Как работает двигатель?
Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.
Виды моторов
Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.
Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:
- цилиндры, в которых располагаются поршни;
- коленчатый вал;
- газораспределительный механизм.
К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.
Основные подходы к классификации силовых установок:
- По количеству цилиндров.
- По расположению цилиндров.
- По виду топлива.
1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.
2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов. Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.
3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.
В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).
А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.
Порядок работы двигателя
Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев.
Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:
- впуска;
- сжатия;
- рабочего хода;
- выпуска.
У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).
Теперь подробнее о четырехтактном процессе.
В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.
Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.
В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).
Во втором такте
В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.
На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы.
Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.
Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.
В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.
Принцип работы двигателя, почему и что может поломаться
Расскажем, как работает двигатель внутреннего сгорания, какие неполадки возникают в работе и как продлить его жизненный цикл
Цель работы двигателя — преобразование бензина в движущую силу. Преобразовывается бензин в движущую силу путем сжигания внутри движка. Поэтому он и называется двигателем внутреннего сгорания.
Запомните две вещи:
1. Есть разные виды двигателей внутреннего сгорания:
- бензиновый двигатель;
- дизельный;
- дизель с турбонаддувом;
- газовый двигатель.
Различия у них в принципах работы, плюс у каждого свои преимущества и недостатки.
2. Бывают еще двигатели внешнего сгорания. Лучший пример — паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и есть движущая сила. Двигатель внутреннего сгорания более эффективен, так как ему нужно меньше топлива на километр пути. К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет, почему на улицах сейчас не ездят автомобили с паровыми движками.
Как работает система внутреннего сгорания двигателя
Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива, например бензина, в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается большое количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то получим основу работы двигателя.
Автомобили используют «четырехтактный цикл сгорания» для преобразования бензина в движущую силу четырех колесного автомобиля. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:
- такт впуска;
- такт сжатия;
- такт горения;
- такт выведения продуктов сгорания.
Поршень двигателя в этой истории главный «работяга». Он своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом-шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Рассмотрим цикл сгорания бензина в цилиндре подробнее.
- Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом движок набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.
- Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.
- Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.
- Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.
Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.
Теперь рассмотрим составные части автомобильного мотора, работа которых взаимосвязана. Начнем с цилиндров.
Составные части двигателя
Схема № 1
Основа двигателя – это цилиндр, в котором вверх-вниз двигается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но в автомобильных движках цилиндров четыре, шесть и восемь. В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: а) в один ряд; б) однорядно с наклоном от вертикали; в) V-образным способом; г) плоским способом (горизонтально-оппозитный).
У разных способов расположения цилиндров разные преимущества и недостатки с точки зрения гладкости в работе, производственных издержек и характеристик. Эти преимущества и недостатки делают разные способы расположения цилиндров подходящими для разных видов транспорта.
Свечи зажигания
Свечи зажигания дают искру, которая воспламеняет воздушно-топливную смесь. Искра должна вспыхнуть в нужный момент для безотказной работы двигателя. Если движок начинает работать нестабильно, дергается, слышно что «пыхтит» он сильнее чем обычно, вероятно одна из свечей перестала работать, ее нужно заменить.
Клапаны (см. схему №1)
Впускные и выпускные клапаны открываются, чтобы впустить воздух и топливо и выпустить продукты сгорания. Обратите внимание, оба клапана закрыты в момент сжатия и сгорания топливной смеси, обеспечивая герметичность камеры сгорания.
Поршень
Поршень – это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.
Поршневые кольца
Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. У кольца два назначения:
- Во время тактов сжатия и сгорания кольца не дают утечь воздушно-топливной смеси и выхлопным газам из камеры сгорания.
- Кольца не дают моторному маслу попасть в зону сгорания, где оно будет уничтожено.
Если автомобиль начинает «подъедать масло» и приходиться подливать его каждые 1000 километров, значит двигатель автомобиля «устал» и поршневые кольца в нем сильно изношены. Такие кольца пропускают масло в цилиндры, где оно сгорает. По всей видимости, такому двигателю требуется капитальный ремонт.
Шатун
Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.
Коленчатый вал (распределительный вал)
Схема № 2
Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.
Маслосборник
Маслосборник окружает коленчатый вал и содержит определенное количество масла, которое собирается в нижней его части (в масляном поддоне).
Причины неполадок и перебоев в двигателе
Если автомобиль с утра не заводитсяЕсли машина с утра не заводится, этому есть три основных причины:
- плохая топливная смесь;
- отсутствие сжатия;
- отсутствие искры.
Плохая топливная смесь поступает в движок в следующих случаях:
- Закончился бензин и в двигатель поступает только воздух. Бензин не воспламеняется, сгорания не происходит.
- Забиты воздухозаборники, и в движок не поступает воздух, который крайне необходим для такта сгорания.
- В топливе содержатся примеси (например, вода в бензобаке), которые препятствуют горению топлива. Меняйте бензоколонку.
- Топливная система подает слишком мало или слишком много топлива в смесь, следовательно, горение не происходит должным образом. Если смеси мало, то слабое воспламенения в цилиндре не может прокрутить цилиндр. Если смеси много, то заливает свечи и они не дают искру.
О «залитых» свечах подробнее: если машина не заводится, а бензонасос не перестает подавать топливо в цилиндры, то бензин не воспламеняется, а наоборот «тушит» свечи зажигания. Свечи с «подмоченной репутацией» нормальной искры для воспламенения смеси не дадут. Если открутив свечу обнаружите, что она «мокрая», сильно пахнет бензином — знайте, свечи «залило». Либо подсушите все 4 свечи, выкрутив их и отнеся в теплое помещение, либо посидите в незаведенной машине с нажатой педалью газа — дроссельная заслонка будет открыта и свечи немного подсохнут от поступающего воздуха.
Отсутствие сжатия
Если топливная смесь не сжимается, так как надо, то и не будет требуемого сгорания для работы машины. Отсутствие сжатия возникает по следующим причинам:
- Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.
- Один из клапанов неплотно закрывается, из-за чего смесь вытекает.
- В цилиндре есть отверстие.
Часто «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка прохудится, то между головкой цилиндра и самим цилиндром образуются отверстия, через которые образуется утечка смеси.
Отсутствие искры
Искра может быть слабой или вообще отсутствовать в случаях:
- Если свеча зажигания или провод, идущий к ней, изношены, то искра будет слабой.
- Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает, как нужно, то искры не будет.
- Если искра приходит в цикл слишком рано или слишком поздно, топливо не воспламениться в нужный момент, что повлияет на стабильную работу мотора.
Возможны и другие проблемы с двигателем. Например:
- Если аккумулятор на авто разряжен, то двигатель не сделает ни одного оборота, а автомобиль не заведется.
- Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не провернется, а двигатель не запустится.
- Если клапаны не будут закрываться или открываться в нужный момент цикла, то работа двигателя будет невозможна.
- Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.
В исправно — работающем двигателе описанных проблем быть не может. Если они появились, ждите беды.
Если выяснится, что аккумулятор просто разрядился, почитайте, как правильно «прикурить» от другого автомобиля.
Клапанный механизм двигателя и система зажигания
Разберем процессы происходящие в двигателе отдельно. Начнем с клапанного механизма, который состоит из клапанов и механизмов, открывающих и закрывающих проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу есть выступы, которые и двигают клапаны вверх и вниз.
Двигатели, в которых вал размещен над клапанами (бывает, что вал размещают внизу), имеют кулачки распредвала, которые регулируют порядок работы цилидров (см. схему №2). Кулачки вала воздействуют на клапаны напрямую или через очень короткие связующие звенья. Эта система настроена так, что клапаны синхронизированы с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр – два на вход воздуха и два на выход для продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.
Система зажигания создает высоковольтный заряд и передает его на свечи зажигания через провода. Сначала заряд поступает в распределитель, который легко найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других бронепроводов, в зависимости от количества цилиндров в двигателе. Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.
Давайте подумаем, как заводится двигатель, как остывает и как в нем проходит циркуляция воздуха.
Система зажигания двигателя, охлаждения и набора воздуха
Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой. Это делает двигатели легче, но охлаждение при этом менее эффективное. Двигатели с воздушной системой охлаждения, имеют меньший срок службы и меньшую производительность.
Существуют автомобильные двигателя с наддувом. Это когда воздух проходит через воздушные фильтры и попадает прямо в цилиндры. Наддув ставят в атмосферных движках. Для увеличения производительности некоторые двигатели оснащены турбонаддувом. Через турбонаддув воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр втискивается больше воздушно-топливной смеси. За счет турбонаддува увеличивается мощь движка.
Повышение производительности автомобиля – это круто, но что же происходит, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида (реле стартера). Когда поворачивается ключ в замке зажигания, стартер вращает двигатель на несколько оборотов, чтобы начался процесс сгорания топлива. Чем мощнее мотор, тем сильнее нужен аккумулятор, чтобы дать ему толчок. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид или реле стартера, это тот самый переключатель, который справляется с таким мощным потоком электричества. Когда вы проворачиваете ключ зажигания, соленоид активируется и запускает стартер.
Разберем подсистемы автомобильного мотора, отвечающие за то, что поступает в движок (масло, бензин) и за то, что из него выходит (выхлопные газы).
Смазочные жидкости двигателя, топливная, выхлопная и электрические системы
Каким образом бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом так, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.
При смесеобразовании карбюратор добавляет бензин в воздух, как только воздух попадает в двигатель.
В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо напрямую в цилиндр. Называется «прямой впрыск».
Масло также играет важную роль в двигателе. Смазочная система не допускает трения жестких стальных частей друг об друга — запчасти не изнашиваются, стальная стружка внутри двигателя не летает. Поршни и подшипники – позволяющие свободно вращаться коленчатому и распределительному валу – основные части, требующие смазки в системе. В большинстве автомобилей, масло засасывается через масляный насос из маслосборника, проходит через фильтр, чтобы очиститься от песка и выработки механизмов мотора, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Затем масло стекает в маслосборник, и цикл повторяется снова.
Теперь вы знаете больше о том, что поступает в двигатель автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, в салоне автомобиля были бы слышны все мини-взрывы, происходящие в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.
Электрическая система автомобиля, запускающая машину
Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В незаведенной машине при повороте ключа зажигания за питание всех систем отвечает аккумулятор. В заведенной — генератор. Аккумулятор нужен только, чтобы запустить электрическую систему машины, дальше в работу вступает генератор, который вырабатывает энергию за счет работы двигателя. Аккумулятор в это время заряжается от генератора и «отдыхает». Подробнее об аккумуляторах здесь.
Как увеличить производительность двигателя и улучшить его работуЛюбой двигатель можно заставить работать лучше. Работа автопроизводителей над увеличением мощности движка и одновременным уменьшением расхода топлива, не прекращается ни на секунду.
Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо объема цилиндров, либо их количества. Сейчас 12 цилиндров – это предел.
Увеличение степени сжатия. До определенного момента, увеличение степени сжатия смеси увеличивает получаемую энергию. Однако, чем больше сжимается воздушно-топливная смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.
Большее наполнение цилиндра. Если в цилиндр втиснуть больше воздуха и топлива, то на выходе получается больше энергии. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно втискивают его в цилиндр.
Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем больше он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер – это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.
Сделать меньшим вес деталей. Чем легче запчасти двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет. Двигатель из углеродного волокна еще не придумали, но как делают этот материал, читайте тут на Zap-Online.ru.
Впрыск топлива. Система впрыска очень точно дозирует топливо поступающее в каждый цилиндр, повышая производительность двигателя и экономя топливо.
Теперь вы знаете, как работает двигатель автомобиля, а также причины его основных неполадок и перебоев. Если остались вопросы или есть замечания по изложенному материалу, добро пожаловать в комментарии.
что это и как работает. 5 интересных фактов :: Autonews
Двигатель внутреннего сгорания, или сокращённо ДВС, — это «сердце» большинства современных автомобилей. И не только машин, но также мотоциклов, кораблей, тепловозов, самолётов и даже масштабных моделей транспортных средств.
- Что такое ДВС
- Как создавался ДВС
- Устройство ДВС
- Виды
- 5 интересных фактов
www.adv.rbc.ru
Что такое ДВС
ДВС — это пока основной вид двигателей транспортных средств, тепловая машина, преобразующая химическую энергию топлива в механическую работу.
Двигатели внутреннего сгорания принято делить на несколько основных типов:
- Поршневой двигатель внутреннего сгорания;
- Роторно-поршневой двигатель внутреннего сгорания:
- Газотурбинный двигатель внутреннего сгорания.
Основным типом ДВС является классический поршневой двигатель, поэтому преимущественно речь дальше пойдёт о нём.
Как создавался ДВС
Двигатель внутреннего сгорания стар как мир. История создания этой машины тесно связана с паровыми двигателями, то есть двигателями внешнего сгорания.
Паровые двигатели, применяемые в XVIII веке, были громоздкими и слабыми, с чрезвычайно низким коэффициентом полезного действия. Тепло от сгорания топлива в них использовалось для нагрева жидкости, а та в свою очередь, превращалась в пар и совершала работу. Звучит красиво, а что на деле? По факту практический КПД, то есть эффективность преобразования энергии, обычно составлял от 1 до 8%. Уже тогда было ясно — систему нужно улучшать. Зачем сжигать горючее вне мотора, не лучше ли делать это прямо в нём?
Попытки создания ДВС начались намного раньше, чем вы можете себе представить, — ещё в XVII веке. В 1678 году голландский математик Христиан Гюйгенс создал примитивный ДВС, работающий… на порохе. Идея получила развитие: экспериментаторы в различных странах шли по схожему пути, но далеко не все из них попали в историю.
Доподлинно известно, что в 1794 году Робертом Стритом был запатентован двигатель внутреннего сгорания на жидком топливе. Построен первый рабочий прототип. В 1807 году француз Нисефор Ньепс разработал твердотельный ДВС, работающий на порошке пиреолофора. С прототипом лично ознакомился Наполеон Бонапарт. В том же году Франсуа Исаак де Риваз создал поршневой ДВС, работающий на газообразном водороде — этот мотор получил поршневую группу и искровое зажигание.
Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.
Многие изобретатели приложили руку к сознанию двигателя внутреннего сгорания, но первым коммерчески успешным проектом стало детище французского изобретателя из Бельгии Жана Этьена Ленуара. К 1864 году он продал свыше 1 400 своих двигателей и неплохо на этом нажился.
Первый автомобильный ДВС в привычном понимании был создан в 1885 году Карлом Бенцем — мотор использовался на автомобиле Benz Patent-Motorwagen.
Устройство поршневого ДВС
Традиционный поршневой двигатель внутреннего сгорания — чрезвычайно сложная система. Однако основных деталей у классического ДВС не так уж и много. Без этих элементов работа двигателя внутреннего сгорания невозможна:
- блока цилиндров — механической основы мотора;
- головки блока цилиндров;
- поршней;
- шатунов;
- коленчатого вала;
- распределительного вала с кулачками;
- впускных и выпускных клапанов;
- свечей зажигания*.
* — на самом деле деталей значительно больше, но рассказать о каждой из них в рамках короткой статьи не представляется возможным.
Принципы работы ДВС
Все классические ДВС работают по схожему принципу. В процессе их работы энергия вспышки топлива, то есть тепловая энергия, преобразуется в энергию механическую. Обычно это происходит следующим образом:
- Когда поршень в цилиндре движется вниз, открывается впускной клапан. В цилиндр поступает топливовоздушная смесь.
- Поршень поднимается, а выпускной клапан закрывается. Поршень сжимает топливовоздушную смесь и доходит до верхней мёртвой точки.
- На свече зажигания возникает искра, топливовоздушная смесь мгновенно сгорает, выделяя большой объём газов. Под их действием поршень устремляется вниз.
- Открывается выпускной клапан и выхлопные газы выдавливаются в выпускной коллектор.
Четырехтактный двигатель
В четырёхтактном моторе происходит четыре непрерывных последовательных стадии:
- Впуск (наполнение цилиндра смесью).
- Сжатие.
- Рабочий ход или сгорание.
- Выпуск отработавших газов.
Двухтактный двигатель
Но бывают и иные моторы — двухтактные. Они работают немного по-другому и применяются, как правило, на мототехнике и бензиновых инструментах вроде бензопил. Что происходит в них?
- Когда поршень движется снизу-вверх, в камеру сгорания поступает топливо. Сжатая поршнем топливовоздушная смесь поджигается искрой.
- Смесь загорается и поршень устремляется вниз. Открывается доступ к выпускному коллектору и из цилиндра выходят продукты сгорания.
Разница в том, что тактов всего два: на первом одновременно происходит впуск и сжатие, а на втором — опускание поршня и выпуск продуктов сгорания из коллектора.
Какие ещё бывают ДВС
Помимо поршневых двигателей внутреннего сгорания создано немало иных разновидностей ДВС — роторные, газотурбинные, реактивные, турбореактивные и бесчисленное множество их модификаций. Чем они отличаются?
- Газотурбинные ДВС
Если в традиционных поршневых ДВС работа расширения газообразных продуктов сгорания преобразуется во вращательное движение коленчатого вала, то в газотурбинных работа расширения продуктов сгорания воспринимается рабочими лопатками ротора, а в реактивных используется реактивное давление, возникающее при истечении продуктов сгорания из сопла. Все эти типы ДВС объединяет одно — во время работы они внутри себя сжигают топливо.
- Роторные ДВС
Крайне необычные моторы, которые можно встретить даже на серийных машинах. Первый роторно-поршневой мотор был создан немецким инженером Феликсом Ванкелем в 1957 году. Этот ДВС внешне совершенно не похож ни на один традиционный поршневой мотор.
Двигатель Ванкеля состоит из корпуса, камеры сгорания, впускного и выпускного окон, неподвижной шестерни, зубчатого колеса, ротора, вала и свечи зажигания. Ротор на эксцентриковом валу приводится в действие силой давления газов в результате сгорания топливовоздушной смеси. Он вращается относительно статора посредством шестерён. Когда ротор совершает эксцентричные круговые движения, его грани соприкасаются с внутренней поверхностью камеры сгорания. Таким образом создаются три изолированные камеры, в которых попеременно сжигается топливо. Вращающийся ротор передаёт крутящий момент на трансмиссию.
Человечество создало немало невероятных и по-настоящему уникальных моторов. Вот 10 самых совершенных из них:
👉 Железные мускулы. 10 лучших двигателей в истории
5 интересных фактов о ДВС
ДВС может работать на альтернативном топливе
Современные ДВС принято делить на два основных типа по применяемому топливу — бензиновые и дизельные. Однако сама история создания двигателей внутреннего сгорания позволяет понять: сжигать в таких моторах можно многие виды горючего — от различных газов до всевозможных растворителей и спиртов. Главное — испарить их и подмешать воздух в нужных пропорциях.
Наиболее распространённые альтернативы бензину и дизелю — пропан-бутан и метан, но можно использовать даже «гремучую смесь» — водород с кислородом. И это далеко не всё: почти любая современная машина с ДВС способна ездить на смеси бензина с этанолом или на чистом этаноле, то есть спирте, получаемом экологически чистым путём. Поедет бензиновый автомобиль и на различных растворителях. К примеру, запустить ДВС можно на обычном сольвенте из хозяйственного магазина — с помощью этой жидкости обычно осуществляют чистку топливной системы.
ДВС выживет в космосе и под водой (если очень постараться)
Двигатель внутреннего сгорания можно заставить работать даже в космосе. Всё, что для этого требуется, — обеспечить подачу кислорода для создания топливовоздушной смеси. При соблюдении этого нехитрого условия ДВС может запуститься и работать даже под водой. Для него нет ничего невозможного.
ДВС действительно плох
Несмотря на всю свою технологичность и сложность, по уровню КПД бензиновый ДВС недалеко ушёл от парового мотора. Эффективность этих агрегатов оставляет желать лучшего. Коэффициент полезного действия в среднем варьируется в диапазоне от 20 до 25%.
Иными словами, при сжигании условных 10 литров бензина лишь около трёх литров выполняют полезное действие. Всё остальное горючее тратится на тепловые и механические потери. С этой точки зрения дизельные движки намного круче: их КПД достигает 40%. Но и их век уже прошёл.
Отказ от ДВС неизбежен
Одну из причин грядущего отказа от двигателей внутреннего сгорания мы уже раскрыли — это низкий КПД. Но есть и ещё один немаловажный момент — влияние на экологию. Поскольку почти все ДВС работают на невозобновляемых ресурсах (бензине, дизеле, нефтяном газе), отказ от них жизненно необходим.
По данным специалистов, мировой запас нефти составляет 1,726 трлн баррелей, которых хватит при нынешнем уровне потребления немногим более чем на 50 лет. Из нефти делают не только топливо. Она — основа синтетических каучуков, пластиков, еды, тканей, шампуней и даже аспирина. Всего того, без чего жизнь человека уже практически невозможна.
Как работает электродвигатель?
Проясним электродвигатель. Как устроен и как работает самый распространенный электродвигатель: синхронный двигатель ИПМ.
Как изготавливается электродвигатель электромобиля? Как работает электродвигатель? Эти вопросы часто крутятся в голове у тех, кто хочет больше узнать о том, как работает двигатель автомобиля с батарейным питанием. Как на самом деле обстоят дела с трансмиссией? Попробуем понять, как происходит движение электромобиля там, где тягу обычно обеспечивает электродвигатель.
Как изготавливается двигатель электромобиля?
Чтобы это работало, какая технология используется между «асинхронной», «синхронной», постоянного или переменного тока, «однофазной», «трехфазной» и пошаговой? Допустим, электродвигатель имеет гораздо более простую конструкцию, чем двигатель внутреннего сгорания, бензиновый или дизельный. Электродвигатель состоит из двух частей: статора и ротора, которые генерируют два магнитных поля, взаимодействие которых создает вращающий момент. Для создания магнитных полей и ротор, и статор питаются током, за исключением бесщеточных двигателей, в которых ток питается только статором. Любопытно, что статор трехфазного двигателя переменного тока и статор бесколлекторного синхронного двигателя постоянного тока практически идентичны. Оба имеют три набора распределенных обмоток, которые вставлены внутрь сердечника статора.
Основное различие между двумя электродвигателями заключается в роторе. Оба этих двигателя используют для работы инвертор, необходимый для генерации трехфазного тока: они отличаются ротором и, очевидно, логикой работы самого инвертора, который должен управлять током по-разному.
В чем разница между «синхронным»
и «асинхронным» электродвигателем?
В синхронном двигателе скорость вращения оси жестко привязана к частоте питающего напряжения, а в асинхронном двигателе скорость вращения оси всегда меньше скорости вращения вращающегося поля, связанного с частотой напряжение питания. В большинстве электромобилей используются синхронные двигатели с постоянными магнитами, поскольку они должны работать с различными нагрузками на разных скоростях и потреблять меньше тока. Двигатель, используемый в электромобилях , обычно представляет собой синхронный двигатель, работающий от постоянного тока от литиевых батарей, который называется «бесщеточным», потому что он бесщеточный: он имеет ротор с постоянными магнитами (типа магнита) и статор с питанием от тока, который генерирует вращающееся магнитное поле.
КПД электродвигателя
КПД бесщеточного синхронного двигателя с постоянными магнитами выше, чем у асинхронных двигателей постоянного тока, и даже достигает 98%. Эти двигатели, изготовленные с ротором из многослойного ферромагнитного материала, имеют очень малую инерцию ротора, что обеспечивает чрезвычайно точное управление и быстрое ускорение.
С точки зрения эффективности этот двигатель лучше, поскольку он может работать с единичным коэффициентом мощности, в то время как двигатель с питаемым током ротором достигает 85 процентов: пиковая энергоэффективность бесщеточного двигателя постоянного тока обычно на несколько процентных пунктов выше, чем у асинхронного двигателя. мотор.
Работа синхронного двигателя управляется инвертором. Пока двигатель вращается, для создания вращения магнитного поля в статоре используется специальная электроника, а именно инвертор с некоторыми силовыми транзисторами на плате, управляемыми микроконтроллером. Инвертор получает, помимо постоянного постоянного тока от бактерий, сигнал от педали акселератора и положение ротора по отношению к статору, на основании чего он определяет ориентацию, которую необходимо придать магнитному полю. С помощью этих параметров инвертор регулирует частоту и силу тока, подаваемого на статор.
Преимуществами бесщеточного синхронного двигателя являются большая механическая прочность, отсутствие искр и отсутствие периодического обслуживания. В основном это связано с отсутствием щеток, слабым местом электродвигателя, поскольку они генерируют искры, изнашиваются и производят «магнитный шум», который также может вызывать помехи в радиосвязи. Эти двигатели неубиваемы, могут работать десятилетиями и проезжать миллионы км без малейшего износа. Среди плюсов следует добавить также компактность с ограниченной площадью основания и оптимальную эффективность, поскольку для создания магнитного поля на роторе не потребляется электричество.
Основным недостатком бесщеточного двигателя по сравнению с другими электродвигателями является стоимость. По сути, есть две причины, которые вызывают его рост: наличие передового электронного устройства, такого как инвертор, которое необходимо для управления его работой, и стоимость изготовления ротора с его постоянными магнитами. На щеточных двигателях управление мощностью (и скоростью) возложено на простой, неэффективный и столь же экономичный потенциометр.
Начните сейчас свой электрический проект
Заполните форму, чтобы связаться с
специалистом по электрификации
Benevelli Srl | Виа Салерно 28 | 42048 Италия | НДС 01863920359
Политика конфиденциальности
Политика в отношении файлов cookie
Как работают бесщеточные двигатели постоянного тока? Объяснение необходимости схемы привода
Двигатели постоянного тока — это электродвигатели, которые питаются от постоянного тока. Особенности включают возможность вращения на высоких скоростях и высокий пусковой крутящий момент. Они используются в самых разных ситуациях, являясь типом двигателя, который обычно используется во многих известных приложениях. Двигатели постоянного тока можно условно разделить на две группы: щеточные двигатели постоянного тока и бесщеточные двигатели постоянного тока.
На этой странице подробно описано, как работают бесколлекторные двигатели постоянного тока.
Бесщеточные двигатели постоянного тока обеспечивают длительный срок службы и простоту обслуживания
Электродвигатели можно разделить на несколько различных типов в зависимости от их характеристик, таких как двигатели переменного тока, шаговые двигатели и двигатели постоянного тока. По сравнению с другими типами двигатели постоянного тока имеют преимущество в высоком пусковом моменте и способности вращаться на высоких скоростях. Они не страдают от проблем с проскальзыванием или потерей синхронизации.
Двигатели постоянного тока можно дополнительно разделить на щеточные двигатели постоянного тока и бесщеточные двигатели постоянного тока в зависимости от наличия у них щеток (электродов).
- Коллекторные двигатели постоянного тока
- Эти двигатели работают за счет механической связи между их коллектором и щетками. Щетки и коллектор находятся в постоянном контакте при вращении двигателя. Это приводит к износу двигателей при длительном использовании, что в конечном итоге может привести к отказу двигателя. По этой причине щеточные двигатели постоянного тока имеют более короткий срок службы, чем бесщеточные двигатели постоянного тока, и требуют регулярного обслуживания. Другим недостатком является электрический и акустический шум, вызванный постоянным контактом между щетками и коллектором при вращении двигателя.
- Бесщеточные двигатели постоянного тока
Вместо щеток и коллектора в этих двигателях используются электронные средства (цепь привода) для вращения двигателя. Отсутствие щеток и коллектора, которые являются расходными частями, продлевает срок службы двигателей и упрощает техническое обслуживание. Еще одним преимуществом является тихая работа, так как они не страдают от шума, создаваемого контактом между щетками и коллектором.
Как работают бесколлекторные двигатели постоянного тока: зачем нужна управляющая схема?
Чтобы заставить электродвигатель вращаться, необходимо, чтобы направление тока, протекающего через обмотки двигателя (катушки), чередовалось для создания вращающегося магнитного поля. В случае щеточных двигателей постоянного тока это достигается за счет механического воздействия щеток и коллектора. Тогда как бесщеточные двигатели постоянного тока, не имеющие этих частей, генерируют вращающееся магнитное поле и вращаются?
Вместо коммутатора и щеток в бесщеточных двигателях постоянного тока используются полупроводниковые переключатели. Бесщеточные двигатели постоянного тока обычно имеют три катушки, к каждой из которых подключены полупроводниковые переключатели. Включение и выключение полупроводниковых переключателей в правильной последовательности меняет протекание тока, что создает вращающееся магнитное поле, заставляющее двигатель вращаться. Соответственно, двигателям требуется схема привода для выполнения этой последовательности. Кроме того, полупроводниковые переключатели переключаются путем определения ориентации ротора с постоянными магнитами с помощью магнитного датчика (обычно датчика Холла).
Последовательность возбуждения бесщеточного двигателя постоянного тока
По следующей ссылке вы найдете более подробную информацию о механизме и управлении бесщеточными двигателями постоянного тока.
Нужна ли для бесщеточных двигателей постоянного тока схема управления? Способ управления бесщеточными двигателями постоянного тока
Двигатели с внешним и внутренним ротором
Бесщеточные двигатели постоянного тока можно разделить на двигатели с внешним и внутренним ротором.
- Двигатели с внешним ротором
- Эти двигатели имеют катушки внутри и магниты снаружи, так что вращается внешняя окружность двигателя. Хотя такая конфигурация означает, что момент инерции ротора высок, она помогает поддерживать устойчивое вращение.
- Двигатели с внутренним ротором
Эти двигатели имеют магниты внутри в качестве ротора и катушки снаружи в качестве статора. Преимущество этой внутренней конфигурации ротора заключается в том, что ротор имеет низкий момент инерции, что обеспечивает точное управление.
Двигатели с поверхностными постоянными магнитами (SPM) и внутренними постоянными магнитами (IPM)
Бесщеточные двигатели постоянного тока подразделяются на двигатели SPM и IPM в зависимости от того, как постоянные магниты прикреплены к ротору.
- Двигатели с поверхностными постоянными магнитами (SPM)
- Постоянные магниты прикреплены к внешней окружности ротора.
- Двигатели с внутренними постоянными магнитами (IPM)
Постоянные магниты встроены внутрь ротора.
Понимание того, как работают бесщеточные двигатели постоянного тока при их использовании
Бесщеточные двигатели постоянного тока — это электродвигатели, для которых не требуются расходуемые щетки и коллектор. Они выигрывают от бесшумной работы в сочетании с длительным сроком службы и минимальными затратами на техническое обслуживание.
Вместо щеток и коммутатора привод бесщеточного двигателя постоянного тока осуществляется электронным способом с использованием схемы привода. Схема привода необходима для включения и выключения полупроводниковых переключателей в правильной последовательности для создания вращающегося магнитного поля, которое заставляет двигатель вращаться.
Надеемся, что представленная здесь информация окажется для вас полезной.
Решение проблем с бесщеточными двигателями постоянного тока
ASPINA поставляет не только автономные бесщеточные двигатели постоянного тока, но и системные продукты, включающие системы привода и управления, а также механические конструкции. Они подкреплены всесторонней поддержкой, которая простирается от прототипирования до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым в различных отраслях промышленности, областях применения и потребительских продуктах, а также для ваших конкретных производственных схем.
ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних стадиях разработки.
Вы боретесь со следующими проблемами?
- Выбор двигателя
- У вас еще нет подробных спецификаций или проектных чертежей, но нужен совет по двигателям?
- У вас нет штатного специалиста по двигателям, и вы не можете определить, какой тип двигателя лучше всего подойдет для вашего нового продукта?
- Разработка двигателя и связанных с ним компонентов
- Хотите сосредоточить свои ресурсы на основных технологиях и заказать приводные системы и разработку двигателей?
- Хотите сэкономить время и силы на перепроектирование существующих механических компонентов при замене двигателя?
- Уникальное требование
- Вам нужен нестандартный двигатель для вашего продукта, но ваш обычный поставщик отказался?
- Не можете найти двигатель, который дает вам требуемый контроль, и почти теряете надежду?
Ищете ответы на эти вопросы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.
Ссылки на глоссарий и страницы часто задаваемых вопросов
Motor Works — Discovery Toys
- Главная
- /
- 5–7 ЛЕТ
Моторный завод
Сравнить продукты
Этот набор для юных механиков включает в себя работающий электроинструмент и магазин, полный деталей для сборки трех транспортных средств со свободным ходом! Мотоцикл, винтовой самолет и гоночный автомобиль имеют размеры, подходящие для маленьких рук, и имеют движущиеся части. Включает в себя ящик для инструментов, безопасную для детей электрическую дрель и ручную отвертку, а также дополнительные винты. Требуются 2 батарейки АА, не входят в комплект.
от 4 года и старше
Посмотреть сведения о продукте
- Развивайте зрительно-моторную координацию, мелкую и крупную моторику.
- Укрепите пальцы и отточите навыки щипцов, необходимые для ручной печати.
- Идентификация, сортировка и сопоставление частей автомобиля.
- Опыт сборки «частей в целое».
- Развивает визуализацию и пространственное мышление.
- Способствует сбору повторяющихся головоломок в трехмерном пространстве.
- Развивает тактильное мышление.
- Узнайте о 3 различных типах транспортных средств
- Примите участие в творческой игре со свободно вращающимися колесами и движущимися частями
- Все аккуратно хранится в портативном ящике для хранения
Премия:
- 2015 Премия по семейному выбору
Вам также нравится:
Список цен $10.00 Цена $10.00 |
Список цен 18,75 долларов США Цена 18,75 долларов США |
Список цен 18,75 долларов США Цена 18,75 долларов США |
Список цен 18,75 долларов США Цена 18,75 долларов США |
Отзывы клиентов
Ср. Отзыв клиента:
Отличное качество ,
03.11.201910:46:26 Рецензент: НИКОЛЬ ХЕВИЛИН (Соединенные Штаты) Это был популярный выбор, когда друзья приходили в гости в возрасте от 3 до 10 лет. Лучшее качество формованного пластика и инструментов. Инструкции требуют помощи взрослых, так как они не цветные и напечатаны довольно мелко, поэтому четырехлетнему ребенку трудно следовать им в одиночку. Я был бы в восторге, если бы DT выпустила возможность заказать дрель отдельно для второй, чтобы она была под рукой для нескольких детей, а также в качестве дополнения к другому моторному поезду и Dinos! |
Отличное качество! ,
11. 01.2020 7:01:23 Рецензент: Синди Леви (Соединенные Штаты) Эта игрушка такая замечательная! В нем есть игра-головоломка, логическая игра и игра-конструктор — все в одном! Я нашел это сложным даже для себя. Мне нравится, что вы можете играть с ним после того, как вы его собрали. Отвертка и дрель идеально подходят для маленьких ручек. И вы МОЖЕТЕ купить отвертку и дрель отдельно, если вам нужны дополнения — как это круто!? Дополнительные части с динозаврами и поездом делают игру еще более увлекательной. Отличные игрушки Дискавери! |
Имя:
Моторный завод
Кол-во: 123456789101112131415161718192021222324252627282930313233343536
Вещь#: 2266
Список цен 46,75 долларов США
Цена 46,75 долларов США
Вам также может понравиться:
Запасная часть — дрель Motor Works vs2 | $10. |