Как работает двигатель внутреннего сгорания [простым языком]
Что такое цилиндры, турбонаддув, как расшифровывать характеристики двигателя без технической документации
Двигатель внутреннего сгорания работает за счет сжигания бензина и дизельного топлива. Независимо от вида топлива, на котором работает движок, принципы его работы, термины и названия запчастей одинаковы.
Как работает?
Принцип работы двигателя внутреннего сгорания похож на принцип работы насоса: на одном конце в него втягивается воздух и воспламеняется (внутреннее сгорание), затем, через выхлопную трубу вытесняются отработанные (выхлопные) газы. Движок преобразует энергию сгорания в механическую энергию для движения машины. Детальная работа «сердца машины» разобрана здесь, а в этой статье обсудим из чего состоит мотор машины и как устроен.
Для описания размера и мощности мотора автомобиля пользуются устоявшимися терминами и маркерами. Правда, не разобравшись в каждом, не сообразишь, что они означают. Если не до конца понимаете, что собой представляет 1,8-литровый, 4-цилиндровый, V-образный двигатель на 20 клапанов и с турбонаддувом эта статья для вас.
Что означает «1,8-литровый»?
Значение «1,8-литровый», «2-х литровый», «3-х литровый» указывает на объем движка. Объем двигателя влияет на объем воздуха, который тот может переработать в течение одного цикла. Эта величина обычно отображается в литрах или в кубических сантиметрах, в зависимости от производителя, но измерение в сантиметрах встречается крайне редко.
Чем больший объем мотора, тем больше он производит энергии. Больше энергии — больше расход топлива. Правда, инженеры автоконцернов пытаются сломать этот стереотип. О том, как им это удается, читайте в статье журнала Zap-Online.ru: «Топ 10 улучшений в конструкции мотора автомобиля».
Характеристика «4-цилиндровый» означает количество цилиндров в движке
Цилиндром называют камеру двигателя цилиндрической формы, в которой смешиваются и сгорают воздух, и топливо. Каждая такая камера считается одним цилиндром. Чем больше цилиндров, тем больше мощность автомобиля и расход топлива. Для экономии топлива, некоторые современные 8-цилиндровые движки разработаны так, чтобы цилиндры оставались закрытыми, когда их работа не принципиально важна. Эта технология применена в последних моделях Mercedes. На светофоре движок будет работать на холостом ходу, отключив 6 цилиндров и оставив в работе 2, чтобы машина не заглохла. Движок будет смешивать топливо и воздух в двух цилиндрах вместо восьми, перекрыв подачу бензина или солярки в ненужные.
Также будет и на загородной трассе, где водитель, включив круиз-контроль, двигается с одной скоростью до 90 км/ч.
V-образный или рядный двигатель означает угол расположения цилиндров друг к другу — это называется конфигурация мотора
У автомобильных моторов бывают разные конфигурации: разные расположения цилиндров по отношению друг к другу. Размещение цилиндров в один ряд создает «линию» двигателя: 4-рядный– 4 цилиндра в линию, или 6-рядный — 6 цилиндров и т. д. —это общая и простая конфигурация классической силовой установки внутреннего сгорания.
Когда цилиндры расположены противоположно друг другу в угловых блоках, они имеют вид латинской буквы «V». Цифра, следующая за этим символом, опять-таки, обозначает количество цилиндров в одном ряду, например: V-4, V-6, V-8 и т.д.
Три блока цилиндров располагают в форме латинской буквы «W». По количеству цилиндров в одном ряду различают движки W-8, W-12 или W-16. От конфигурации цилиндров зависит физический размер движка и то, как ровно он работает. V – образная форма облегчает ход цилиндров, т.к. сила тяжести распределяется под наклоном, а не вертикально, как на обычных автомобильных моторах. Все эти разработки стали результатом тщательнейших испытаний, которые привели к совершенствованию внутреннего КПД (коэффициента полезного действия) мотора и к его экономичности.
Клапаны
Воздух входит в цилиндры и выходит из них через клапаны, работающие по принципу работы клапанов сердца. Раньше цилиндры имели только два клапана: один для воздуха, который поступает в цилиндр, второй — для выхода отработанных газов. Современные двигатели имеют по три, четыре и даже пять клапанов в каждом цилиндре, что более эффективно перемещает воздух по двигателю, увеличивает мощность автомобиля и сокращает расход топлива. Обычно автопроизводители сообщают общее число клапанов в движке. Разделите это число на количество цилиндров и узнаете, сколько клапанов в каждом из них.
Наддув и турбонаддув
Нагнетание воздуха в двигатель под давлением называется «принудительная индукция». Нагнетанием воздуха можно резко увеличить мощность автомобиля. Наддув работает на ременном приводе от мотора автомобиля и разработан, чтобы немедленно давать дополнительную мощность, когда отработанный газ выходит из движка. Турбонаддув приводится в действие выхлопными газами и требует меньших затрат мощности самого двигателя, что делает его более экономным, чем просто наддув. При этом у турбонаддува реакция на дроссель гораздо медленнее. Еще есть электрический турбонаддув, о нем подробно писали здесь, различия с классическим незначительные. Хотя при увеличении скорости наддувом и турбонаддувом сжигается больше топлива — они позволяют маленьким экономным моторам показывать те же результаты, что и их более большие собратья.
Остались вопросы по терминологии принципам работы мотора автомобиля? Задавайте их в комментариях, будем рады ответить.
Принцип работы двигателя, почему и что может поломаться
Расскажем, как работает двигатель внутреннего сгорания, какие неполадки возникают в работе и как продлить его жизненный цикл
Цель работы двигателя — преобразование бензина в движущую силу. Преобразовывается бензин в движущую силу путем сжигания внутри движка. Поэтому он и называется двигателем внутреннего сгорания.
Запомните две вещи:
1. Есть разные виды двигателей внутреннего сгорания:
- бензиновый двигатель;
- дизельный;
- дизель с турбонаддувом;
- газовый двигатель.
Различия у них в принципах работы, плюс у каждого свои преимущества и недостатки.
2. Бывают еще двигатели внешнего сгорания. Лучший пример — паровой двигатель парохода. Топливо (уголь, дерево, масло) сгорает вне двигателя, образовывая пар, который и есть движущая сила. Двигатель внутреннего сгорания более эффективен, так как ему нужно меньше топлива на километр пути. К тому же он намного меньше эквивалентного двигателя внешнего сгорания. Это объясняет, почему на улицах сейчас не ездят автомобили с паровыми движками.
Как работает система внутреннего сгорания двигателя
Принцип, лежащий в основе работы любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество высокоэнергетического топлива, например бензина, в небольшое замкнутое пространство, и зажжете его, то при сгорании в виде газа высвобождается большое количество энергии. Если создать непрерывный цикл маленьких взрывов, скорость которых будет, например, сто раз в минуту, и пустить получаемую энергию в правильное русло, то получим основу работы двигателя.
Автомобили используют «четырехтактный цикл сгорания» для преобразования бензина в движущую силу четырех колесного автомобиля. Четырехтактный подход также известен как цикл Отто, в честь Николауса Отто, который изобрел его в 1867 году. К четырем тактам относятся:
- такт впуска;
- такт сжатия;
- такт горения;
- такт выведения продуктов сгорания.
Поршень двигателя в этой истории главный «работяга». Он своеобразно заменяет картофельный снаряд в картофельной пушке. Поршень соединен с коленчатым валом-шатуном. Как только коленчатый вал начинает вращение, происходит эффект «разряда пушки». Рассмотрим цикл сгорания бензина в цилиндре подробнее.
- Поршень находится сверху, затем открывается впускной клапан и поршень опускается, при этом движок набирает полный цилиндр воздуха и бензина. Это такт называется тактом впуска. Для начала работы достаточно смешать воздух с небольшой каплей бензина.
- Затем поршень движется обратно и сжимает смесь воздуха и бензина. Сжатие делает взрыв более мощным.
- Когда поршень достигает верхней точки, свеча испускает искры, чтобы зажечь бензин. В цилиндре происходит взрыв бензинового заряда, что заставляет поршень опуститься вниз.
- Как только поршень достигает дна, открывается выхлопной клапан, и продукты сгорания выводятся из цилиндра через выхлопную трубу.
Теперь двигатель готов к следующему такту и цикл повторяется снова и снова.
Теперь рассмотрим составные части автомобильного мотора, работа которых взаимосвязана. Начнем с цилиндров.
Составные части двигателя
Схема № 1
Основа двигателя – это цилиндр, в котором вверх-вниз двигается поршень. Двигатель, описанный выше, имеет один цилиндр. Это характерно для большинства газонокосилок, но в автомобильных движках цилиндров четыре, шесть и восемь. В многоцилиндровых моторах цилиндры обычно размещаются тремя способами: а) в один ряд; б) однорядно с наклоном от вертикали; в) V-образным способом; г) плоским способом (горизонтально-оппозитный).
У разных способов расположения цилиндров разные преимущества и недостатки с точки зрения гладкости в работе, производственных издержек и характеристик. Эти преимущества и недостатки делают разные способы расположения цилиндров подходящими для разных видов транспорта.
Свечи зажигания
Свечи зажигания дают искру, которая воспламеняет воздушно-топливную смесь. Искра должна вспыхнуть в нужный момент для безотказной работы двигателя. Если движок начинает работать нестабильно, дергается, слышно что «пыхтит» он сильнее чем обычно, вероятно одна из свечей перестала работать, ее нужно заменить.
Клапаны (см. схему №1)
Впускные и выпускные клапаны открываются, чтобы впустить воздух и топливо и выпустить продукты сгорания. Обратите внимание, оба клапана закрыты в момент сжатия и сгорания топливной смеси, обеспечивая герметичность камеры сгорания.
Поршень
Поршень – это цилиндрический кусок металла, который движется вверх-вниз внутри цилиндра двигателя.
Поршневые кольца
Поршневые кольца обеспечивают герметичность между скользящим внешним краем поршня и внутренней поверхностью цилиндра. У кольца два назначения:
- Во время тактов сжатия и сгорания кольца не дают утечь воздушно-топливной смеси и выхлопным газам из камеры сгорания.
- Кольца не дают моторному маслу попасть в зону сгорания, где оно будет уничтожено.
Если автомобиль начинает «подъедать масло» и приходиться подливать его каждые 1000 километров, значит двигатель автомобиля «устал» и поршневые кольца в нем сильно изношены. Такие кольца пропускают масло в цилиндры, где оно сгорает. По всей видимости, такому двигателю требуется капитальный ремонт.
Шатун
Шатун соединяет поршень с коленчатым валом. Он может вращаться в разные стороны и с обоих концов, т.к. и поршень и коленчатый вал находятся в движении.
Коленчатый вал (распределительный вал)
Схема № 2
Круговыми движениями коленчатый вал заставляет поршень двигаться вверх-вниз.
Маслосборник
Маслосборник окружает коленчатый вал и содержит определенное количество масла, которое собирается в нижней его части (в масляном поддоне).
Причины неполадок и перебоев в двигателе
Если автомобиль с утра не заводитсяЕсли машина с утра не заводится, этому есть три основных причины:
- плохая топливная смесь;
- отсутствие сжатия;
- отсутствие искры.
Плохая топливная смесь поступает в движок в следующих случаях:
- Закончился бензин и в двигатель поступает только воздух. Бензин не воспламеняется, сгорания не происходит.
- Забиты воздухозаборники, и в движок не поступает воздух, который крайне необходим для такта сгорания.
- В топливе содержатся примеси (например, вода в бензобаке), которые препятствуют горению топлива. Меняйте бензоколонку.
- Топливная система подает слишком мало или слишком много топлива в смесь, следовательно, горение не происходит должным образом. Если смеси мало, то слабое воспламенения в цилиндре не может прокрутить цилиндр. Если смеси много, то заливает свечи и они не дают искру.
О «залитых» свечах подробнее: если машина не заводится, а бензонасос не перестает подавать топливо в цилиндры, то бензин не воспламеняется, а наоборот «тушит» свечи зажигания. Свечи с «подмоченной репутацией» нормальной искры для воспламенения смеси не дадут. Если открутив свечу обнаружите, что она «мокрая», сильно пахнет бензином — знайте, свечи «залило». Либо подсушите все 4 свечи, выкрутив их и отнеся в теплое помещение, либо посидите в незаведенной машине с нажатой педалью газа — дроссельная заслонка будет открыта и свечи немного подсохнут от поступающего воздуха.
Отсутствие сжатия
Если топливная смесь не сжимается, так как надо, то и не будет требуемого сгорания для работы машины. Отсутствие сжатия возникает по следующим причинам:
- Поршневые кольца двигателя изношены, поэтому воздушно-топливная смесь просачивается между стенкой цилиндра и поверхностью поршня.
- Один из клапанов неплотно закрывается, из-за чего смесь вытекает.
- В цилиндре есть отверстие.
Часто «дырки» в цилиндре появляются в том месте, где верхушка цилиндра присоединяется к самому цилиндру. Между цилиндром и головкой цилиндра есть тонкая прокладка, которая обеспечивает герметичность конструкции. Если прокладка прохудится, то между головкой цилиндра и самим цилиндром образуются отверстия, через которые образуется утечка смеси.
Отсутствие искры
Искра может быть слабой или вообще отсутствовать в случаях:
- Если свеча зажигания или провод, идущий к ней, изношены, то искра будет слабой.
- Если провод перерезан или отсутствует вообще, если система, посылающая искры вниз по проводу не работает, как нужно, то искры не будет.
- Если искра приходит в цикл слишком рано или слишком поздно, топливо не воспламениться в нужный момент, что повлияет на стабильную работу мотора.
Возможны и другие проблемы с двигателем. Например:
- Если аккумулятор на авто разряжен, то двигатель не сделает ни одного оборота, а автомобиль не заведется.
- Если подшипники, которые позволяют свободно вращаться коленчатому валу, изношены, коленчатый вал не провернется, а двигатель не запустится.
- Если клапаны не будут закрываться или открываться в нужный момент цикла, то работа двигателя будет невозможна.
- Если в автомобиле закончилось масло, поршни не смогут свободно двигаться в цилиндре, и двигатель застопорится.
В исправно — работающем двигателе описанных проблем быть не может. Если они появились, ждите беды.
Если выяснится, что аккумулятор просто разрядился, почитайте, как правильно «прикурить» от другого автомобиля.
Клапанный механизм двигателя и система зажигания
Разберем процессы происходящие в двигателе отдельно. Начнем с клапанного механизма, который состоит из клапанов и механизмов, открывающих и закрывающих проход топливным отходам. Система открытия и закрытия клапанов называется валом. На распределительном валу есть выступы, которые и двигают клапаны вверх и вниз.
Двигатели, в которых вал размещен над клапанами (бывает, что вал размещают внизу), имеют кулачки распредвала, которые регулируют порядок работы цилидров (см. схему №2). Кулачки вала воздействуют на клапаны напрямую или через очень короткие связующие звенья. Эта система настроена так, что клапаны синхронизированы с поршнями. Многие высокоэффективные двигатели имеют по четыре клапана на один цилиндр – два на вход воздуха и два на выход для продуктов сгорания, и такие механизмы требуют два распределительных вала на один блок цилиндров.
Система зажигания создает высоковольтный заряд и передает его на свечи зажигания через провода. Сначала заряд поступает в распределитель, который легко найти под капотом большинства легковых автомобилей. В центр распределителя подключен один провод, а из него выходит четыре, шесть или восемь других бронепроводов, в зависимости от количества цилиндров в двигателе. Эти провода посылают заряд на каждую свечу зажигания. Работа двигателя настроена так, что за один раз только один цилиндр получает заряд от распределителя, что гарантирует максимально плавную работу мотора.
Давайте подумаем, как заводится двигатель, как остывает и как в нем проходит циркуляция воздуха.
Система зажигания двигателя, охлаждения и набора воздуха
Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует вокруг цилиндров по специальным проходам, потом для охлаждения, она поступает в радиатор. В редких случаях двигатели автомобиля оснащены воздушной системой. Это делает двигатели легче, но охлаждение при этом менее эффективное. Двигатели с воздушной системой охлаждения, имеют меньший срок службы и меньшую производительность.
Существуют автомобильные двигателя с наддувом. Это когда воздух проходит через воздушные фильтры и попадает прямо в цилиндры. Наддув ставят в атмосферных движках. Для увеличения производительности некоторые двигатели оснащены турбонаддувом. Через турбонаддув воздух, который поступает в двигатель, уже находится под давлением, следовательно, в цилиндр втискивается больше воздушно-топливной смеси. За счет турбонаддува увеличивается мощь движка.
Повышение производительности автомобиля – это круто, но что же происходит, когда вы проворачиваете ключ в замке зажигания и запускаете автомобиль? Система зажигания состоит из электромотора, или стартера, и соленоида (реле стартера). Когда поворачивается ключ в замке зажигания, стартер вращает двигатель на несколько оборотов, чтобы начался процесс сгорания топлива. Чем мощнее мотор, тем сильнее нужен аккумулятор, чтобы дать ему толчок. Так как запуск двигателя требует много энергии, сотни ампер должны поступить в стартер для его запуска. Соленоид или реле стартера, это тот самый переключатель, который справляется с таким мощным потоком электричества. Когда вы проворачиваете ключ зажигания, соленоид активируется и запускает стартер.
Разберем подсистемы автомобильного мотора, отвечающие за то, что поступает в движок (масло, бензин) и за то, что из него выходит (выхлопные газы).
Смазочные жидкости двигателя, топливная, выхлопная и электрические системы
Каким образом бензин приводит в действие цилиндры? Топливная система двигателя выкачивает бензин из бензобака и смешивает его с воздухом так, чтобы в цилиндр поступила правильная воздушно-бензиновая смесь. Топливо подается тремя распространенными способами: смесеобразованием, впрыском через топливный порт и прямым впрыском.
При смесеобразовании карбюратор добавляет бензин в воздух, как только воздух попадает в двигатель.
В инжекторном движке топливо впрыскивается индивидуально в каждый цилиндр либо через впускной клапан (впрыск через топливный порт), либо напрямую в цилиндр. Называется «прямой впрыск».
Масло также играет важную роль в двигателе. Смазочная система не допускает трения жестких стальных частей друг об друга — запчасти не изнашиваются, стальная стружка внутри двигателя не летает. Поршни и подшипники – позволяющие свободно вращаться коленчатому и распределительному валу – основные части, требующие смазки в системе. В большинстве автомобилей, масло засасывается через масляный насос из маслосборника, проходит через фильтр, чтобы очиститься от песка и выработки механизмов мотора, затем, под высоким давлением впрыскивается в подшипники и на стенки цилиндра. Затем масло стекает в маслосборник, и цикл повторяется снова.
Теперь вы знаете больше о том, что поступает в двигатель автомобиля. Но давайте поговорим и том, что выходит из него. Выхлопная система крайне проста и состоит из выхлопной трубы и глушителя. Если бы не было глушителя, в салоне автомобиля были бы слышны все мини-взрывы, происходящие в двигателе. Глушитель гасит звук, а выхлопная труба выводит продукты сгорания из автомобиля.
Электрическая система автомобиля, запускающая машину
Электрическая система состоит из аккумулятора и генератора переменного тока. Генератор переменного тока подключен проводами к двигателю и вырабатывает электроэнергию, необходимую для подзарядки аккумулятора. В незаведенной машине при повороте ключа зажигания за питание всех систем отвечает аккумулятор. В заведенной — генератор. Аккумулятор нужен только, чтобы запустить электрическую систему машины, дальше в работу вступает генератор, который вырабатывает энергию за счет работы двигателя. Аккумулятор в это время заряжается от генератора и «отдыхает». Подробнее об аккумуляторах здесь.
Как увеличить производительность двигателя и улучшить его работуЛюбой двигатель можно заставить работать лучше. Работа автопроизводителей над увеличением мощности движка и одновременным уменьшением расхода топлива, не прекращается ни на секунду.
Увеличение объема двигателя. Чем больше объем двигателя, тем больше его мощность, т.к. за каждый оборот двигатель сжигает больше топлива. Увеличение объема двигателя происходит за счет увеличения либо объема цилиндров, либо их количества. Сейчас 12 цилиндров – это предел.
Увеличение степени сжатия. До определенного момента, увеличение степени сжатия смеси увеличивает получаемую энергию. Однако, чем больше сжимается воздушно-топливная смесь, тем выше вероятность того, что она воспламенится раньше, чем свеча зажигания даст искру. Чем выше октановое число бензина, тем меньше вероятность преждевременного воспламенения. Поэтому высокопроизводительные автомобили нужно заправлять высокооктановым бензином, так как двигатели таких машин используют очень высокий коэффициент сжатия для получения большей мощности.
Большее наполнение цилиндра. Если в цилиндр втиснуть больше воздуха и топлива, то на выходе получается больше энергии. Турбонаддувы и наддувы нагнетают давление воздуха и эффективно втискивают его в цилиндр.
Охлаждение поступающего воздуха. Сжатие воздуха повышает его температуру. Тем не менее, хотелось бы иметь как можно более холодный воздух в цилиндре, т.к. чем выше температура воздуха, тем больше он расширяется при горении. Поэтому многие системы турбонаддува и наддува имеют интеркулер. Интеркулер – это радиатор, через который проходит сжатый воздух и охлаждается, прежде чем попасть в цилиндр.
Сделать меньшим вес деталей. Чем легче запчасти двигателя, тем лучше он работает. Каждый раз, когда поршень меняет направление, он тратит энергию на остановку. Чем легче поршень, тем меньше энергии он потребляет. Двигатель из углеродного волокна еще не придумали, но как делают этот материал, читайте тут на Zap-Online.ru.
Впрыск топлива. Система впрыска очень точно дозирует топливо поступающее в каждый цилиндр, повышая производительность двигателя и экономя топливо.
Теперь вы знаете, как работает двигатель автомобиля, а также причины его основных неполадок и перебоев. Если остались вопросы или есть замечания по изложенному материалу, добро пожаловать в комментарии.
Как работают электродвигатели | Как работает
«» Электродвигатели повсюду. Доуэлл / Getty ImagesЭлектродвигатели повсюду! В вашем доме почти каждое механическое движение, которое вы видите вокруг себя, вызывается электродвигателем переменного тока (переменного тока) или постоянного тока (постоянного тока). В этой статье мы рассмотрим оба типа.
Понимая, как работает двигатель, вы можете многое узнать о магнитах, электромагнитах и электричестве в целом. Электродвигатель потребляет магниты для создания движения. Если вы когда-нибудь играли с магнитами, то знаете об основном законе всех магнитов: противоположности притягиваются, а подобное отталкивается.
Advertisement
Итак, если у вас есть два стержневых магнита с концами, помеченными «север» и «юг», то северный конец одного магнита будет притягивать южный конец другого. С другой стороны, северный конец одного магнита будет отталкивать северный конец другого (а южный будет отталкивать юг). Внутри электродвигателя эти притягивающие и отталкивающие силы создают
- Внутри электродвигателя
- Как работает двигатель постоянного тока
- Игрушечный мотор
- Ротор, коммутатор и щетки
- Собираем все вместе
- Как работает двигатель переменного тока
- Ротор переменного тока и статор
- Моторы везде!
Внутри электродвигателя
Чтобы понять, как работает электродвигатель, нужно понять, как работает электромагнит. (Подробнее см.
Электромагнит является основой электродвигателя. Скажем, вы создали простой электромагнит, намотав 100 витков проволоки на гвоздь и подключив его к батарее. Гвоздь станет магнитом и будет иметь северный и южный полюс, пока батарея подключена.
Advertisement
Теперь скажем, что вы берете свой гвоздевой электромагнит, пропускаете ось через его середину и подвешиваете к середине подковообразного магнита, как показано на рисунке. Если бы вы прикрепили батарейку к электромагниту так, чтобы северный конец гвоздя выглядел так, как показано на рисунке, основной закон магнетизма говорит вам, что произойдет: северный конец электромагнита будет отталкиваться от северного конца подковообразного магнита. и притягивается к южному концу подковообразного магнита. Южный конец электромагнита будет отталкиваться аналогичным образом. Гвоздь двигался на пол-оборота, а затем останавливался в показанном положении.
HowStuffWorks
Ключ к электрическому двигателю состоит в том, чтобы сделать еще один шаг, чтобы в момент завершения этого полуоборота поле электромагнита
Реклама
Как работает двигатель постоянного тока
Как мы уже упоминали, вы столкнетесь с двумя типами электродвигателей: постоянного тока и переменного тока. Последние, двигатели постоянного тока или постоянного тока, были впервые разработаны в середине 1800-х годов и используются до сих пор.
Простой двигатель состоит из шести частей:
Реклама
- Статор
- Ротор
- Коллектор
- Щетки
- Ось 900 19Источник питания постоянного тока
Внешней частью двигателя постоянного тока является статор: постоянный магнит, который не движется. Внутренняя часть — это ротор, который движется. Ротор здесь подобен гвоздю в нашем предыдущем примере, а статор подобен подковообразному магниту.
Когда мощность постоянного тока проходит через ротор, создается временное электромагнитное поле, которое взаимодействует с постоянным магнитным полем статора. Работа коммутатора состоит в том, чтобы поддерживать переключение полярности поля, что поддерживает вращение ротора. Это создает крутящий момент, необходимый для производства механической энергии.
Реклама
Игрушечный мотор
Игрушечный двигатель постоянного тока, изображенный на фото, небольшой, примерно размером с десятицентовую монету, с двумя выводами батареи. Если вы подключите провода аккумулятора двигателя к аккумулятору, ось будет вращаться. Если вы перепутаете провода, он будет вращаться в противоположном направлении.
Нейлоновая торцевая крышка удерживается на месте двумя выступами.
Объявление
Ось удерживает ротор и коллектор. Ротор представляет собой набор электромагнитов, в данном случае их три. Якорь в этом двигателе представляет собой набор тонких металлических пластин, сложенных вместе, с тонкой медной проволокой, намотанной вокруг каждого из трех полюсов ротора. Два конца каждого провода (по одному на каждый полюс) присоединяются к клемме, а затем каждая из трех клемм подключается к одной пластине коммутатора.
Последней частью любого электродвигателя постоянного тока является статор. В этом двигателе он образован самой банкой и двумя изогнутыми постоянными магнитами. В двигателях постоянного тока якорь — это ротор, а поле — статор.
Реклама
htm»> Ротор, коммутатор и щеткиКак мы отмечали ранее, ротор подобен гвоздю на нашей схеме электромагнита. Коллектор также крепится к оси. Коллектор представляет собой просто пару пластин, прикрепленных к оси. Эти пластины обеспечивают два соединения для катушки электромагнита.
Часть электродвигателя, «переключающая электрическое поле», состоит из двух частей: коммутатора и кисти .
Реклама
На схеме показано, как коммутатор (зеленый) и щетки (красный) работают вместе, пропуская ток к электромагниту, а также изменяя направление движения электронов в нужный момент. Контакты коммутатора прикреплены к оси электромагнита, поэтому они вращаются вместе с магнитом. Щетки — это всего лишь два куска упругого металла или углерода, которые соприкасаются с контактами коммутатора.
Собираем все вместе
Когда вы соедините все эти детали вместе, у вас получится полноценный электродвигатель.
Суть в том, что когда ротор проходит через горизонтальное положение, полюса электромагнита меняются местами. Из-за флипа северный полюс электромагнита всегда находится над осью, поэтому он может отталкивать северный полюс статора и притягивать южный полюс статора.
Реклама
Обычно ротор имеет три полюса , а не два полюса, как показано в этой статье. Есть две веские причины, по которым двигатель должен иметь три полюса:
- Это улучшает динамику двигателя. В двухполюсном двигателе, если электромагнит находится в точке баланса, совершенно горизонтальной между двумя полюсами статора, когда двигатель запускается, вы можете представить, что ротор «застревает» там. Это никогда не происходит в трехполюсном двигателе.
- Каждый раз, когда коммутатор достигает точки, в которой он переключает поле в двухполюсном двигателе, коммутатор на мгновение закорачивает батарею. Это короткое замыкание тратит энергию и бесполезно разряжает батарею. Трехполюсный двигатель решает и эту проблему.
Количество полюсов может быть любым, в зависимости от размера двигателя и его функций.
Реклама
Как работает двигатель переменного тока
Теперь мы рассмотрим двигатель переменного тока. В двигателях переменного тока вместо постоянного тока используется переменный ток. У него много общих частей с двигателем постоянного тока, и он по-прежнему полагается на электромагнетизм и переменные магнитные поля для выработки механической энергии.
Части внутри двигателя переменного тока:
Объявление
- Статор
- Ротор
- Сплошная ось
- Катушки
- Беличья клетка
Обмотка статора в Двигатель переменного тока выполняет работу ротора двигателя постоянного тока. В данном случае это кольцо электромагнитов, которые соединены в пары и последовательно запитаны, что создает вращающееся магнитное поле.
«» Двигатель переменного тока промышленного типа с электрической клеммной коробкой вверху, выходным вращающимся валом слева и закрывающей его короткозамкнутой клеткой.Эгзон123/CC BY-SA 3.0/Викимедиа
Вы помните, что ротор двигателя постоянного тока подключен к аккумулятору. Но ротор в двигателе переменного тока не имеет прямой связи с источником питания. Кисточек тоже нет. Вместо этого он часто использует нечто, называемое беличьей клеткой. Вы правильно прочитали.
Беличья клетка в двигателе переменного тока представляет собой набор стержней ротора, соединенных с двумя кольцами, по одному на каждом конце. Это похоже на то, как мышь (или белка) в клетке может бегать внутри. Ротор с короткозамкнутым ротором входит внутрь статора. Когда переменный ток проходит через статор, он создает электромагнитное поле. Стержни в роторе с короткозамкнутым ротором являются проводниками, поэтому они реагируют на переключение полюсов статора. Так вращается ротор, который создает собственное магнитное поле.
Реклама
Ротор переменного тока и статор
Главной особенностью асинхронного двигателя переменного тока, в котором поле ротора индуцируется полем статора, является то, что ротор всегда пытается наверстать упущенное. Он всегда ищет стазис, поэтому он вращается, чтобы найти это устойчивое состояние. Но электромагнитное поле, создаваемое статором с использованием переменного тока, всегда будет немного быстрее, чем поле ротора. Вращение ротора создает крутящий момент, необходимый для создания механической энергии для вращения колес автомобиля или жужжания вентилятора.
В некоторых двигателях переменного тока используется ротор с обмоткой, который обмотан проволокой вместо беличьей клетки. Однако вид «беличьей клетки» встречается чаще. В любом случае в двигателе переменного тока имеется только одна движущаяся часть, а это означает, что требуется меньше деталей, требующих замены или обслуживания.
Реклама
Моторы везде!
Осмотрите свой дом, и вы обнаружите, что он заполнен электродвигателями. Поскольку в наших домах используется источник переменного тока, большинство этих гаджетов имеют двигатели переменного тока. Двигатели постоянного тока чаще можно найти в вещах, в которых используются батареи. Начиная с кухни, есть моторы:
- Вентилятор над плитой и в микроволновой печи
- Блендер
- Холодильник — Два или три по факту: один на компрессор, один на вентилятор внутри холодильника, а также один в льдогенераторе
- Миксер настольный
В подсобном помещении находится электродвигатель в:
Объявление
- Сушилка
- Электрошуруповерт
- Пылесос
- Электродрель
- Вентилятор печи
Даже в ванной есть мотор:
- Вентилятор
- Электрическая зубная щетка
- Фен
- Электрическая бритва
Ваш автомобиль оснащен электродвигателями:
- Электрические стеклоподъемники
- Сиденья с электроприводом
- Вентиляторы отопителя и радиатора
- Стеклоочистители
- Стартер
- Двигатель переменного тока может приводить в движение ваш автомобиль вместо бензинового двигателя
Кроме того, есть моторы во многих других местах:
- Компьютеры
- Смартфоны
- Игрушки
- Устройство для открывания гаражных ворот
- Аквариумные насосы 901 27
- Простые электродвигатели
- Управление шаговыми двигателями
- Внутри электродвигателя
- Как работает двигатель постоянного тока
- Игрушечный мотор
- Ротор, коммутатор и щетки
- Собираем все вместе
- Как работает двигатель переменного тока
- Ротор переменного тока и статор
- Моторы везде!
- Статор
- Ротор
- Коллектор
- Щетки
- Ось 900 19Источник питания постоянного тока
- Это улучшает динамику двигателя. В двухполюсном двигателе, если электромагнит находится в точке баланса, совершенно горизонтальной между двумя полюсами статора, когда двигатель запускается, вы можете представить, что ротор «застревает» там. Это никогда не происходит в трехполюсном двигателе.
- Каждый раз, когда коммутатор достигает точки, в которой он переключает поле в двухполюсном двигателе, коммутатор на мгновение закорачивает батарею. Это короткое замыкание тратит энергию и бесполезно разряжает батарею. Трехполюсный двигатель решает и эту проблему.
- Статор
- Ротор
- Сплошная ось
- Катушки
- Беличья клетка
- Вентилятор над плитой и в микроволновой печи
- Блендер
- Холодильник — Два или три по факту: один на компрессор, один на вентилятор внутри холодильника, а также один в льдогенераторе
- Миксер настольный
- Сушилка
- Электрошуруповерт
- Пылесос
- Электродрель
- Вентилятор печи
- Вентилятор
- Электрическая зубная щетка
- Фен
- Электрическая бритва
- Электрические стеклоподъемники
- Сиденья с электроприводом
- Вентиляторы отопителя и радиатора
- Стеклоочистители
- Стартер
- Двигатель переменного тока может приводить в движение ваш автомобиль вместо бензинового двигателя
- Компьютеры
- Смартфоны
- Игрушки
- Устройство для открывания гаражных ворот
- Аквариумные насосы 901 27
Почти все, что движется, использует для своего движения электродвигатель. .
Реклама
Часто задаваемые вопросы об электродвигателеКак работает игрушечный электродвигатель?
Очень маленький электродвигатель имеет два небольших постоянных магнита, коммутатор, две щетки, три полюса и электромагнит, сделанный путем намотки проволоки на кусок металла. Он работает так же, как и большая версия, но в гораздо меньшем масштабе.
Что такое электродвигатель постоянного тока?
Электродвигатель постоянного тока преобразует электрическую энергию постоянного тока в механическую энергию, в отличие от версии переменного тока, в которой используется переменный ток.
Из каких частей состоит простой двигатель?
Простой двигатель состоит из шести частей: якорь или ротор, коллектор, щетки, ось, магнит возбуждения и какой-либо источник питания постоянного тока.
Как долго может работать электродвигатель?
В условиях испытаний электродвигатель может прослужить от 15 до 20 лет при условии, что он используется в нормальных условиях эксплуатации.
Электродвигатель постоянного или переменного тока лучше?
Двигатели переменного тока, как правило, более мощные и требуют меньше обслуживания, однако двигатели постоянного тока, как правило, более эффективны. Применение электродвигателя имеет тенденцию влиять на выбор переменного или постоянного тока.
Много дополнительной информации
Статьи по теме
Другие полезные ссылки
Процитируйте это!
Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно цитировать эту статью HowStuffWorks.com:
Marshall Brain & Kristen Hall-Geisler
«Как работают электродвигатели»
1 апреля 2000 г.
HowStuffWorks.com.
Citation
Как работают электродвигатели | Как работает
«» Электродвигатели повсюду. Доуэлл / Getty ImagesЭлектродвигатели повсюду! В вашем доме почти каждое механическое движение, которое вы видите вокруг себя, вызывается электродвигателем переменного тока (переменного тока) или постоянного тока (постоянного тока). В этой статье мы рассмотрим оба типа.
Понимая, как работает двигатель, вы можете многое узнать о магнитах, электромагнитах и электричестве в целом. Электродвигатель использует магнитов для создания движения. Если вы когда-нибудь играли с магнитами, то знаете об основном законе всех магнитов: противоположности притягиваются, а подобное отталкивается.
Advertisement
Итак, если у вас есть два стержневых магнита с концами, помеченными «север» и «юг», то северный конец одного магнита будет притягивать южный конец другого. С другой стороны, северный конец одного магнита будет отталкивать северный конец другого (а южный будет отталкивать юг). Внутри электродвигателя эти притягивающие и отталкивающие силы создают вращательных движений .
СодержимоеВнутри электродвигателя
Чтобы понять, как работает электродвигатель, нужно понять, как работает электромагнит. (Подробнее см. в разделе «Как работают электромагниты».)
Электромагнит является основой электродвигателя. Скажем, вы создали простой электромагнит, намотав 100 витков проволоки на гвоздь и подключив его к батарее. Гвоздь станет магнитом и будет иметь северный и южный полюс, пока батарея подключена.
Advertisement
Теперь представьте, что вы берете свой гвоздевой электромагнит, пропускаете ось через его середину и подвешиваете к середине подковообразного магнита, как показано на рисунке. Если бы вы прикрепили батарейку к электромагниту так, чтобы северный конец гвоздя выглядел так, как показано на рисунке, основной закон магнетизма говорит вам, что произойдет: северный конец электромагнита будет отталкиваться от северного конца подковообразного магнита. и притягивается к южному концу подковообразного магнита. Южный конец электромагнита будет отталкиваться аналогичным образом. Гвоздь двигался на пол-оборота, а затем останавливался в показанном положении.
Вы переворачиваете магнитное поле, меняя направление электронов.HowStuffWorks
Ключ к электрическому двигателю состоит в том, чтобы сделать еще один шаг, чтобы в момент завершения этого полуоборота поле электромагнита перевернуло . Вы переворачиваете магнитное поле, изменяя направление электронов, протекающих по проводу, что означает переворачивание батареи. Переворот заставляет электромагнит совершить еще пол-оборота движения. Если бы поле электромагнита менялось точно в нужный момент в конце каждого полуоборота движения, электродвигатель вращался бы свободно.
Реклама
Как работает двигатель постоянного тока
Как мы уже упоминали, вы столкнетесь с двумя типами электродвигателей: постоянного тока и переменного тока. Последние, двигатели постоянного тока или постоянного тока, были впервые разработаны в середине 1800-х годов и используются до сих пор.
Простой двигатель состоит из шести частей:
Реклама
Внешней частью двигателя постоянного тока является статор: постоянный магнит, который не движется. Внутренняя часть — это ротор, который движется. Ротор здесь подобен гвоздю в нашем предыдущем примере, а статор подобен подковообразному магниту.
Когда мощность постоянного тока проходит через ротор, создается временное электромагнитное поле, которое взаимодействует с постоянным магнитным полем статора. Работа коммутатора состоит в том, чтобы поддерживать переключение полярности поля, что поддерживает вращение ротора. Это создает крутящий момент, необходимый для производства механической энергии.
Реклама
Игрушечный мотор
Игрушечный двигатель постоянного тока, изображенный на фото, небольшой, примерно размером с десятицентовую монету, с двумя выводами батареи. Если вы подключите провода аккумулятора двигателя к аккумулятору, ось будет вращаться. Если вы перепутаете провода, он будет вращаться в противоположном направлении.
Нейлоновая торцевая крышка удерживается на месте двумя выступами. Внутри торцевой крышки щетки двигателя передают энергию от батареи к коммутатору, когда двигатель вращается. (Поскольку щетки могут изнашиваться и нуждаться в замене, современные двигатели постоянного тока часто бесщеточные.)
Объявление
Ось удерживает ротор и коллектор. Ротор представляет собой набор электромагнитов, в данном случае их три. Якорь в этом двигателе представляет собой набор тонких металлических пластин, сложенных вместе, с тонкой медной проволокой, намотанной вокруг каждого из трех полюсов ротора. Два конца каждого провода (по одному на каждый полюс) присоединяются к клемме, а затем каждая из трех клемм подключается к одной пластине коммутатора.
Последней частью любого электродвигателя постоянного тока является статор. В этом двигателе он образован самой банкой и двумя изогнутыми постоянными магнитами. В двигателях постоянного тока якорь — это ротор, а поле — статор.
Реклама
Ротор, коммутатор и щетки
Как мы отмечали ранее, ротор подобен гвоздю на нашей схеме электромагнита. Коллектор также крепится к оси. Коллектор представляет собой просто пару пластин, прикрепленных к оси. Эти пластины обеспечивают два соединения для катушки электромагнита.
Часть электродвигателя, «переключающая электрическое поле», состоит из двух частей: коммутатора и кисти .
Реклама
На схеме показано, как коммутатор (зеленый) и щетки (красный) работают вместе, пропуская ток к электромагниту, а также изменяя направление движения электронов в нужный момент. Контакты коммутатора прикреплены к оси электромагнита, поэтому они вращаются вместе с магнитом. Щетки — это всего лишь два куска упругого металла или углерода, которые соприкасаются с контактами коммутатора.
Собираем все вместе
Когда вы соедините все эти детали вместе, у вас получится полноценный электродвигатель.
Суть в том, что когда ротор проходит через горизонтальное положение, полюса электромагнита меняются местами. Из-за флипа северный полюс электромагнита всегда находится над осью, поэтому он может отталкивать северный полюс статора и притягивать южный полюс статора.
Реклама
Обычно ротор имеет три полюса , а не два полюса, как показано в этой статье. Есть две веские причины, по которым двигатель должен иметь три полюса:
Количество полюсов может быть любым, в зависимости от размера двигателя и его функций.
Реклама
Как работает двигатель переменного тока
Теперь мы рассмотрим двигатель переменного тока. В двигателях переменного тока вместо постоянного тока используется переменный ток. У него много общих частей с двигателем постоянного тока, и он по-прежнему полагается на электромагнетизм и переменные магнитные поля для выработки механической энергии.
Части внутри двигателя переменного тока:
Объявление
Обмотка статора в Двигатель переменного тока выполняет работу ротора двигателя постоянного тока. В данном случае это кольцо электромагнитов, которые соединены в пары и последовательно запитаны, что создает вращающееся магнитное поле.
«» Двигатель переменного тока промышленного типа с электрической клеммной коробкой вверху, выходным вращающимся валом слева и закрывающей его короткозамкнутой клеткой.Эгзон123/CC BY-SA 3.0/Викимедиа
Вы помните, что ротор двигателя постоянного тока подключен к аккумулятору. Но ротор в двигателе переменного тока не имеет прямой связи с источником питания. Кисточек тоже нет. Вместо этого он часто использует нечто, называемое беличьей клеткой. Вы правильно прочитали.
Беличья клетка в двигателе переменного тока представляет собой набор стержней ротора, соединенных с двумя кольцами, по одному на каждом конце. Это похоже на то, как мышь (или белка) в клетке может бегать внутри. Ротор с короткозамкнутым ротором входит внутрь статора. Когда переменный ток проходит через статор, он создает электромагнитное поле. Стержни в роторе с короткозамкнутым ротором являются проводниками, поэтому они реагируют на переключение полюсов статора. Так вращается ротор, который создает собственное магнитное поле.
Реклама
Ротор переменного тока и статор
Главной особенностью асинхронного двигателя переменного тока, в котором поле ротора индуцируется полем статора, является то, что ротор всегда пытается наверстать упущенное. Он всегда ищет стазис, поэтому он вращается, чтобы найти это устойчивое состояние. Но электромагнитное поле, создаваемое статором с использованием переменного тока, всегда будет немного быстрее, чем поле ротора. Вращение ротора создает крутящий момент, необходимый для создания механической энергии для вращения колес автомобиля или жужжания вентилятора.
В некоторых двигателях переменного тока используется ротор с обмоткой, который обмотан проволокой вместо беличьей клетки. Однако вид «беличьей клетки» встречается чаще. В любом случае в двигателе переменного тока имеется только одна движущаяся часть, а это означает, что требуется меньше деталей, требующих замены или обслуживания.
Реклама
Моторы везде!
Осмотрите свой дом, и вы обнаружите, что он заполнен электродвигателями. Поскольку в наших домах используется источник переменного тока, большинство этих гаджетов имеют двигатели переменного тока. Двигатели постоянного тока чаще можно найти в вещах, в которых используются батареи. Начиная с кухни, есть моторы:
В подсобном помещении находится электродвигатель в:
Объявление
Даже в ванной есть мотор:
Ваш автомобиль оснащен электродвигателями:
Кроме того, есть моторы во многих других местах:
Почти все, что движется, использует для своего движения электродвигатель. .
Реклама
Часто задаваемые вопросы об электродвигателеКак работает игрушечный электродвигатель?
Очень маленький электродвигатель имеет два небольших постоянных магнита, коммутатор, две щетки, три полюса и электромагнит, сделанный путем намотки проволоки на кусок металла. Он работает так же, как и большая версия, но в гораздо меньшем масштабе.
Что такое электродвигатель постоянного тока?
Электродвигатель постоянного тока преобразует электрическую энергию постоянного тока в механическую энергию, в отличие от версии переменного тока, в которой используется переменный ток.
Из каких частей состоит простой двигатель?
Простой двигатель состоит из шести частей: якорь или ротор, коллектор, щетки, ось, магнит возбуждения и какой-либо источник питания постоянного тока.
Как долго может работать электродвигатель?
В условиях испытаний электродвигатель может прослужить от 15 до 20 лет при условии, что он используется в нормальных условиях эксплуатации.