Постоянное напряжение коллектор-эмиттер — определение термина
Термин и определение
постоянное напряжение между выводами коллектора и эмиттера.
Научные статьи на тему «Постоянное напряжение коллектор-эмиттер»
Автор24 — интернет-биржа студенческих работ
1 — эмиттер; 2 — база; 3 — коллектор Биполярный транзистор…
Но из-за малой легированности базы, часть носителей заряда эмиттера диффундируют в область коллектора…
где: Iэ, Iб, Iк — электрический ток эмиттера, базы и коллектора соответственно….
Переход эмиттер-база открывается с некоторого значения прямого приложенного напряжения, обычно это напряжение…
В барьерном режиме работы биполярный транзистор его база соединена по постоянному току накоротко или
Статья от экспертов
Рассмотрено влияние радиационного излучения на работу мостового крана хранилища ядерных отходов.
Научный журнал
Creative Commons
тока коллектора к постоянному току базы; максимальная рассеиваемая мощность
допустимый электрический ток; максимальное напряжение между коллектором и базой, напряжение насыщение…
; максимальное напряжение между эмиттером и коллектором, которое у высоковольтных транзисторов может…
насыщения коллектор — эмиттера: $Uкэ = Uпит / 2 = 12 / 2 = 6 \ В$ где, Uпит — напряжение источника питания. ..
расчетов видно, что половина напряжения падает на коллектор—эмиттере, но еще 50 % должно упасть на резисторах
Предмет исследования: метод оценки качества функционирования усилителей низкой частоты. Объект исследования: усилитель низкой частоты в аппаратуре каналообразования. Целью исследования является повышение качества функционирования усилителей низкой частоты путем постоянного контроля его параметров подключенным измерительным прибором. При непрерывном контроле измерительный прибор в известной степени становится «элементом» усилителя, обладает шунтирующим воздействием, поэтому важно выработать ре…
Научный журнал
Creative Commons
Повышай знания с онлайн-тренажером от Автор24!
- 📝 Напиши термин
- ✍️ Выбери определение из предложенных или загрузи свое
- 🤝 Тренажер от Автор24 поможет тебе выучить термины, с помощью удобных и приятных карточек
Полупроводниковая схемотехника
Полупроводниковая схемотехника
ОглавлениеПредисловие редактора переводаЧасть I. Основные положения 2. Пассивные RC- и LRC- цепи 2.1. ФИЛЬТР НИЖНИХ ЧАСТОТ 2.1.3. ДЛИТЕЛЬНОСТЬ ФРОНТА ИМПУЛЬСА И ЧАСТОТА СРЕЗА ФИЛЬТРА 2.2. ФИЛЬТР ВЕРХНИХ ЧАСТОТ 2.3. КОМПЕНСИРОВАННЫЙ ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ 2.4. ПАССИВНЫЙ ПОЛОСОВОЙ RC-ФИЛЬТР 2.5. МОСТ ВИНА-РОБИНСОНА 2.6. ДВОЙНОЙ Т-ОБРАЗНЫЙ ФИЛЬТР 2.7. КОЛЕБАТЕЛЬНЫЙ КОНТУР 3. Диоды 3.2. СТАБИЛИТРОНЫ 3.3. ВАРИКАПЫ 4. Транзистор и схемы на его основе 4.2. СХЕМА С ОБЩИМ ЭМИТТЕРОМ 4.2.2. НЕЛИНЕЙНЫЕ ИСКАЖЕНИЯ 4.2.3. СХЕМА С ОБЩИМ ЭМИТТЕРОМ И ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ ПО ТОКУ 4.2.4. ОТРИЦАТЕЛЬНАЯ ОБРАТНАЯ СВЯЗЬ ПО НАПРЯЖЕНИЮ 4.3. СХЕМА С ОБЩЕЙ БАЗОЙ 4.4. СХЕМА С ОБЩИМ КОЛЛЕКТОРОМ, ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 4.5. ТРАНЗИСТОР КАК ИСТОЧНИК СТАБИЛЬНОГО ТОКА 4.5.2. БИПОЛЯРНЫЙ ИСТОЧНИК ПИТАНИЯ 4.5.3. СХЕМА «ТОКОВОГО ЗЕРКАЛА» 4.6. СХЕМА ДАРЛИНГТОНА 4.7. ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ 4.7.2. РЕЖИМ БОЛЬШОГО СИГНАЛА 4.7.3. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ ПО ТОКУ 4.7.4. НАПРЯЖЕНИЕ РАЗБАЛАНСА 4.8. ИЗМЕРЕНИЕ НЕКОТОРЫХ ПАРАМЕТРОВ ПРИ МАЛОМ СИГНАЛЕ 4.9. ШУМЫ ТРАНЗИСТОРА 4.10. ПРЕДЕЛЬНЫЕ ПАРАМЕТРЫ 5. Полевые транзисторы 5.2. ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ МАЛЫХ СИГНАЛОВ 5.3. 5.4. ОСНОВНЫЕ СХЕМЫ ВКЛЮЧЕНИЯ 5.4.1. СХЕМА С ОБЩИМ ИСТОКОМ 5.4.2. СХЕМА С ОБЩИМ ЗАТВОРОМ 5.4.3. СХЕМА С ОБЩИМ СТОКОМ, ИСТОКОВЫЙ ПОВТОРИТЕЛЬ 5.5. ПОЛЕВОЙ ТРАНЗИСТОР КАК СТАБИЛИЗАТОР ТОКА 5.6. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ 5.7. ПОЛЕВОЙ ТРАНЗИСТОР В КАЧЕСТВЕ УПРАВЛЯЕМОГО СОПРОТИВЛЕНИЯ 6. Операционный усилитель 6.1. СВОЙСТВА ОПЕРАЦИОННОГО УСИЛИТЕЛЯ 6.2. ПРИНЦИП ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗИ 6.3. НЕИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ 6.4. ИНВЕРТИРУЮЩИЙ УСИЛИТЕЛЬ 7. Внутренняя структура операционных усилителей 7.2. ПРОСТЕЙШИЕ СХЕМЫ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 7.4. КОРРЕКЦИЯ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ 7.4.2. ПОЛНАЯ ЧАСТОТНАЯ КОРРЕКЦИЯ 7.4.3. ПОДСТРАИВАЕМАЯ ЧАСТОТНАЯ КОРРЕКЦИЯ 7.4.4. СКОРОСТЬ НАРАСТАНИЯ 7.4.5. КОМПЕНСАЦИЯ ЕМКОСТНОЙ НАГРУЗКИ 7.5. ИЗМЕРЕНИЕ ПАРАМЕТРОВ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 8. Простейшие переключающие схемы 8. 1. ТРАНЗИСТОРНЫЙ КЛЮЧ 8.2. БИСТАБИЛЬНЫЕ РЕЛАКСАЦИОННЫЕ СХЕМЫ 8.2.2. ТРИГГЕР ШМИТТА 8.3. МОНОСТАБИЛЬНАЯ РЕЛАКСАЦИОННАЯ СХЕМА 8.4. НЕСТАБИЛЬНАЯ РЕЛАКСАЦИОННАЯ СХЕМА 9.1. ОСНОВНЫЕ ЛОГИЧЕСКИЕ ФУНКЦИИ 9.2. СОСТАВЛЕНИЕ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.2.1. ТАБЛИЦА КАРНО 9.3. ПРОИЗВОДНЫЕ ОСНОВНЫХ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.4. СХЕМОТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ОСНОВНЫХ ЛОГИЧЕСКИХ ФУНКЦИЙ 9.4.1. РЕЗИСТИВНО-ТРАНЗИСТОРНАЯ ЛОГИКА (РТЛ) 9.4.2. ДИОДНО-ТРАНЗИСТОРНАЯ ЛОГИКА (ДТЛ) 9.4.3. ТРАНЗИСТОРНО-ТРАНЗИСТОРНАЯ ЛОГИКА (ТТЛ) 9.4.4. ИНТЕГРАЛЬНАЯ ИНЖЕКЦИОННАЯ ЛОГИКА 9.4.5. ЭМИТТЕРНО-СВЯЗАННАЯ ЛОГИКА (ЭСЛ) 9.4.6. n-КАНАЛЬНАЯ МОП-ЛОГИКА 9.4.7. КОМПЛЕМЕНТАРНАЯ МОП-ЛОГИКА (КМОП) 9.4.8. ОБЗОР 9.4.9. СПЕЦИАЛЬНЫЕ СХЕМЫ ВЫХОДНЫХ КАСКАДОВ 9.5. ИНТЕГРАЛЬНЫЕ ТРИГГЕРЫ 9.5.2. ТРИГГЕРЫ ТИПА M-S (MASTER-SLAVE) 9.5.3. ДИНАМИЧЕСКИЙ ТРИГГЕР 9.6. ПОЛУПРОВОДНИКОВЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА 9. 6.3. ПРОГРАММИРУЕМЫЕ ЛОГИЧЕСКИЕ МАТРИЦЫ (ПЛМ) 10. Оптоэлектронные приборы 10.1. ОСНОВНЫЕ ПОНЯТИЯ ФОТОМЕТРИИ 10.2. ФОТОРЕЗИСТОР 10.3. ФОТОДИОДЫ 10.4. ФОТОТРАНЗИСТОРЫ 10.5. СВЕТОДИОДЫ 10.6. ОПТРОНЫ Часть II. Применения 11. Линейные и нелинейные аналоговые вычислительные схемы 11.1. СХЕМА СУММИРОВАНИЯ 11.2. СХЕМЫ ВЫЧИТАНИЯ 11.2.2. СХЕМА ВЫЧИТАНИЯ НА ОПЕРАЦИОННОМ УСИЛИТЕЛЕ 11.3. БИПОЛЯРНОЕ УСИЛИТЕЛЬНОЕ ЗВЕНО 11.4. СХЕМЫ ИНТЕГРИРОВАНИЯ 11.4.1. ИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР 11.4.2. ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ 11.4.4. НЕИНВЕРТИРУЮЩИЙ ИНТЕГРАТОР 11.5. СХЕМЫ ДИФФЕРЕНЦИРОВАНИЯ 11.5.3. СХЕМА ДИФФЕРЕНЦИРОВАНИЯ С ВЫСОКИМ ВХОДНЫМ СОПРОТИВЛЕНИЕМ 11.6. РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 11.7. ФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ 11.7.2. ЭКСПОНЕНТА 11.7.3. ВЫЧИСЛЕНИЕ СТЕПЕННЫХ ФУНКЦИЙ С ПОМОЩЬЮ ЛОГАРИФМОВ 11.7.4. ФУНКЦИИ SIN X И COS X 11.7.5. ПЕРЕСТРАИВАЕМЫЕ ФУНКЦИОНАЛЬНЫЕ СХЕМЫ 11. 8. АНАЛОГОВЫЕ СХЕМЫ УМНОЖЕНИЯ 11.8.2. УМНОЖЕНИЕ С ПОМОЩЬЮ ЛОГАРИФМИЧЕСКИХ ФУНКЦИОНАЛЬНЫХ ГЕНЕРАТОРОВ 11.8.3. СХЕМА УМНОЖЕНИЯ, ИСПОЛЬЗУЮЩАЯ ИЗМЕНЕНИЕ КРУТИЗНЫ ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ 11.8.5. БАЛАНСИРОВКА СХЕМ УМНОЖЕНИЯ 11.8.6. СХЕМЫ ЧЕТЫРЕХКВАДРАНТНОГО УМНОЖЕНИЯ 11.8.7. ПРИМЕНЕНИЕ СХЕМЫ УМНОЖЕНИЯ ДЛЯ ДЕЛЕНИЯ И ИЗВЛЕЧЕНИЯ КВАДРАТНЫХ КОРНЕЙ 11.9. ПРЕОБРАЗОВАНИЕ КООРДИНАТ 11.9.2. ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ КООРДИНАТ В ПОЛЯРНЫЕ 12. Управляемые источники и схемы преобразования полного сопротивления 12.1. ИСТОЧНИКИ НАПРЯЖЕНИЯ, УПРАВЛЯЕМЫЕ НАПРЯЖЕНИЕМ 12.2. ИСТОЧНИКИ НАПРЯЖЕНИЯ, УПРАВЛЯЕМЫЕ ТОКОМ 12.3. ИСТОЧНИКИ ТОКА, УПРАВЛЯЕМЫЕ НАПРЯЖЕНИЕМ 12.3.2. ИСТОЧНИКИ ТОКА С ЗАЗЕМЛЕННОЙ НАГРУЗКОЙ 12.3.3. ЭТАЛОННЫЕ ИСТОЧНИКИ ТОКА НА ТРАНЗИСТОРАХ 12.3.4. ПЛАВАЮЩИЕ ИСТОЧНИКИ ТОКА 12.4. ИСТОЧНИКИ ТОКА, УПРАВЛЯЕМЫЕ ТОКОМ 12.5. ПРЕОБРАЗОВАТЕЛЬ ОТРИЦАТЕЛЬНОГО СОПРОТИВЛЕНИЯ (NIC) 12.6. ГИРАТОР 12. 7. ЦИРКУЛЯТОР 13. Активные фильтры 13.1. ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ФИЛЬТРОВ НИЖНИХ ЧАСТОТ 13.1.1. ФИЛЬТР БАТТЕРВОРТА 13.1.2. ФИЛЬТР ЧЕБЫШЕВА 13.1.3. ФИЛЬТРЫ БЕССЕЛЯ 13.1.4. ОБОБЩЕННОЕ ОПИСАНИЕ ФИЛЬТРОВ 13.2. ПРЕОБРАЗОВАНИЕ НИЖНИХ ЧАСТОТ В ВЕРХНИЕ 13.3. РЕАЛИЗАЦИЯ ФИЛЬТРОВ НИЖНИХ И ВЕРХНИХ ЧАСТОТ ПЕРВОГО ПОРЯДКА 13.4. РЕАЛИЗАЦИЯ ФИЛЬТРОВ НИЖНИХ И ВЕРХНИХ ЧАСТОТ ВТОРОГО ПОРЯДКА 13.4.2. ФИЛЬТР СО СЛОЖНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.4.3. ФИЛЬТР С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.4.4. ФИЛЬТР НИЖНИХ ЧАСТОТ С ОМИЧЕСКОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.5. РЕАЛИЗАЦИЯ ФИЛЬТРОВ ВЕРХНИХ И НИЖНИХ ЧАСТОТ БОЛЕЕ ВЫСОКОГО ПОРЯДКА 13.6. ПРЕОБРАЗОВАНИЕ ФИЛЬТРА НИЖНИХ ЧАСТОТ В ПОЛОСОВОЙ ФИЛЬТР 13.6.1. ПОЛОСОВОЙ ФИЛЬТР ВТОРОГО ПОРЯДКА 13.6.2. ПОЛОСОВОЙ ФИЛЬТР ЧЕТВЕРТОГО ПОРЯДКА 13.7. РЕАЛИЗАЦИЯ ПОЛОСОВЫХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 13.7.2. ПОЛОСОВОЙ ФИЛЬТР СО СЛОЖНОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.7.3. ПОЛОСОВОЙ ФИЛЬТР С ПОЛОЖИТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13. 7.4. ПОЛОСОВОЙ ФИЛЬТР С ОМИЧЕСКОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ 13.8. ПРЕОБРАЗОВАНИЕ ФИЛЬТРОВ НИЖНИХ ЧАСТОТ В ЗАГРАЖДАЮЩИЕ ПОЛОСОВЫЕ ФИЛЬТРЫ 13.9. РЕАЛИЗАЦИЯ ЗАГРАЖДАЮЩИХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 13.9.1. ЗАГРАЖДАЮЩИЙ LRC-ФИЛЬТР 13.9.2. АКТИВНЫЙ ЗАГРАЖДАЮЩИЙ ФИЛЬТР С ДВОЙНЫМ Т-ОБРАЗНЫМ МОСТОМ 13.9.3. АКТИВНЫЙ ЗАГРАЖДАЮЩИЙ ФИЛЬТР С МОСТОМ ВИНА-РОБИНСОНА 13.10. ФАЗОВЫЙ ФИЛЬТР 13.10.2. РЕАЛИЗАЦИЯ ФАЗОВОГО ФИЛЬТРА ПЕРВОГО ПОРЯДКА 13.10.3. РЕАЛИЗАЦИЯ ФАЗОВОГО ФИЛЬТРА ВТОРОГО ПОРЯДКА 13.11. ПЕРЕСТРАИВАЕМЫЙ УНИВЕРСАЛЬНЫЙ ФИЛЬТР 14. Широкополосные усилители 14.1. ЗАВИСИМОСТЬ КОЭФФИЦИЕНТА УСИЛЕНИЯ ПО ТОКУ ОТ ЧАСТОТЫ 14.2. ВЛИЯНИЕ ВНУТРЕННИХ ЕМКОСТЕЙ ТРАНЗИСТОРА И ЕМКОСТЕЙ МОНТАЖА 14.3. КАСКОДНАЯ СХЕМА 14.4. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ КАК ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ 14.5. СИММЕТРИЧНЫЙ ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ 14.5.2. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ИНВЕРТОРОМ 14.5.3. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С КОМПЛЕМЕНТАРНОЙ КАСКОДНОЙ СХЕМОЙ 14.5. 4. ДВУХТАКТНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ 14.6. ШИРОКОПОЛОСНЫЙ ПОВТОРИТЕЛЬ НАПРЯЖЕНИЯ 14.6.2. ДВУХТАКТНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 14.7. ШИРОКОПОЛОСНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 15. Усилители мощности 15.1. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ КАК УСИЛИТЕЛЬ МОЩНОСТИ 15.2. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ 15.2.2. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ В РЕЖИМЕ AB 15.2.3. СПОСОБЫ ЗАДАНИЯ НАПРЯЖЕНИЯ СМЕЩЕНИЯ 15.3. СХЕМЫ ОГРАНИЧЕНИЯ ТОКА 15.4. КОМПЛЕМЕНТАРНЫЙ ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ ПО СХЕМЕ ДАРЛИНГТОНА 15.5. РАСЧЕТ МОЩНОГО ОКОНЕЧНОГО КАСКАДА 15.6. СХЕМЫ ПРЕДВАРИТЕЛЬНЫХ УСИЛИТЕЛЕЙ НАПРЯЖЕНИЯ 15.7. ПОВЫШЕНИЕ НАГРУЗОЧНОЙ СПОСОБНОСТИ ИНТЕГРАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 16. Источники питания 16.1. СВОЙСТВА СЕТЕВЫХ ТРАНСФОРМАТОРОВ 16.2. ВЫПРЯМИТЕЛИ 16.2.1. ОДНОПОЛУПЕРИОДНЫЙ ВЫПРЯМИТЕЛЬ 16.2.2. МОСТОВОЙ ВЫПРЯМИТЕЛЬ 16.2.3. МОСТОВОЙ ВЫПРЯМИТЕЛЬ ДЛЯ ДВУХ СИММЕТРИЧНЫХ ОТНОСИТЕЛЬНО ЗЕМЛИ ВЫХОДНЫХ НАПРЯЖЕНИЙ 16.3. ПОСЛЕДОВАТЕЛЬНАЯ СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЯ 16. 3.2. СХЕМА С РЕГУЛИРУЮЩИМ УСИЛИТЕЛЕМ 16.3.3. ИНТЕГРАЛЬНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 16.3.4. СТАБИЛИЗАТОР С МАЛЫМ НАПРЯЖЕНИЕМ ПОТЕРЬ 16.3.5. СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЙ, СИММЕТРИЧНЫХ ОТНОСИТЕЛЬНО ЗЕМЛИ 16.3.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С ИЗМЕРИТЕЛЬНЫМИ ВЫВОДАМИ 16.3.7. ЛАБОРАТОРНЫЕ ИСТОЧНИКИ ПИТАНИЯ 16.3.8. ОКОНЕЧНЫЙ КАСКАД ЛАБОРАТОРНОГО ИСТОЧНИКА ПИТАНИЯ С БОЛЬШОЙ ВЫХОДНОЙ МОЩНОСТЬЮ 16.4. ПОЛУЧЕНИЕ ОПОРНОГО НАПРЯЖЕНИЯ 16.4.2. ПОЛУЧЕНИЕ МАЛЫХ ОПОРНЫХ НАПРЯЖЕНИЙ 16.5. ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ 16.5.2. ПЕРВИЧНЫЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ 17. Аналоговые коммутаторы и компараторы 17.2. ЭЛЕКТРОННЫЕ КОММУТАТОРЫ 17.2.2. ДИОДНЫЙ КОММУТАТОР 17.2.3. КОММУТАТОР НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ 17.3. АНАЛОГОВЫЕ КОММУТАТОРЫ НА БАЗЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 17.3.2. КОММУТАТОР НА ПОЛЕВОМ ТРАНЗИСТОРЕ С ПЕРЕМЕНОЙ ЗНАКА ВЫХОДНОГО НАПРЯЖЕНИЯ 17.3.3. КОММУТАТОР НА БАЗЕ ДИФФЕРЕНЦИАЛЬНОГО УСИЛИТЕЛЯ 17.4. АНАЛОГОВЫЕ КОММУТАТОРЫ С ПАМЯТЬЮ 17.5. КОМПАРАТОРЫ 17. 5.2. КОМПАРАТОР С ПРЕЦИЗИОННЫМ ВЫХОДНЫМ НАПРЯЖЕНИЕМ 17.5.3. ДВУХПОРОГОВЫЙ КОМПАРАТОР 17.6. ТРИГГЕР ШМИТТА 17.6.1. ИНВЕРТИРУЮЩИЙ ТРИГГЕР ШМИТТА 17.6.2. НЕИНВЕРТИРУЮЩИЙ ТРИГГЕР ШМИТТА 17.6.3. ПРЕЦИЗИОННЫЙ ТРИГГЕР ШМИТТА 18. Генераторы сигналов 18.1. LC-ГЕНЕРАТОРЫ 18.1.2. ГЕНЕРАТОР С ТРАНСФОРМАТОРНОЙ СВЯЗЬЮ (СХЕМА МАЙССНЕРА) 18.1.3. ТРЕХТОЧЕЧНАЯ СХЕМА С ИНДУKТИВНОЙ ОБРАТНОЙ СВЯЗЬЮ (СХЕМА ХАРТЛИ) 18.1.4. ТРЕХТОЧЕЧНАЯ СХЕМА С ЕМКОСТНОЙ ОБРАТНОЙ СВЯЗЬЮ (СХЕМА КОЛПИТЦА) 18.1.5. LC-ГЕНЕРАТОР С ЭМИТТЕРНОЙ СВЯЗЬЮ 18.1.6. ДВУХТАКТНЫЕ ГЕНЕРАТОРЫ 18.2. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ 18.2.1. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КВАРЦЕВОГО РЕЗОНАТОРА 18.2.2. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ С LC-КОЛЕБАТЕЛЬНЫМ КОНТУРОМ 18.2.3. КВАРЦЕВЫЕ ГЕНЕРАТОРЫ БЕЗ LC-КОНТУРА 18.3. СИНУСОИДАЛЬНЫЕ RC-ГЕНЕРАТОРЫ 18.3.2. МОДЕЛИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ 18.4. ГЕНЕРАТОРЫ СИГНАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ (ФУНКЦИОНАЛЬНЫЕ ГЕНЕРАТОРЫ) 18.4.2. ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР С УПРАВЛЯЕМОЙ ЧАСТОТОЙ ВЫХОДНОГО СИГНАЛА 18. 4.3. ВЫСОКОЧАСТОТНЫЙ ФУНКЦИОНАЛЬНЫЙ ГЕНЕРАТОР 18.5. МУЛЬТИВИБРАТОРЫ 18.5.1. НИЗКОЧАСТОТНЫЕ МУЛЬТИВИБРАТОРЫ 18.5.2. ВЫСОКОЧАСТОТНЫЕ МУЛЬТИВИБРАТОРЫ 19. Комбинационные логические схемы 19.1. ПРЕОБРАЗОВАТЕЛИ КОДОВ 19.1.2. ДВОИЧНО-ДЕСЯТИЧНЫЕ КОДЫ 19.1.3. КОД ГРЕЯ 19.2. МУЛЬТИПЛЕКСОР И ДЕМУЛЬТИПЛЕКСОР 19.3. КОМБИНАЦИОННОЕ УСТРОЙСТВО СДВИГА 19.4. КОМПАРАТОРЫ 19.5. СУММАТОРЫ 19.5.1. ПОЛУСУММАТОР 19.5.2. ПОЛНЫЙ СУММАТОР 19.5.3. СУММАТОРЫ С ПАРАЛЛЕЛЬНЫМ ПЕРЕНОСОМ 19.5.4. СЛОЖЕНИЕ ДВОИЧНО-ДЕСЯТИЧНЫХ ЧИСЕЛ 19.5.5. ВЫЧИТАНИЕ 19.5.6. СЛОЖЕНИЕ ЧИСЕЛ С ЛЮБЫМИ ЗНАКАМИ 19.6. УМНОЖИТЕЛИ 19.7. ЦИФРОВЫЕ ФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ 20. Интегральные схемы со структурами последовательностного типа 20.1. ДВОИЧНЫЕ СЧЕТЧИКИ 20.1.1. АСИНХРОННЫЙ (ПОСЛЕДОВАТЕЛЬНЫЙ) СЧЕТЧИК 20.1.2. СИНХРОННЫЙ (ПАРАЛЛЕЛЬНЫЙ) СЧЕТЧИК 20.2. ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК В КОДЕ 8421 20.2.1. АСИНХРОННЫЙ ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК 20.2. 2. СИНХРОННЫЙ ДВОИЧНО-ДЕСЯТИЧНЫЙ СЧЕТЧИК 20.3. СЧЕТЧИК С ПРЕДВАРИТЕЛЬНОЙ УСТАНОВКОЙ 20.4. РЕГИСТРЫ СДВИГА 20.4.2. КОЛЬЦЕВОЙ РЕГИСТР 20.4.3. РЕГИСТР СДВИГА С ПАРАЛЛЕЛЬНЫМ ВВОДОМ 20.4.4. РЕГИСТР СДВИГА С ПЕРЕКЛЮЧАЕМЫМ НАПРАВЛЕНИЕМ СДВИГА 20.5. ПОЛУЧЕНИЕ ПСЕВДОСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 20.6. ПЕРВОНАЧАЛЬНАЯ ОБРАБОТКА АСИНХРОННОГО СИГНАЛА 20.6.2. СИНХРОНИЗАЦИЯ ИМПУЛЬСОВ 20.6.3. СИНХРОННЫЙ ОДНОВИБРАТОР 20.6.4. СИНХРОННЫЙ ДЕТЕКТОР ИЗМЕНЕНИЙ 20.6.5. СИНХРОННЫЙ ТАКТОВЫЙ ПЕРЕКЛЮЧАТЕЛЬ 20.7. СИСТЕМАТИЧЕСКИЙ СИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТНЫХ СХЕМ 20.7.2. ПРИМЕР СИНТЕЗА ПЕРЕКЛЮЧАЕМОГО СЧЕТЧИКА 20.7.3. СОКРАЩЕНИЕ ЕМКОСТИ ПАМЯТИ 21. Микро-ЭВМ 21.1. ОСНОВНАЯ СТРУКТУРА МИКРО-ЭВМ 21.2. ПРИНЦИП ДЕЙСТВИЯ МИКРОПРОЦЕССОРА 21.3. НАБОР КОМАНД 21.4. ОТЛАДОЧНЫЕ СРЕДСТВА 21.5. ОБЗОР МИКРОПРОЦЕССОРОВ РАЗЛИЧНОГО ТИПА 21.6. МОДУЛЬНОЕ ПОСТРОЕНИЕ МИКРО-ЭВМ 21.7. ПЕРИФЕРИЙНЫЕ УСТРОЙСТВА 21.7.1. ПАРАЛЛЕЛЬНЫЙ ИНТЕРФЕЙС 21.7.2. ПОСЛЕДОВАТЕЛЬНЫЙ ИНТЕРФЕЙС 21. 7.3. ИНТЕРФЕЙС МАГИСТРАЛИ «ОБЩАЯ ШИНА» 21.7.4. ПРОГРАММИРУЕМЫЙ СЧЕТЧИК 21.7.5. ПОДКЛЮЧЕНИЕ ПЕРИФЕРИЙНЫХ МОДУЛЕЙ СЕМЕЙСТВА 8080 К МАГИСТРАЛЯМ СЕМЕЙСТВА 6800 21.7.6. ОБЗОР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ 21.8. МИНИМАЛЬНЫЕ СИСТЕМЫ 21.8.2. ОДНОКРИСТАЛЬНАЯ МИКРО-ЭВМ 22. Цифровые фильтры 22.1. ТЕОРЕМА О ДИСКРЕТИЗАЦИИ (ТЕОРЕМА О ВЫБОРКАХ) 22.1.2. ПРАКТИЧЕСКИЕ СООБРАЖЕНИЯ 22.2. ЦИФРОВАЯ ФУНКЦИЯ ПЕРЕДАЧИ ФИЛЬТРА 22.3. БИЛИНЕЙНОЕ ПРЕОБРАЗОВАНИЕ 22.4. РЕАЛИЗАЦИЯ ЦИФРОВЫХ ФИЛЬТРОВ 22.4.2. СТРУКТУРА ЦИФРОВЫХ ФИЛЬТРОВ ВТОРОГО ПОРЯДКА 22.4.3. ПРАКТИЧЕСКИЕ СООБРАЖЕНИЯ 23. Передача данных и индикация 23.1. СОЕДИНИТЕЛЬНЫЕ ЛИНИИ 23.2. ЗАЩИТА ДАННЫХ 23.2.2. КОД ХЕММИНГА 23.3. СТАТИЧЕСКИЕ ЦИФРОВЫЕ ИНДИКАТОРЫ 23.3.1. ДВОИЧНЫЕ ИНДИКАТОРЫ НА СВЕТОДИОДАХ 23.3.2. ДЕКАДНЫЕ ИНДИКАТОРЫ 23.3.3. ИНДИКАЦИЯ В ШЕСТНАДЦАТЕРИЧНОМ КОДЕ 23.4. МУЛЬТИПЛЕКСНЫЕ ИНДИКАТОРЫ 23.4.1. МНОГОРАЗРЯДНЫЕ 7-СЕГМЕНТНЫЕ ИНДИКАТОРЫ 23.4.2. МАТРИЦА ТОЧЕК 24. Цифро-аналоговые и аналого-цифровые преобразователи 24.1. СХЕМОТЕХНИЧЕСКИЕ ПРИНЦИПЫ ЦА-ПРЕОБРАЗОВАТЕЛЕЙ 24.1.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ С ПЕРЕКИДНЫМИ КЛЮЧАМИ 24.1.3. РЕЗИСТИВНАЯ МАТРИЦА ПОСТОЯННОГО ИМПЕДАНСА (МАТРИЦА ТИПА R-2R) 24.1.4. РЕЗИСТИВНАЯ МАТРИЦА ДЛЯ ДЕКАДНЫХ ПРЕОБРАЗОВАТЕЛЕЙ 24.2. ПОСТРОЕНИЕ ЦА-ПРЕОБРАЗОВАТЕЛЕЙ С ЭЛЕКТРОННЫМИ КЛЮЧАМИ 24.2.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ С ТОКОВЫМИ КЛЮЧАМИ 24.3. ЦА-ПРЕОБРАЮВАТЕЛИ ДЛЯ СПЕЦИАЛЬНЫХ ПРИМЕНЕНИЙ 24.3.2. ЦА-ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ДЕЛЕНИЯ 24.3.3. ЦА-ПРЕОБРАЗОВАТЕЛЬ КАК ГЕНЕРАТОР ФУНКЦИЙ 24.4. ОСНОВНЫЕ ПРИНЦИПЫ АЦ-ПРЕОБРАЗОВАНИЯ 24.5. ТОЧНОСТЬ АЦ-ПРЕОБРАЗОВАТЕЛЕЙ 24.6. ПОСТРОЕНИЕ АЦ-ПРЕОБРАЗОВАТЕЛЕЙ 25. Измерительные схемы 25.1. ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ 25.1.2. ИЗМЕРЕНИЕ РАЗНОСТИ ПОТЕНЦИАЛОВ 25.1.3. ИЗОЛИРОВАННЫЙ УСИЛИТЕЛЬ 25.2. ИЗМЕРЕНИЕ ТОКА 25.2.1. ИЗОЛИРОВАННЫЕ ОТ ЗЕМЛИ АМПЕРМЕТРЫ С МАЛЫМ ПАДЕНИЕМ НАПРЯЖЕНИЯ 25.2.2. ИЗМЕРЕНИЕ ТОКА ПРИ ВЫСОКОМ ПОТЕНЦИАЛЕ 25.3. ИЗМЕРИТЕЛЬНЫЙ ВЫПРЯМИТЕЛЬ 25. 3.2. ИЗМЕРЕНИЕ ЭФФЕКТИВНОГО ЗНАЧЕНИЯ 25.3.3. ИЗМЕРЕНИЕ АМПЛИТУДНЫХ ЗНАЧЕНИЙ 25.3.4. СИНХРОННЫЙ ДЕТЕКТОР 26. Электронные регуляторы 26.2. ТИПЫ РЕГУЛЯТОРОВ 26.2.1. П-РЕГУЛЯТОР 26.2.2. ПИ-РЕГУЛЯТОР 26.2.3. ПРОПОРЦИОНАЛЬНО-ИНТЕГРАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫЙ РЕГУЛЯТОР 26.2.4. НАСТРАИВАЕМЫЕ ПИД-РЕГУЛЯТОРЫ 26.3. УПРАВЛЕНИЕ НЕЛИНЕЙНЫМИ ОБЪЕКТАМИ 26.4. ОТСЛЕЖИВАЮЩАЯ СИНХРОНИЗАЦИЯ (АВТОПОДСТРОЙКА) 26.4.1. ЭЛЕМЕНТЫ ВЫБОРКИ-ХРАНЕНИЯ В КАЧЕСТВЕ ФАЗОВОГО ДЕТЕКТОРА 26.4.2. СИНХРОННЫЙ ВЫПРЯМИТЕЛЬ В КАЧЕСТВЕ ФАЗОВОГО ДЕТЕКТОРА 26.4.3. ЧАСТОТНО-ЧУВСТВИТЕЛЬНЫЙ ФАЗОВЫЙ ДЕТЕКТОР 26.4.4. ФАЗОВЫЙ ДЕТЕКТОР С ПРОИЗВОЛЬНО УВЕЛИЧИВАЕМЫМ ДИАПАЗОНОМ ИЗМЕРЕНИЙ 26.4.5. ФАЗОРЕГУЛЯТОР В КАЧЕСТВЕ ПЕРЕМНОЖИТЕЛЯ ЧАСТОТ |
bjt — Абсолютное максимальное напряжение коллектор-база транзистора больше, чем напряжение коллектор-эмиттер
спросил
Изменено 4 года, 10 месяцев назад
Просмотрено 2к раз
\$\начало группы\$
В техническом описании радиочастотного транзистора Microsemi 2N918 NPN абсолютные максимальные значения указаны как:
Меня смутил тот факт, что \$V_{CBO}\$ намного больше, чем \$V_{CEO}\$. Кроме того, в техническом описании указано \$V_{CB}\$ при 25 В и 30 В для определенных условий тестирования параметров, приведенных ниже в документе.
Мой вопрос: для BJT, что в процессе строительства/производства делает \$V_{CBO} > V_{CEO}\$?
- bjt
- характеристики устройства
\$\конечная группа\$
1
\$\начало группы\$
Просто для ясности: \$V_{cbo}\$ – это максимальное напряжение, которое может быть приложено между коллектором и базой биполярного транзистора, когда эмиттер остается неподключенным, а \$V_{ceo}\$ максимальное напряжение, которое может быть приложено между коллектором и эмиттером биполярного транзистора, когда база остается неподключенной. Между этими ситуациями есть огромная разница.
В случае \$V_{cbo}\$ между коллектором и основанием протекает некоторая утечка, что может привести к небольшому нагреву детали. Это всего лишь диод. Таким образом, в этом случае они просто указывают напряжение, ниже которого деталь не повреждается и от которого BJT может восстановиться.
Дело \$V_{CEO}\$ во многом похоже. Но сейчас мы говорим не о диоде, а о всей структуре транзистора. Таким образом, при открытой базе любой ток утечки также станет активным током базы, который, конечно, затем усиливается \$\бета\$ транзистора. Так что это приведет к еще большему току и т. д., что еще больше нагреет его.
Это главная причина, по которой я знаю, почему часто верно, что \$V_{cbo} > V_{CEO}\$.
\$\конечная группа\$
6
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.транзисторов. Должно ли напряжение коллектора быть больше напряжения эмиттера на несколько десятых долей вольта для транзистора NPN
спросил
Изменено 1 год, 8 месяцев назад
Просмотрено 709 раз
\$\начало группы\$
Должно ли для NPN-транзистора напряжение коллектора быть больше напряжения эмиттера на несколько десятых долей вольта, чтобы он находился в активном состоянии? Если да, то в чем причина?
Также написано больше на несколько десятых. «Несколько десятых» — это немного расплывчато. Есть ли у нас какой-либо стандарт, насколько больше Vc должно быть?
В Практическая электроника для изобретателей для активного состояния есть 2 правила. Это первое правило, о котором я говорю.
- транзисторы
- усилитель
- npn
- полупроводники
- твердотельные устройства
\$\конечная группа\$
2
\$\начало группы\$
Если Vc слишком близко к Ve, транзистор насыщен, а не в прямом (или обратном) активном режиме.
В техническом описании транзистора будет указана величина, называемая напряжением насыщения , \$V_{ce,sat}\$. При напряжении коллектор-эмиттер ниже \$V_{ce,sat}\$ (и достаточном токе базы или напряжении затвора, чтобы в противном случае перевести его в активный режим), транзистор находится в режиме насыщения. С напряжением коллектор-эмиттер значительно ниже \$V_{ce,sat}\$, транзистор можно рассматривать скорее как два диода, чем как транзистор. Это напряжение обычно составляет несколько десятых вольта для небольших биполярных транзисторов, но оно варьируется между транзисторами. В парах Дарлингтона и Шиклаи всегда есть по крайней мере одно падение на диоде, что является основным недостатком топологий с усилением. В некоторых очень мощных BJT и IGBT оно может превышать вольт.
\$V_{ce,sat}\$ на самом деле не является константой и логарифмически зависит от тока коллектора. Однако в большинстве случаев его можно считать константой; просто имейте в виду, что оно будет ниже, чем значение из таблицы данных, если вы работаете с гораздо более низкими токами коллектора, чем тестовое значение, используемое в таблице данных, и выше, если вы работаете с гораздо более высокими токами.
\$\конечная группа\$
1
\$\начало группы\$
Да, потому что, когда Vc < Ve для NPN с прямым смещением Vb, переход коллектор-база теперь неправильно смещен в прямом направлении и шунтирует весь коэффициент усиления по току до 1. максимальное значение hFE при номинальном Vce(sat) @Ic, поскольку это стандарт, использующий Ic/Ib=10 для данных условий.
Таким образом, можно сказать, что насыщение при низких токах начинается при Vce<0,6, но при максимальном токе существует сопротивление перехода Rce=Vce/Ic, так что при максимальном токе насыщение обычно начинается при Vce<2В. Это важно при рассмотрении линейности и искажения второй гармоники, а также при обрезании отрицательного синусоидального пика на крайних значениях.
\$\конечная группа\$
3
\$\начало группы\$
Вы зациклились на подсчете «нескольких десятых». Но есть и другой способ взглянуть на это. Чтобы npn-транзистор находился в режиме насыщения, переход база-эмиттер и переход база-коллектор должны быть смещены в прямом направлении. Это часто дается как истинное определение насыщения. Насыщенность — это режим, который мы используем, когда пытаемся просто включить какую-то нагрузку. Мы пытаемся сделать Vce (NPN) как можно ниже, чтобы транзистор был похож на механический переключатель.
В режиме насыщения Vbc будет немного ниже, чем Vbe, из-за геометрии и концентраций примесей в различных областях, и будет протекать чистый ток от коллектора к эмиттеру (в NPN). Итак, дело в том, что если вы поддерживаете условия смещения и ток, вы получите свои несколько десятых долей вольта. Вам не нужно делать какие-то расчеты, чтобы случайно не допустить слишком низкого напряжения. Вы резко переводите базу в прямое смещение, и транзистор опустит коллектор настолько низко, насколько это возможно, позволяя максимальному току протекать через нагрузку. Как только напряжение коллектора падает ниже базового напряжения, вы находитесь в состоянии насыщения, и базовый ток начинает увеличиваться (если вы поддерживаете базовое напряжение постоянным).
Все это просто происходит.