперконденсаторов, правда насколько оно реально, сказать сложно.
С другой стороны, литий-титанатные аккумуляторы имеют практически такие же преимущества — большое количество циклов, возможность работы на морозе и большие отдаваемые токи. Что будет лучше в дальней перспективе, сказать пока сложно, и то и то сейчас скорее экзотика. Скорее всего ниша ионисторов останется весьма узкой, но тем не менее она есть.
Ну и бонус для тех, кто дочитал до сюда: измерение емкости батареи ионисторов при заряде смартфона можно посмотреть на моем видео.
Тестирование батареи ионисторов совместно с солнечной панелью будет описано отдельно.
Продолжение следует.
Вольт-амперная характеристика солнечной батареи
Солнечные электростанции, в основу работы которых положен принцип прямого преобразования энергии солнечного излучения в электричество, заняли прочные позиции в общей системе энергообеспечения Земли. С каждым годом мощности этих энергоустановок растет.
Если в 2004 году доля электричества, производимого всеми гелиевыми электростанциями, составляли 0.01% от общего производства электричества на Земле, то через десять лет, в 2014, эта доля уже составляла 0.79%.
Для сооружения таких электростанций требуется огромное количество кремния – основного полупроводникового материала, который вырабатывает электрический ток при облучении его солнечным светом. С точки зрения эффективности наиболее подходящим для этой цели является чистый монокристаллический кремний.
При сборке каждого модуля – независимо от того, предназначен ли этот модуль для установки в мощной промышленной электростанции или в маленькой домашней – большое внимание уделяется качеству каждой ячейки. Размеры ячеек в различных модулях могут быть различными, но в одном модуле все ячейки должны быть строго одного типоразмера. Дело в том, что мощность модуля находится в прямой зависимости от качества каждой ячейки и ее характеристик.
Важнейшим параметром является вольт-амперная характеристика солнечной батареи. В сущности, речь идет о параметрах каждой отдельно взятой ячейки, входящей в состав батареи. Ведь мощность модуля в целом – это суммарная мощность ячеек, из которых он состоит.
В общем случае вольт-амперная характеристика (ВАХ) – это зависимость тока, протекающего через электрическую цепь от напряжения, приложенного к этой цепи. В случае солнечной батареи эта характеристика рассматривается при наличии дополнительных условий, которые в мировой практике были стандартизированы и применяются сейчас при проектировании всех подобных систем во всем мире. Согласно этим стандартам ВАХ солнечных элементов определяется при мощности излучения солнца равной 1000 ватт на один квадратный метр. При этом температура элементов должна быть равна +25°С, а измерения должны производиться на широте 45°.
Вольт-амперная характеристика солнечной ячейки
На графике обозначены важнейшие точки вольт-амперной характеристики полупроводникового фотопреобразователя – Uxx и Iкз.
Для определения рабочих параметров ячеек на этом же графике показана кривая, характеризующая мощность исследуемого фотоэлектрического элемента. Этот график является функцией мощности ячейки в зависимости от нагрузки. Из графика следует, что номинальная мощность того или иного элемента определена как максимально возможная мощность при стандартных исходных параметрах. Напряжение, при котором достигается максимальная мощность, является рабочим напряжением и обозначается Up. Соответственно ток, соответствующий максимальной мощности, является рабочим и обозначается Ip.
Понятно, что при нулевых значениях тока или напряжения система не работает, мощность равна нулю. Система в работе, когда ток и напряжение достигают величин, сопоставимых с их рабочими значениями. При этом, как правило, модуль набирается из большего количества ячеек, чем это необходимо для получения рабочего напряжения.
Например, для получения значения рабочего напряжения 12 вольт набирается такое количество элементов, чтобы на выходе модуля получить напряжение в 16 – 17 вольт. Это делается для того, чтобы скомпенсировать падение рабочего напряжения из-за нагрева элемента под воздействием солнечных лучей.
Дело в том, что у кремниевых полупроводников напряжение холостого хода уменьшается на 0.4% при увеличении температуры ячейки на 1°С. В то же время значение тока короткого замыкания увеличивается на 0.07% при увеличении температуры на 1°С.
Если освещенность ячейки меняется, то прямо пропорционально степени освещенности изменяется и значение тока короткого замыкания. В то же время изменение освещенности практически не сказывается на величине напряжения холостого хода. Эффективность солнечной ячейки вычисляется как отношение значения максимальной мощности ее к значению общей мощности излучения солнца, определенной по международным стандартам (STC).
Зависимость мощности и напряжения солнечной батареи от температуры
Чтобы получить необходимые рабочее напряжение и требуемую мощность, фотоэлектрические элементы соединяются в электрические цепи. Эти цепи могут быть последовательными или параллельными. При соединении нескольких ячеек в единую электрическую цепь и получают солнечную батарею. При этом выходная мощность батареи всегда оказывается меньше значения арифметической суммы мощностей ячеек, из которых составлена сама батарея. Это обуславливается потерями, возникающими из-за рассогласования характеристик однотипных ячеек.
Как было сказано выше, для каждой солнечной батареи подбираются ячейки с максимально приближенными характеристиками. Как физическими (типоразмеры), так и электрическими (вольт-амперные характеристики). Чем более строго производятся контроль и подбор элементов для каждого солнечного модуля, то есть чем меньше разброс характеристик, тем выше электрические показатели всего модуля, тем выше его мощность.
Проведенные исследования показали, что если последовательно соединить десять элементов, имеющих разброс характеристик до 10%, то потери мощности составят около 6%. Если ужесточить отбор и снизить разброс характеристик до 5%, то потери мощности уменьшатся до 2%.
В процессе эксплуатации солнечной батареи может возникнуть ситуация, когда один или несколько элементов будут затенены. В этом случае при последовательном соединении затененные ячейки будут рассеивать мощность, которую производят ячейки, получающие световое излучение в полном объеме. При этом затененные элементы будут быстро нагреваться и в конечном итоге выйдут из строя. Это, естественно, увеличивает нагрузку на исправные цепи, что приводит к неисправности всей солнечной батареи. Чтобы это не происходило, параллельно каждой ячейке (или группе последовательно соединенных ячеек) подключается байпасный диод.
И, наконец, еще одна точка на графике. Это точка МРР – точка максимальной мощности. Мощность всех солнечных модулей определяется всегда именно по этой точке. И контроллеры МРРТ заряда аккумуляторов работают в режиме отслеживания точки МРР при всех режимах зарядки аккумуляторов, а не на последнем, что повышает их эффективность.
В этой точке напряжение выше номинального, поэтому заряд аккумуляторов происходит быстрее, чем при использовании контроллеров других типов (например, работающих на принципе широтно-импульсной модуляции). Тем самым при использовании контроллера МРРТ количество электроэнергии, полученной от одного гелиевого модуля на 10% — 30% больше, чем при использовании контроллера ШИМ (при равном количестве солнечного излучения).
В современных технологических линиях по производству ячеек для солнечных батарей на всех этапах изготовления установлены тонко юстированные приборы, следящие за качеством изделий. Точно такому же строжайшему контролю подвергаются и все электрические характеристики изготовленных элементов. Только при таких условиях собранный гелиевый модуль в состоянии вырабатывать именно ту мощность, которая была рассчитана при его разработке.
Как работают солнечные батареи зимой и в пасмурную погоду?
Солнечные батареи в пасмурную погоду работают далеко не так хорошо, как в солнечную. Вырабатываемое солнечным элементом напряжение зависит от падающего на него светового потока, а именно: напряжение с ростом освещенности возрастает лишь до определенного предела, а дальше уже не растет. Для кремниевого элемента это напряжение составляет 0,6 В, и для повышения напряжения солнечной батареи (панели) элементы соединяют последовательно. Так, для заряда автомобильного аккумулятора номинальным напряжением 12 В необходима батарея из соединенных последовательно 36 элементов с общим напряжением холостого хода 36 х 0,6 = 21,6 (В).
Зачем солнечной батарее нужен запас по напряжению
Запас по напряжению обеспечивает заряд аккумулятора при падении светового потока в пасмурную погоду или заходе солнца за облака и вследствие наличия у солнечного элемента внутреннего сопротивления, снижающего напряжение на выходе при подключении нагрузки, а также для обеспечения зарядки аккумулятора до требуемых 14,4 В. Кроме того, элемент выдает максимальную мощность при нагрузке, обеспечивающей просадку напряжения до 0,47-0,5 В, и при оптимальной нагрузке батарея из 36 элементов выдает напряжение 17-18 В.
Важной характеристикой солнечного элемента, кроме напряжения холостого хода, является ток короткого замыкания. Ток короткого замыкания растет с ростом освещенности, а в пасмурную погоду снижается, что ведет к уменьшению отдаваемой батареей мощности.
Солнечная батарея в пасмурную погоду снижает свою мощность в 15-20 раз, а в облачную в 10-15 раз.
Однако при очень низкой освещенности солнечной батареи ее напряжение падает настолько низко, что становится ниже напряжения аккумулятора. Чтобы исключить разряд аккумулятора через солнечные элементы, в самом простом случае между солнечной батареей и аккумуляторной батареей включают полупроводниковый диод с односторонней проводимостью, пропускающий ток лишь в направлении от солнечной батареи к аккумулятору.
Чем отличаются MPPT-контроллеры от PWM-контроллеров
Чтобы использовать вырабатываемую солнечной батареей энергию даже в условиях низкой освещенности, лучше использовать современные контроллеры заряда. Используются 2 типа контроллеров – PWM (с широтно-импульсной модуляцией — ШИМ) и MPPT (со слежением за точкой максимальной мощности). PWM-контроллеры более простые и дешевые, при ярком освещении (и высоком напряжении солнечной батареи) мощность батареи снижается (излишнее напряжение попросту недоиспользуется), а вот MPPT-контроллеры в состоянии понизить напряжение солнечной батареи с соответствующим повышением отдаваемого тока и сохранением отдаваемой мощности, поскольку батарея работает наиболее эффективно лишь при оптимальном для данных условий (зависящих от освещенности) сопротивлении нагрузки, а контроллер способен обеспечить условие оптимальности нагрузки. В сравнении с PWM-контроллерами MPPT-контроллеры позволяют взять от батареи при ярком солнце на 30% больше мощности.
Что касается работы солнечной батареи с MPPT-контроллерами в пасмурную погоду, то считается, что ввиду пониженного напряжения батареи преимущества контроллеров этого типа не реализуются, поскольку контроллер дает на выходе ток не больше, чем PWM-контроллер, соответственно нет и добавки в мощности.
Какие солнечные батареи лучше работают в пасмурную погоду
Для работы в условиях преобладающего пасмурного неба очень перспективны солнечные элементы, преобразующие в электрический ток не только ультрафиолетовое, но и инфракрасное излучение Солнца. В массовом порядке такие панели пока не производятся, но за ними будущее.
Наиболее эффективны в пасмурную погоду кремниевые поликристаллические батареи, хорошо поглощающие не только прямое солнечное излучение, но и рассеянный свет, проникающий через облака. Связано это с тем, что в поликристаллических элементах кристаллы кремния ориентированы не упорядоченно, а хаотически, что, с одной стороны, снижает эффективность батареи при прямом падении солнечного излучения, а, с другой, снижает ее незначительно при характерном для пасмурной погоды рассеянном освещении.
Как работают солнечные батареи зимой
Зимой сокращается длительность светового дня, и батарея начинает вырабатывать меньше энергии. Чем южнее, тем менее существенна разница между летней и зимней выработкой энергии. На Дальнем Востоке эффективность батарей снижается зимой всего в 1,5-2 раза, а в Москве и Подмосковье до 8 раз.
Очень важен угол наклона солнечных панелей. Можно менять угол наклона в зависимости от сезона (зимой наклон меньше), либо выставлять некий зависящий от широты местности угол (средний между летним и зимним) на целый год. Зимой оптимальный угол наклона солнечных модулей равен увеличенной на 10-15°, а летом уменьшенной на 10-15° широте места установки. В качестве примера, на широте Москвы 56° зимой угол наклона должен составлять 66-71° (иногда панели в ущерб производительности устанавливают вертикально, чтобы исключить налипание снега).
Налипающий на панели снег зимой представляет особую проблему, его необходимо периодически счищать с панелей. Но иногда снег успевает растаять самостоятельно, поскольку активно работающие панели нагреваются.
А вот снег на окружающих панели участках местности повышает эффективность солнечных батарей, поскольку они начинают улавливать отраженный снегом свет. Особенно повышают в этих условиях свою производительность панели из поликристаллического кремния, улавливающие отраженный и рассеянный свет.
При намерении обустроить домашнюю солнечную электростанцию следует решить следующие вопросы:
- будут ли солнечные панели эксплуатироваться зимой;
- будут ли панели устанавливаться неподвижно либо угол их наклона будет изменяться в зависимости от сезона;
- стоит ли приобретать дорогой MPPT-контроллер, либо можно ограничиться более простым и дешевым PKW-контроллером.