Site Loader

Содержание

Напряжение электрического поля

Электрические заряды не оказывают непосредственное воздействие друг на друга. Каждое заряженное тело может создавать электрическое поле в окружающем пространстве. Такое поле оказывает непосредственное силовое воздействие на остальные заряженные тела.

Электрическое поле и его свойства

Главным свойством электрического поля считается воздействие с определенной силой на электрические заряды. Иными словами, заряженные тела способны взаимодействовать друг с другом исключительно за счет электрических полей, их окружающих.

Исследовать электрическое поле, которое окружает заряженное тело, позволяет так называемый пробный заряд (точечный заряд, небольшой по величине). Такой заряд не может осуществлять заметного перераспределения рассматриваемых зарядов.

Определение 1

Электрическое поле для неподвижных и не изменяющихся со временем зарядов будет называться электростатическим. В большинстве случаев его называют просто электрическим полем.

Если за счет пробного заряда проводится исследование электрического поля, создаваемого несколькими электрически заряженными телами, результирующая сила становится равной геометрической сумме сил, воздействующих на пробный заряд отдельно со стороны каждого из заряженных тел.

Тогда напряженность электрического поля, формируемого системой зарядов в указанной точке пространства, будет зависеть от векторной суммы напряженностей электрополей, создаваемых зарядами в этой же точке по отдельности:

$\vec{E}=\vec{E_1}+vec{E_2}+…$

Такое свойство электрического поля подразумевает его подчинение принципу суперпозиции. Соответственно закону Кулона, напряженность электростатического поля, созданного за счет точечного заряда $Q$ на расстоянии $r$ от него определяет следующая формула:

$E=\frac{Q}{4\pi_0r^2}$

Такое поле названо кулоновским. В этом поле направление вектора $\vec{E}$ будет зависеть от знака заряда $Q$, если $Q$ > $0$, то $\vec{E}$ направляется по радиусу от заряда, если $Q$

С целью наглядного изображения электрополя задействуют силовые линии. Они проводятся таким образом, чтобы направление вектора $\vec{E}$ совпадало в каждой точке с направлением касательной к такой силовой линии. Изображение электрического поля за счет силовых линий требует соблюдения следующего условия: густота таких линий должна оказаться пропорциональной модулю вектора напряженности поля.

Кулоновское поле точечного заряда $Q$ лучше записывать в векторной форме. Для этого проводится радиус-вектор $\vec{r}$. от заряда $Q$ к точке наблюдения. Тогда при условии, что $Q$ > $0$,$\vec{E}$ оказывается параллельным $\vec{r}$. При условии, что $Q$

Пример 1

Примером использования принципа суперпозиции полей выступают силовые линии поля электрического диполя. Такие линии представляют систему из двух равнозначных по модулю зарядов разного знака $q$р, расположенных на определенном расстоянии $L$.

Напряженность однородного электрического поля

Определение 2

Чтобы количественно определить электрическое поле, вводится силовая характеристика в виде напряженности электрического поля. Напряженностью электрополя считается физическая величина, характеризуемая силой воздействия поля на пробный положительный заряд, помещенный в заданную точку пространства.

Определяется такая величина формулой:

$\vec{E}=\frac{\vec{F}}{q}$, где:

  • $E$ — напряженность электрического поля (Вольт/метр),
  • $F$ — сила, воздействующая на заряд Q (Ньютон),
  • $Q$ — заряд (Кулон).

Напряженность электрического поля представляет физическую векторную величину. В неоднородном поле сила, воздействующая на заряд в разных точках поля будет неодинаковой. Напряженность однородного электрополя считается прямо пропорциональной напряжению между пластинами и обратно пропорциональной расстоянию между ними:

$E=\frac{U}{d}$, где:

  • $E$ — напряженность однородного электрополя (Вольт/метр),
  • $U$ — напряжение, возникающее между пластинами (Вольт),
  • $d$ — расстояние между пластинами, которые заряжены (метр).

Напряженность магнитного электрического поля

Замечание 1

Напряженность магнитного электрического поля определяет сила, воздействующая на пробный магнит, помещенный в поле.

Поскольку магнитные полюсы не существуют по отдельности, мы наблюдаем воздействие на южный и северный полюсы пробного магнита противоположно направленных сил. При этом возникает момент пары сил, характеризующий величину напряженности поля в заданном месте.

В магнитном поле у цилиндрической катушки он будет прямо пропорциональным числу витков и силе тока, и при этом и обратно пропорциональным длине катушки.

Направление у вектора напряженности магнитного поля в каждой точке будет совпадающим с направлением силовых линий. Внутри самой катушки (магнита) он направляется от южного полюса к северному, а вне ее — от северного к южному.

Напряжённость электрического поля — это… Что такое Напряжённость электрического поля?

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[1]пробный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).


В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря — разное[3] в разных точках пространства), таким образом, — это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле

[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.

Напряжённость электрического поля в классической электродинамике

Из сказанного выше ясно, что напряженность электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики можно назвать сопоставимыми с ней по значению только вектор магнитной индукции (вместе с вектором напряженности электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

Приведем краткий обзор основных контекстов классической электродинамики в отношении напряженности электрического поля.

Сила, с которой действует электромагнитное поле на заряженные частицы

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

где q — электрический заряд частицы, — ее скорость, — вектор магнитной индукции (основная характеристика магнитного поля), косым крестом обозначено векторное произведение. Формула приведена в единицах СИ.

Как видим, эта формула полностью согласуется с определением напряженности электрического поля, данном в начале статьи, но является более общей, т.к. включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

В этой формуле частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — надо только воспользоваться обычным для физики приемом разбиения сложного тела на маленькие (математически — бесконечно маленькие) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы.

Остальные формулы, применяемые для расчета электромагнитных сил (такие, как, например, формула силы Ампера) можно считать следствиями[5] фундаментальной формулы силы Лоренца, частными случаями ее применения итп.

Однако для того, чтобы эта формула была применена (даже в самых простых случаях, таких, как расчет силы взаимодействия двух точечных зарядов), необходимо знать (уметь рассчитывать) и чему посвящены следующие параграфы.

Уравнения Максвелла

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:

Здесь — плотность заряда, — плотность тока, — универсальные константы (уравнения здесь записаны в единицах СИ).

Здесь приведена наиболее фундаментальная и простая форма уравнений Максвелла — так называемые «уравнения для вакуума» (хотя, вопреки названию, они вполне применимы и для описания поведения электромагнитного поля в среде). Подробно о других формах записи уравнений Максвелла — см. основную статью.

Этих четырех уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (то есть не квантовую) электродинамику, то есть они представляют ее полные законы. Для решения конкретных реальных задач с их помощью необходимы еще уравнения движения «материальных частиц» (в классической механике это законы Ньютона), а также зачастую дополнительная информация о конкретных свойствах физических тел и сред, участвующих в рассмотрении (их упругости, электропроводности, поляризуемости итд итп), а также о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

«Материальные уравнения»

Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:

  • Закон Ома,
  • Закон поляризации
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами

Связь напряженности электрического поля с потенциалами в общем случае такова:

где — скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции:

В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до:

Это выражение для связи электростатического поля с электростатическим потенциалом.

Электростатика

Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.

Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как

или

то есть электростатическое поле оказывается потенциальным полем. ( в этом случае — случае электростатики — принято называть электростатическим потенциалом).

  • Также и обратно

Уравнения поля (уравнения Максвелла) при этом также сильно упрощаются (уравнения с магнитным полем можно исключить, а в уравнение с дивергенцией можно подставить ) и сводятся к уравнению Пуассона:

а в областях, свободных от заряженных частиц — к уравнению Лапласа:

Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).

Теорема Гаусса

Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

где интегрирование производится по любой замкнутой поверхности S (вычисляя поток через эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда
В единицах СИ

Для точечного заряда в электростатике верен закона Кулона

или

.
.

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: , имеем:

откуда сразу получаем ответ для E.

Ответ для получается тогда интегрированием E:

Для системы СГС

Формулы и их вывод аналогичны, отличие от СИ лишь в константах.

Напряженность электрического поля произвольного распределения зарядов

По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:

где каждое

Подставив, получаем:

Для непрерывного распределения аналогично:

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство, — радиус-вектор точки, для которой считаем , — радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объема. Можно подставить x,y,z вместо , вместо , вместо dV.

Системы единиц

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское В/м, международное V/m).

Литература

Примечания

  1. На движущийся заряд действует также магнитное поле, если, конечно, оно имеется (не равно нулю), поэтому в определение напряженности электрического поля вносится условие неподвижности пробного заряда; при условии гарантированного отсутствия магнитного поля неподвижность пробного заряда перестает быть обязательной, однако требование отсутствия магнитного поля в общем случае невозможно (а возможно только в частных классах задач).
  2. Для любой частицы ее электрический заряд постоянен. Измениться он может только если от частицы что-то заряженное отделится или если к ней что-то заряженное присоединится.
  3. Хотя иногда его значения могут оказываться и одинаковыми в разных точках пространства; если одинаков всюду в пространстве (или какой-то области пространства), говорят об однородном электрическом поле — это всего лишь частный случай электрического поля, хотя и наиболее простой; притом что в реальности электрическое поле может быть однородным лишь приближенно, то есть различия в разных точках пространства есть, но иногда они небольшие и ими можно пренебречь в рамках некоторого приближения.
  4. Электромагнитное поле может быть выражено и по-другому, например через электромагнитный потенциал или в несколько иной математической записи (прячущей вектор напряженности электрического поля вместе с вектором магнитной индукции внутрь тензора электромагнитного поля), однако все эти способы записи тесно связаны между собой, таким образом, утверждение о том, что поле — одна из основных составляющих электромагнитного поля не утрачивает смысла.
  5. Хотя исторически многие из них были открыты раньше.

См. также

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

ОбъектТип напряженияЗначение (на вводе потребителя)Значение (на выходе источника)
ЭлектрокардиограммаИмпульсное1-2 мВ
Телевизионная антеннаПеременное высокочастотное1-100 мВ
Батарейка AA («пальчиковая»)Постоянное1,5 В
Литиевая батарейкаПостоянное3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентовИмпульсное3,5 В, 5 В
Батарейка типа 6F22 («Крона»)Постоянное9 В
Силовое питание компьютерных компонентовПостоянное12 В
Электрооборудование автомобиляПостоянное12/24 В
Блок питания ноутбука и жидкокристаллических мониторовПостоянное19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условияхПеременное36-42 В
Напряжение наиболее стабильного горения свечи ЯблочковаПостоянное55 В
Напряжение в телефонной линии (при опущенной трубке)Постоянное60 В
Напряжение в электросети ЯпонииПеременное трёхфазное100/172 В
Напряжение в домашних электросетях СШАПеременное трёхфазное120 В / 240 В (сплит-фаза)
Напряжение в электросети РоссииПеременное трёхфазное220/380 В230/400 В
Разряд электрического скатаПостоянноедо 200—250 В
Контактная сеть трамвая и троллейбусаПостоянное550 В600 В
Разряд электрического угряПостоянноедо 650 В
Контактная сеть метрополитенаПостоянное750 В825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток)Постоянное3 кВ3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощностиПеременное трёхфазное6-20 кВ6,6-22 кВ
Генераторы электростанций, мощные электродвигателиПеременное трёхфазное10-35 кВ
Анод кинескопаПостоянное7-30 кВ
Статическое электричествоПостоянное1-100 кВ
Свеча зажигания автомобиляИмпульсное10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток)Переменное25 кВ27,5 кВ
Пробой воздуха на расстоянии 1 см10-20 кВ
Катушка РумкорфаИмпульсноедо 50 кВ
Пробой трансформаторного масла на расстоянии 1 см100-200 кВ
Воздушная линия электропередачи большой мощностиПеременное трёхфазное35 кВ, 110 кВ, 220 кВ, 330 кВ38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машинаПостоянное50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные)Переменное трёхфазное500 кВ, 750 кВ, 1150 кВ545 кВ, 800 кВ, 1250 кВ
Трансформатор ТеслаИмпульсное высокочастотноедо нескольких МВ
Генератор Ван де ГраафаПостоянноедо 7 МВ
Грозовое облакоПостоянноеОт 2 до 10 ГВ

См. также

Ссылки

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

ОбъектТип напряженияЗначение (на вводе потребителя)Значение (на выходе источника)
ЭлектрокардиограммаИмпульсное1-2 мВ
Телевизионная антеннаПеременное высокочастотное1-100 мВ
Батарейка AA («пальчиковая»)Постоянное1,5 В
Литиевая батарейкаПостоянное3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентовИмпульсное3,5 В, 5 В
Батарейка типа 6F22 («Крона»)Постоянное9 В
Силовое питание компьютерных компонентовПостоянное12 В
Электрооборудование автомобиляПостоянное12/24 В
Блок питания ноутбука и жидкокристаллических мониторовПостоянное19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условияхПеременное36-42 В
Напряжение наиболее стабильного горения свечи ЯблочковаПостоянное55 В
Напряжение в телефонной линии (при опущенной трубке)Постоянное60 В
Напряжение в электросети ЯпонииПеременное трёхфазное100/172 В
Напряжение в домашних электросетях СШАПеременное трёхфазное120 В / 240 В (сплит-фаза)
Напряжение в электросети РоссииПеременное трёхфазное220/380 В230/400 В
Разряд электрического скатаПостоянноедо 200—250 В
Контактная сеть трамвая и троллейбусаПостоянное550 В600 В
Разряд электрического угряПостоянноедо 650 В
Контактная сеть метрополитенаПостоянное750 В825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток)Постоянное3 кВ3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощностиПеременное трёхфазное6-20 кВ6,6-22 кВ
Генераторы электростанций, мощные электродвигателиПеременное трёхфазное10-35 кВ
Анод кинескопаПостоянное7-30 кВ
Статическое электричествоПостоянное1-100 кВ
Свеча зажигания автомобиляИмпульсное10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток)Переменное25 кВ27,5 кВ
Пробой воздуха на расстоянии 1 см10-20 кВ
Катушка РумкорфаИмпульсноедо 50 кВ
Пробой трансформаторного масла на расстоянии 1 см100-200 кВ
Воздушная линия электропередачи большой мощностиПеременное трёхфазное35 кВ, 110 кВ, 220 кВ, 330 кВ38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машинаПостоянное50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные)Переменное трёхфазное500 кВ, 750 кВ, 1150 кВ545 кВ, 800 кВ, 1250 кВ
Трансформатор ТеслаИмпульсное высокочастотноедо нескольких МВ
Генератор Ван де ГраафаПостоянноедо 7 МВ
Грозовое облакоПостоянноеОт 2 до 10 ГВ

См. также

Ссылки

Электрическое напряжение — это… Что такое Электрическое напряжение?

У этого термина существуют и другие значения, см. Напряжение.

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение —

— интеграл от проекции поля эффективной напряжённости поля (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В.

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

Для чистой синусоиды среднее значение напряжения равно нулю.

Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу (например, лампа накаливания имеет ту же яркость свечения, нагревательный элемент выделяет столько же тепла), что и равное ему постоянное напряжение:

Для синусоидального напряжения справедливо равенство:

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов фактически измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

Для синусоидального напряжения справедливо равенство:

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Стандарты

ОбъектТип напряженияЗначение (на вводе потребителя)Значение (на выходе источника)
ЭлектрокардиограммаИмпульсное1-2 мВ
Телевизионная антеннаПеременное высокочастотное1-100 мВ
Батарейка AA («пальчиковая»)Постоянное1,5 В
Литиевая батарейкаПостоянное3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентовИмпульсное3,5 В, 5 В
Батарейка типа 6F22 («Крона»)Постоянное9 В
Силовое питание компьютерных компонентовПостоянное12 В
Электрооборудование автомобиляПостоянное12/24 В
Блок питания ноутбука и жидкокристаллических мониторовПостоянное19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условияхПеременное36-42 В
Напряжение наиболее стабильного горения свечи ЯблочковаПостоянное55 В
Напряжение в телефонной линии (при опущенной трубке)Постоянное60 В
Напряжение в электросети ЯпонииПеременное трёхфазное100/172 В
Напряжение в домашних электросетях СШАПеременное трёхфазное120 В / 240 В (сплит-фаза)
Напряжение в электросети РоссииПеременное трёхфазное220/380 В230/400 В
Разряд электрического скатаПостоянноедо 200—250 В
Контактная сеть трамвая и троллейбусаПостоянное550 В600 В
Разряд электрического угряПостоянноедо 650 В
Контактная сеть метрополитенаПостоянное750 В825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток)Постоянное3 кВ3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощностиПеременное трёхфазное6-20 кВ6,6-22 кВ
Генераторы электростанций, мощные электродвигателиПеременное трёхфазное10-35 кВ
Анод кинескопаПостоянное7-30 кВ
Статическое электричествоПостоянное1-100 кВ
Свеча зажигания автомобиляИмпульсное10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток)Переменное25 кВ27,5 кВ
Пробой воздуха на расстоянии 1 см10-20 кВ
Катушка РумкорфаИмпульсноедо 50 кВ
Пробой трансформаторного масла на расстоянии 1 см100-200 кВ
Воздушная линия электропередачи большой мощностиПеременное трёхфазное35 кВ, 110 кВ, 220 кВ, 330 кВ38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машинаПостоянное50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные)Переменное трёхфазное500 кВ, 750 кВ, 1150 кВ545 кВ, 800 кВ, 1250 кВ
Трансформатор ТеслаИмпульсное высокочастотноедо нескольких МВ
Генератор Ван де ГраафаПостоянноедо 7 МВ
Грозовое облакоПостоянноеОт 2 до 10 ГВ

См. также

Ссылки

НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ — это… Что такое НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ?


НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ
НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ

разность потенциалов в различных точках электр. цепи, обусловливающая наличие в ней электр. тока. Если приемник (лампу, мотор и т. п.) присоединить к источнику тока (генератору, батарее элементов и т. п.), то у зажимов приемника будет поддерживаться разность потенциалов, или, иными словами, к нему будет приложено Н. э., под влиянием к-рого через него будет проходить электр. ток. При прохождении тока по какой-либо замкнутой цепи потенциал каждой последующей (по пути тока) точки меньше потенциала предыдущей, т. е. между любыми двумя точками имеет место разность потенциалов (на каждом участке цепи происходит падение напряжения). Н. э. измеряется в вольтах. Различают низкое и высокое Н. э. К установкам низкого Н. э. относят такие, напряжение к-рых по отношению к земле (т. е. разность потенциалов между любой точкой установки и землей) не превышает 250 в. Установки, в к-рых это напряжение превышает 250 в, относят к установкам высокого Н. э. Ввиду большой опасности последних для жизни обслуживающего персонала и лиц, пользующихся электр. установками, к установкам высокого Н. э. предъявляются специальные требования в отношении их безопасности и изоляции.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.

.

  • НАПРЯЖЕНИЕ ФАЗОВОЕ
  • НАПРЯЖЕННЫЙ ХОД

Смотреть что такое «НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ» в других словарях:

  • НАПРЯЖЕНИЕ (электрическое) — НАПРЯЖЕНИЕ электрическое (U12) между двумя точками электрической цепи или электрического поля, равно работе электрического поля и сторонних сил по перемещению единичного положительного заряда из одной точки в другую. Понятие об электрическом… …   Энциклопедический словарь

  • НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ — НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ. Работа (или действие) электрических домовых сетей и включаемых в них различных бытовых приборов и электрических ламп в значительной степени зависит от электрического напряжения, приложенного к ним. Электрическое… …   Краткая энциклопедия домашнего хозяйства

  • НАПРЯЖЕНИЕ электрическое — (см. ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ …   Физическая энциклопедия

  • Напряжение электрическое — НАПРЯЖЕНИЕ электрическое, в потенциальном электрическом поле то же, что разность потенциалов между двумя точками цепи. На участке электрической цепи, не содержащей электродвижущей силы (эдс), равно произведению силы тока на электрическое… …   Иллюстрированный энциклопедический словарь

  • напряжение (электрическое) — напряжение Скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Примечание — Электрическое напряжение U12 вдоль рассматриваемого пути от точки 1 к точке 2 определяют по формуле где Е… …   Справочник технического переводчика

  • Напряжение электрическое —         см. Электрическое напряжение …   Большая советская энциклопедия

  • НАПРЯЖЕНИЕ ЭЛЕКТРИЧЕСКОЕ — скалярная величина, характеризующая энергетич. св ва результирующего поля кулоновских и сторонних сил. Численно равно работе этих сил при перемещении единичного положит. заряда по заданному пути (заданному участку электрич. цепи). С… …   Большой энциклопедический политехнический словарь

  • Напряжение (электрическое) — Напряжение (падение потенциалов) между точками A и B  отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда. При этом считается, что перенос пробного заряда не изменяет… …   Википедия

  • Напряжение электрическое — Напряжение (падение потенциалов) между точками A и B  отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда. При этом считается, что перенос пробного заряда не изменяет… …   Википедия

  • напряжение (электрическое) при испытании — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN test pressure …   Справочник технического переводчика


Электрическое напряжение — это… Что такое Электрическое напряжение?


Электрическое напряжение
()         между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положит, заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов (См. Разность потенциалов) между ними.          Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (См. Постоянный ток) (генератора, аккумулятора, гальванического элемента и др.). Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется Ома законом: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс). При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.          В случае переменного тока (См. Переменный ток) Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов. Э. н. обычно измеряют Вольтметром. Единица Э. н. в Международной системе единиц — Вольт.

         Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 3 и 6; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 3, 7, 21.

         Г. Я. Мякишев.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Электрическое взрывание
  • Электрическое отопление

Смотреть что такое «Электрическое напряжение» в других словарях:

  • ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ — между двумя точками электрической цепи или электрич. поля, равно работе электрич. поля по перемещению единичного положит. заряда из одной точки в другую. В потенц. электрич. поле (электростатическом поле) эта работа не зависит от пути, по к рому… …   Физическая энциклопедия

  • ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ — (2) …   Большая политехническая энциклопедия

  • Электрическое напряжение — скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути… Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от… …   Официальная терминология

  • электрическое напряжение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric pressureelectric tension …   Справочник технического переводчика

  • Электрическое напряжение — У этого термина существуют и другие значения, см. Напряжение. Напряжение Единицы измерения СИ вольт Электрическое напряжение между точками A и …   Википедия

  • (электрическое) напряжение — 29 (электрическое) напряжение Скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Примечание Электрическое напряжение Ul2вдоль рассматриваемого пути от точки 1 к точке 2 определяют по… …   Словарь-справочник терминов нормативно-технической документации

  • электрическое напряжение — elektrinė įtampa statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric tension; tension; voltage vok. elektrische Spannung, f; Spannung, f rus. напряжение, n;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Электрическое напряжение — 26. Электрическое напряжение Напряжение Скалярная величина, равная линейному интегралу напряженности электрического поля Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • электрическое напряжение — elektrinė įtampa statusas T sritis automatika atitikmenys: angl. electric tension; electric voltage vok. elektrische Spannung, f rus. электрическое напряжение, n pranc. tension électrique, f …   Automatikos terminų žodynas

  • электрическое напряжение — elektrinė įtampa statusas T sritis chemija apibrėžtis Potencialų skirtumas tarp dviejų elektrinio lauko taškų. atitikmenys: angl. electric tension; electric voltage; voltage rus. электрическое напряжение …   Chemijos terminų aiškinamasis žodynas

  • электрическое напряжение — elektrinė įtampa statusas T sritis fizika atitikmenys: angl. electric voltage vok. elektrische Spannung, f rus. электрическое напряжение, n pranc. tension électrique, f …   Fizikos terminų žodynas


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *