общее понятие, виды, размерность. Допускаемые напряжения.
Предположим, что внутренние силы в поперечном сечении бруса непрерывно распределены по площади сечения. Пусть на малую, но конечную площадку ΔА действует внутренняя сила ΔR – равнодействующая внутренних сил, действующих на этой площадке. Разложив ΔR на составляющие по осям z, x, y получим ее компоненты ΔNz, ΔQx, ΔQy.
Напряжение – интенсивность внутренних сил или внутреннее усилие, передаваемое через какое либо воображаемое плоское сечение, отнесенное к площади этого сечения.
Отношение вида Pср = ΔR/ ΔА определяет среднее напряжение на данной площадке.
Истинное (полное) напряжение в точке можно определить, уменьшая площадку: P = limΔA→0ΔR/ΔA = dR/dA. Размерность напряжения – Па (Паскаль) или МПа (Мегапаскаль).
Полное напряжение обычно в расчетах не применяется, а определяется его нормальная к сечению составляющая σz – нормальное напряжение, и касательные τzx, τzy– касательные напряжения. Нормальное напряжение считается положительным, если оно направлено от сечения (растяжение), и считается отрицательным, если оно направлено к сечению (сжатие). Полные напряжения, приходящиеся на единицу площади, можно выразить через нормальные и касательные напряжения: P = (σz+ τx + τy)1/2
σz= limΔA→0 ΔNz/ΔA
= dN
τzx= limΔA→0 ΔQx/ΔA = dQx/dA
τzy= limΔA→0 ΔQy/ΔA = dQy/dA
Первый индекс показывает, какой оси параллельна нормаль к площадке действия рассматриваемого напряжения, второй индекс показывает, какой оси параллельно данное напряжение.
Расчет на прочность и жесткость осуществляется двумя методами: методом допускаемых напряжений, деформаций и методом допускаемых нагрузок.
Предельное напряжение – напряжение, при котором образец из данного материала разрушается или при котором развиваются значительные пластические деформации.
Допускаемое напряжение – напряжение, величина которого регламентируется техническими условиями
Допускаемое напряжение устанавливается с учетом материала конструкции и изменяемости его механических свойств в процессе эксплуатации, степени ответственности конструкции, точности задания нагрузок, срока службы конструкции, точности расчетов на статическую и динамическую прочность.
Определяется допускаемое напряжение по формуле: [σ] = σпр/[n]
σпр – предельное для данного материала напряжение
[n] – нормированный коэффициент запаса прочности
10. Связь между напряжениями и внутренними силовыми факторами.
Между действующими напряжениями и внутренними силовыми факторами существует следующая связь:
Nz = ∫σzdA
Qy = ∫τzydA
Qx = ∫τzxdA
Mx = ∫yσdA
My = ∫xσdA
Mкр= ∫(τzyx – τzxy)dA
Нормальные и касательные напряжения являются функцией внутренних силовых факторов и геометрических характеристик сечения. Эти напряжения, вычисленные по соответствующим формулам, можно назвать фактическими, или рабочими.
Наибольшее значение фактических напряжений ограничено предельным напряжением, при котором материал разрушается или появляются недопустимые пластические деформации.
Номинальное напряжение — Википедия
Материал из Википедии — свободной энциклопедии
У этого термина существуют и другие значения, см. Напряжение.Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия) Вы можете помочь Википедии, добавив информацию для других стран и регионов. |
Номинальное напряжение — это базисное напряжение из стандартизированного ряда напряжений, определяющих уровень изоляции сети и электрооборудования.
Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы.
Номинальным напряжением у источников и приёмников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы. Номинальные напряжения электрических сетей и присоединяемых к ним источников и приёмников электрической энергии устанавливаются ГОСТом.
- Установки до 1000 В
Ряд номинальных напряжений трехфазных четырехпроводных или трехпроводных систем переменного тока 50 Гц, В[1]
- Установки свыше 1000 В
Номинальное напряжение | Наибольшее рабочее напряжение |
---|---|
3 | 3,6 |
6 | 7,2 |
10 | 12 |
15 | 17,5 |
20 | 24 |
35 | 40,5 |
110 | 126 |
150 | 172 |
220 | 252 |
330 | 363 |
400 | 420 |
500 | 525 |
750 | 787 |
1150 | 1200 |
Номинальные напряжения для электрических генераторов, синхронных компенсаторов, вторичных обмоток силовых трансформаторов приняты на 5-10 % выше номинальных напряжений соответствующих сетей, чем учитываются потери напряжения при протекании тока по линиям.
- ↑ ГОСТ 29322-2014
- ↑ ГОСТ 721-77
Электрическое напряжение — это… Что такое Электрическое напряжение?
У этого термина существуют и другие значения, см. Напряжение.При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.
Альтернативное определение —
— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.
Единицей измерения напряжения в системе СИ является вольт.
Напряжение в цепях постоянного тока
Напряжение в цепи постоянного тока определяется так же, как и в электростатике.
Напряжение в цепях переменного тока
Для описания цепей переменного тока применяются следующие понятия:
Мгновенное напряжение
Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:
Амплитудное значение напряжения
Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:
Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:
Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.
Амплитудное напряжение можно измерить с помощью осциллографа.
Среднее значение напряжения
Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:
Для чистой синусоиды среднее значение напряжения равно нулю.
Среднеквадратичное значение напряжения
Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:
Для синусоидального напряжения справедливо равенство:
В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.
Средневыпрямленное значение напряжения
Средневыпрямленное значение есть среднее значение модуля напряжения:
Для синусоидального напряжения справедливо равенство:
На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.
Напряжение в цепях трёхфазного тока
В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.
На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.
Стандарты
Объект | Тип напряжения | Значение (на вводе потребителя) | Значение (на выходе источника) |
---|---|---|---|
Электрокардиограмма | Импульсное | 1-2 мВ | — |
Телевизионная антенна | Переменное высокочастотное | 1-100 мВ | — |
Батарейка AA («пальчиковая») | Постоянное | 1,5 В | — |
Литиевая батарейка | Постоянное | 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA) | — |
Управляющие сигналы компьютерных компонентов | Импульсное | 3,5 В, 5 В | — |
Батарейка типа 6F22 («Крона») | Постоянное | 9 В | — |
Силовое питание компьютерных компонентов | Постоянное | 12 В | — |
Электрооборудование автомобиля | Постоянное | 12/24 В | — |
Блок питания ноутбука и жидкокристаллических мониторов | Постоянное | 19 В | — |
Сеть «безопасного» пониженного напряжения для работы в опасных условиях | Переменное | 36-42 В | — |
Напряжение наиболее стабильного горения свечи Яблочкова | Постоянное | 55 В | — |
Напряжение в телефонной линии (при опущенной трубке) | Постоянное | 60 В | — |
Напряжение в электросети Японии | Переменное трёхфазное | 100/172 В | — |
Напряжение в домашних электросетях США | Переменное трёхфазное | 120 В / 240 В (сплит-фаза) | — |
Напряжение в электросети России | Переменное трёхфазное | 220/380 В | 230/400 В |
Разряд электрического ската | Постоянное | до 200—250 В | — |
Контактная сеть трамвая и троллейбуса | Постоянное | 550 В | 600 В |
Разряд электрического угря | Постоянное | до 650 В | — |
Контактная сеть метрополитена | Постоянное | 750 В | 825 В |
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) | Постоянное | 3 кВ | 3,3 кВ |
Распределительная воздушная линия электропередачи небольшой мощности | Переменное трёхфазное | 6-20 кВ | 6,6-22 кВ |
Генераторы электростанций, мощные электродвигатели | Переменное трёхфазное | 10-35 кВ | — |
Анод кинескопа | Постоянное | 7-30 кВ | — |
Статическое электричество | Постоянное | 1-100 кВ | — |
Свеча зажигания автомобиля | Импульсное | 10-25 кВ | — |
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) | Переменное | 25 кВ | 27,5 кВ |
Пробой воздуха на расстоянии 1 см | 10-20 кВ | — | |
Катушка Румкорфа | Импульсное | до 50 кВ | — |
Пробой трансформаторного масла на расстоянии 1 см | 100-200 кВ | — | |
Воздушная линия электропередачи большой мощности | Переменное трёхфазное | 35 кВ, 110 кВ, 220 кВ, 330 кВ | 38 кВ, 120 кВ, 240 кВ, 360 кВ |
Электрофорная машина | Постоянное | 50-500 кВ | — |
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) | Переменное трёхфазное | 500 кВ, 750 кВ, 1150 кВ | 545 кВ, 800 кВ, 1250 кВ |
Трансформатор Тесла | Импульсное высокочастотное | до нескольких МВ | — |
Генератор Ван де Граафа | Постоянное | до 7 МВ | — |
Грозовое облако | Постоянное | От 2 до 10 ГВ | — |
См. также
Ссылки
Электрическое напряжение — это… Что такое Электрическое напряжение?
У этого термина существуют и другие значения, см. Напряжение.Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.
При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.
Альтернативное определение —
— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.
Единицей измерения напряжения в системе СИ является вольт.
Напряжение в цепях постоянного тока
Напряжение в цепи постоянного тока определяется так же, как и в электростатике.
Напряжение в цепях переменного тока
Для описания цепей переменного тока применяются следующие понятия:
Мгновенное напряжение
Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:
Амплитудное значение напряжения
Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:
Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:
Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.
Амплитудное напряжение можно измерить с помощью осциллографа.
Среднее значение напряжения
Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:
Для чистой синусоиды среднее значение напряжения равно нулю.
Среднеквадратичное значение напряжения
Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:
Для синусоидального напряжения справедливо равенство:
В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.
Средневыпрямленное значение напряжения
Средневыпрямленное значение есть среднее значение модуля напряжения:
Для синусоидального напряжения справедливо равенство:
На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.
Напряжение в цепях трёхфазного тока
В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.
На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.
Стандарты
Объект | Тип напряжения | Значение (на вводе потребителя) | Значение (на выходе источника) |
---|---|---|---|
Электрокардиограмма | Импульсное | 1-2 мВ | — |
Телевизионная антенна | Переменное высокочастотное | 1-100 мВ | — |
Батарейка AA («пальчиковая») | Постоянное | 1,5 В | — |
Литиевая батарейка | Постоянное | 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA) | — |
Управляющие сигналы компьютерных компонентов | Импульсное | 3,5 В, 5 В | — |
Батарейка типа 6F22 («Крона») | Постоянное | 9 В | — |
Силовое питание компьютерных компонентов | Постоянное | 12 В | — |
Электрооборудование автомобиля | Постоянное | 12/24 В | — |
Блок питания ноутбука и жидкокристаллических мониторов | Постоянное | 19 В | — |
Сеть «безопасного» пониженного напряжения для работы в опасных условиях | Переменное | 36-42 В | — |
Напряжение наиболее стабильного горения свечи Яблочкова | Постоянное | 55 В | — |
Напряжение в телефонной линии (при опущенной трубке) | Постоянное | 60 В | — |
Напряжение в электросети Японии | Переменное трёхфазное | 100/172 В | — |
Напряжение в домашних электросетях США | Переменное трёхфазное | 120 В / 240 В (сплит-фаза) | — |
Напряжение в электросети России | Переменное трёхфазное | 220/380 В | 230/400 В |
Разряд электрического ската | Постоянное | до 200—250 В | — |
Контактная сеть трамвая и троллейбуса | Постоянное | 550 В | 600 В |
Разряд электрического угря | Постоянное | до 650 В | — |
Контактная сеть метрополитена | Постоянное | 750 В | 825 В |
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) | Постоянное | 3 кВ | 3,3 кВ |
Распределительная воздушная линия электропередачи небольшой мощности | Переменное трёхфазное | 6-20 кВ | 6,6-22 кВ |
Генераторы электростанций, мощные электродвигатели | Переменное трёхфазное | 10-35 кВ | — |
Анод кинескопа | Постоянное | 7-30 кВ | — |
Статическое электричество | Постоянное | 1-100 кВ | — |
Свеча зажигания автомобиля | Импульсное | 10-25 кВ | — |
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) | Переменное | 25 кВ | 27,5 кВ |
Пробой воздуха на расстоянии 1 см | 10-20 кВ | — | |
Катушка Румкорфа | Импульсное | до 50 кВ | — |
Пробой трансформаторного масла на расстоянии 1 см | 100-200 кВ | — | |
Воздушная линия электропередачи большой мощности | Переменное трёхфазное | 35 кВ, 110 кВ, 220 кВ, 330 кВ | 38 кВ, 120 кВ, 240 кВ, 360 кВ |
Электрофорная машина | Постоянное | 50-500 кВ | — |
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) | Переменное трёхфазное | 500 кВ, 750 кВ, 1150 кВ | 545 кВ, 800 кВ, 1250 кВ |
Трансформатор Тесла | Импульсное высокочастотное | до нескольких МВ | — |
Генератор Ван де Граафа | Постоянное | до 7 МВ | — |
Грозовое облако | Постоянное | От 2 до 10 ГВ | — |