Site Loader

Физика Работа и мощность постоянного тока

Материалы к уроку

Конспект урока

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу; ее принято называть работой тока. 
Для того чтобы узнать, от чего зависит работа электрического тока, проведем следующий эксперимент. Нарисована схема электрической цепи. По ней соберем электрическую цепь. Когда цепь собрана, снимаем показания всех имеющихся электроприборов. Изменяя сопротивление реостата, акцентируем внимание на разном свечении лампочки. Чем ярче светит лампочка, тем больше в ней выделяется энергии, и, следовательно, тем большую работу совершает электрический ток.
По опыту можно качественно установить, что работа электрического тока пропорциональна силе тока, напряжению и времени прохождения тока. 
Пусть за время дельта т через поперечное сечение проводника проходит заряд дельта кю. Тогда электрическое поле совершит работу. Так как сила тока есть заряд, который прошел через поперечное сечение проводника за единицу времени, то эта работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

В случае, если на участке цепи не совершается механическая работа и ток не производит химических действий, происходит только нагревание проводника. Происходит это следующим образом. Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов около положения равновесия возрастает. Это означает увеличение внутренней энергии. Температура проводника при этом повышается, и он начинает передавать тепло окружающим телам. Спустя небольшое время после замыкания цепи процесс устанавливается, и температура перестает изменяться со временем. К проводнику за счет работы электрического поля непрерывно поступает энергия.
Но его внутренняя энергия остается неизменной, так как проводник передает окружающим телам количество теплоты, равное работе тока.
Если в формуле нахождения работы электрического тока выразить либо напряжение через силу тока, либо силу тока через напряжение, то по закону Ома для участка цепи, то получим три эквивалентные формулы. Формулой А равно произведению И в квадрате Эр дельта Тэ удобно пользоваться для последовательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При параллельном соединении удобна формула  А равно произведению дельта тэ на частное у в квадрате на эр, так как напряжение на всех проводниках одинаково.
Оказалось, что электрический ток нагревает проводники, но не все: через растворы кислот, солей и щелочей, где нет кристаллической решетки, электроны проходят беспрепятственно и не передают раствору своей энергии (он не нагревается).
 Нагревание же металлического проводника зависит: во-первых, от его сопротивления (чем оно меньше, тем больше выделяется в проводнике тепла), во-вторых, от силы тока в нем (чем она больше, тем сильнее нагревается проводник).
Так, если сила тока возрастет в 2 раза, то и количества теплоты выделиться в проводнике в 2 раза больше.
 К такому выводу пришли одновременно и независимо друг от друга английский ученый Ом, английский ученый Джоуль и русский ученый Ленц.
Любой электрический прибор рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощность тока. Мощность тока равна отношению работы тока за время дельта т к этому интервалу времени. На большинстве приборов указана потребляемая ими мощность.
Практически на всех электроприборах, используемых в быту и технике, в техническом паспорте указывается  мощность тока, на которую они рассчитаны. Зная мощность, легко можно определить работу тока за заданный промежуток времени. Тогда 
1Дж = 1Вт ∙ с (ватт-секунда)
Однако эту единицу работы неудобно использовать на практике, так как в потребителях электроэнергии ток производит работу в течение длительного времени, например, в бытовых приборах – в течение нескольких часов, в электропоездах – даже в течение нескольких суток. Поэтому на практике, вычисляя работу тока, удобнее время выражать в часах, а работу не в джоулях, а в других единицах: ватт — час (Вт ∙ ч) и кратных им единицах.
Рассмотрим пример. Почему на одной из лампочек выделится большее количество теплоты? Раннее было сказано, что нагревание металлического проводника зависит от его сопротивления (чем оно меньше, тем больше выделяется в проводнике тепла).
При параллельном соединении, чем больше сопротивление прибора, тем меньший ток по нему протекает. Поэтому этот прибор выделяет меньше тепла. При последовательном соединении сила тока на каждом участке одинакова, количество выделяемого тепла прямо пропорционально зависит от сопротивления прибора. Поэтому, чем больше сопротивление прибора, тем больше он нагревается. 
Имеются 25- ваттная и 100- ваттная лампочки, рассчитанные на одно и то же напряжение, соединенные последовательно и включенные в сеть. На какой из них выделится большее количество теплоты за одно и тоже время? 
Решим задачу. Так как ток по обеим лампам течет одинаковый и время работы ламп одно и то же, то величина выделяемого тепла прямо пропорционально зависит от сопротивления ламп. Следовательно, чем больше сопротивление, тем ярче будет гореть лампа. Ответ: на 100-ваттной лампе выделится больше тепла.
Интересные факты. В прошлом веке в качестве счетчиков электроэнергии использовали ванночки с раствором медного купороса. Проходящий ток вызывал оседание меди на электродах. По увеличению их массы и судили о количестве протекшего электричества.
Счетчики измеряют работу не в джоулях, а в более крупных единицах работы – киловатт-часах. 1 кВт·ч электроэнергии достаточно для выпечки 36 кг хлеба; добычи 30 кг нефти или 40 кг каменного угля.
Сегодня мы платим «за свет», как говорят в народе. То есть мы платим за электроэнергию – работу, совершенную электричеством в нашем доме. Чтобы измерить электроэнергию, устанавливают счетчики. Мощность, потребляемой электроэнергии измеряют с помощью прибора ваттметр.

Устройство и принцип работы электрического счетчика. В зазоре между магнитопроводом 8 обмотки напряжения 7 и магнитопроводом 10 токовой обмотки 13 размещен подвижной алюминиевый диск 17, насаженный на ось 1, установленную в пружинящем подпятнике 15 и верхней опоре 5. Через червяк 2, укрепленный на оси, и соответствующие зубчатые колеса вращение диска 17 передается к счетному механизму.
Для прикрепления счетного механизма к счетчику имеется отверстие 4. Токовая обмотка 13, включаемая последовательно в исследуемую цепь, состоит из малого числа витков, намотанных толстым проводом (соответственно номинальному току счетчика).
Обмотка напряжения 7, включаемая в цепь параллельно, состоит из большего числа (8000 — 12000) витков, намотанных тонким проводом — диаметром 0,08 — 0,12 мм.
Когда к этой обмотке приложено переменное напряжение, а по токовой обмотке протекает ток нагрузки, в магнитопроводах 8 и 10 появляются переменные магнитные потоки, замыкающиеся через алюминиевый диск. Переменные магнитные потоки, пронизывая диск, наводят в нем вихревые токи.
Эти токи, взаимодействуя с соответствующими потоками, образуют вращающий момент, действующий на подвижный алюминиевый диск.
При помощи постоянного магнита 3, в поле которого вращается диск счетчика, создается тормозной (противодействующий) момент.
Установившаяся скорость вращения диска наступает при равенстве вращающего и тормозного моментов.
Число оборотов диска за определенное время будет пропорционально израсходованной энергии или установившаяся равномерная скорость вращения диска будет пропорциональна мощности при условии, что вращающий момент, действующий на диск, пропорционален мощности цепи, в которую включен счетчик.
Есть дискретизирующие ваттметры и счетчики электроэнергии, которые основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение, представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение сигнала тока, полученное в тот же момент времени.
Среднее по времени таких произведений есть мощность в ваттах.
 

Остались вопросы по теме? Наши репетиторы готовы помочь!

  • Подготовим к ЕГЭ, ОГЭ и другим экзаменам

  • Найдём слабые места по предмету и разберём ошибки

  • Повысим успеваемость по школьным предметам

  • Поможем подготовиться к поступлению в любой ВУЗ

Выбрать репетитораОставить заявку на подбор

Какой ток опаснее для человека

Мы живем в мире, где все зависит от электроэнергии, и многие забывают о том, насколько она может быть опасной. Что происходит с телом, если оно соприкасается с электрическим током?

Теги:

Здоровье

Профилактика заболеваний

Безопасность

Pixabay.com

Казалось бы, чем меньше напряжение и сила тока, тем реже должны встречаться травмы и поражения, связанные с ними, однако статистика утверждает обратное. Оказывается, на высоковольтных установках (свыше 1000 В) работников реже бьет током — и все потому, что на них работает высококвалифицированный персонал.

Не занимайтесь самолечением! В наших статьях мы собираем последние научные данные и мнения авторитетных экспертов в области здоровья. Но помните: поставить диагноз и назначить лечение может только врач.

Сила тока, который течет в проводах наших квартир, составляет 5 — 10 ампер, что смертельно опасно. Уже при силе тока в 10 милиампер (мА), что в 100 раз меньше одного ампера, ребенок не может самостоятельно отпустить электропровод из-за судорожного спазма мышц. Значения пороговых неотпускающих токов у разных людей различны. Средние значения их составляют: для мужчин 16 мА при частоте 50 Гц и 80 мА при постоянном токе, для женщин (соответственно) 11 и 50 мА, для детей 8 и 40 мА.

Отметим также, что безопасного напряжения не существует. Имеются многочисленные примеры смертельных случаев от поражения электрическим током с напряжением 12 В, а также известны летальные исходы при напряжении менее 4 Вольт.

При систематизации сведений о поражениях электрическим током, были сделаны такие наблюдения:

  • переменный и постоянный ток силой до 1.5 мА вызывает слабые судороги пальцев рук;
  • до 3 мА  — дрожание кистей;
  • до 7 мА — непроизвольные судорожные сокращения руки и ощущение жжения;
  • до 10 мА — у взрослого человека еще есть возможность оторваться от оголенных проводов;
  • до 25 мА — отпустить провод нереально, сильные судороги и болезненные ощущения;
  • до 80 мА — перебои в работе сердца, затрудненное дыхание.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

При воздействии током до 100 мА на протяжении более трех секунд сердце и дыхание останавливаются.

По степени тяжести поражение электрическим током делят на четыре степени:

  • I степень — наблюдаются судорожные сокращения мышц без потери сознания.
  • II степень — характерны судорожное сокращение мышц и потеря сознания.
  • III степень — на фоне судорожного сокращения мышц с потерей сознания имеются нарушения сердечной деятельности или дыхания.
  • IV степень — клиническая смерть. Причиной смерти могут быть паралич сердца, остановка дыхания, паралич мозга, тяжелые электроожоги.

Стоит отметить, что полностью безопасных электроприборов не существует, но наибольшую опасность представляют собой те, которые могут контактировать с водой. Известны случаи, когда даже заряжая телефон в ванной комнате и одновременно находясь в воде, люди умирали, получив смертельный удар током. О случаях падения в ванну включенных фенов вы наверняка знаете из фильмов — и это не киноприём. Поэтому соблюдайте инструкцию по использованию приборов и устройств. И будьте здоровы.

Как измерять напряжение, ток и мощность

Трансформаторы тока (ТТ)

Трансформаторы тока (ТТ) — это датчики, используемые для линейного понижения тока, проходящего через датчик, до более низкого уровня, совместимого с измерительной аппаратурой. Сердечник трансформатора тока имеет тороидальную или кольцевую форму с отверстием в центре. Проволока обвивается вокруг сердечника, образуя вторичную обмотку, и закрывается кожухом или пластиковым кожухом. Количество проволочных витков вокруг сердечника определяет коэффициент понижения, или коэффициент ТТ, между током в измеряемой линии (первичный) и выходным током, подключенным к контрольно-измерительным приборам (вторичный). Измеряемый провод нагрузки пропускается через отверстие в центре трансформатора тока. Пример: ТТ с соотношением 500:5 означает, что нагрузка 500 ARMS на основной линии приведет к выходу 5 ARMS на вторичном трансформаторе тока. Прибор будет измерять 5 ARMS на клеммах и может применять коэффициент масштабирования, введенный пользователем, для отображения полных 500 ARMS. ТТ указывается с номинальным значением, но часто указана точность более 100% от номинальной. Трансформаторы тока могут быть с разъемным сердечником или сплошным сердечником. ТТ с разъемным сердечником имеют открытый шарнир или съемную секцию, чтобы установщик мог подключить ТТ к проводу нагрузки без физического отсоединения измеряемого провода нагрузки.

Предупреждение о безопасности. Несмотря на то, что CT может физически подключаться к установленной линии, перед установкой CT необходимо безопасно отключить питание. Открытые соединения вторичной обмотки при подаче питания на первичную обмотку могут привести к чрезвычайно опасным потенциалам напряжения.

Параметры ТТ при покупке включают номинальный диапазон, диаметр отверстия, разъемный/сплошной сердечник, тип выхода (напряжение/ток) и диапазон выхода (0,333 ВСКЗ, ±10 В, 1 СКЗ, 5 СКЗ и т. д.). Поставщики CT часто могут настроить датчик для конкретных нужд, таких как входной или выходной диапазон.

 

 

 

Рис. 5. Трансформаторные трансформаторы тока с разъемным сердечником обычно имеют петлю или съемную секцию для установки вокруг линии без физического демонтажа, хотя питание все равно должно быть отключено. (Изображение предоставлено Magnelab)

Рис. 6. ТТ со сплошным сердечником дешевле, но для его установки в уже работающих цепях может потребоваться больше труда.
(Изображение предоставлено Magnelab)

Полоса пропускания измерения ТТ

Полоса пропускания от 1 кГц до 2 кГц достаточна для большинства приложений по обеспечению качества электроэнергии в цепях переменного тока. Для приложений с более высокой частотой подключайтесь напрямую к NI 9246 или NI 9247 для полосы пропускания до 24 кГц или выбирайте более дорогие высокочастотные трансформаторы тока. Все модули, перечисленные в таблице выше, имеют полосу пропускания приблизительно 24 кГц для сигналов, подключенных напрямую. Высокочастотные ТТ более специализированы и имеют характеристики полосы пропускания в диапазоне сотен МГц. NI 9215, NI 9222 и NI 9223 измерительных модуля с частотами дискретизации от 100 квыб/с/канал до 1 Мвыб/с/канал при 16-битном разрешении для высокочастотных измерений.

Для высокочастотных измерений, выходящих за рамки возможностей NI 9223, NI рекомендует осциллограф или дигитайзер для PXI, предназначенный для лабораторных, исследовательских и испытательных систем.

 

Измерение постоянного тока

Трансформаторы тока не измеряют постоянный ток или составляющую постоянного смещения сигнала переменного тока. Для большинства приложений переменного тока в этом нет необходимости. Когда необходимо измерение постоянного тока, NI 9227 имеет встроенные калиброванные шунты и может измерять постоянный ток до 5 Ампер. Для измерения постоянного тока более 5 А используется шунт для измерения тока большой мощности (см. ниже) или датчик Холла (см. ниже), подключенный к соответствующему измерительному модулю.

 

Катушки Роговского

Катушки Роговского, иногда называемые «канатными ТТ», представляют собой еще один вариант датчиков для измерения тока в линии. Катушки Роговского похожи тем, что они наматываются на провод нагрузки, но они гибкие, имеют гораздо большее отверстие, чем стандартные трансформаторы тока, и принцип измерения другой. Катушки Роговского индуцируют напряжение, пропорциональное скорости изменения тока, и поэтому требуют в цепи интегратора преобразования в пропорциональный ток. Интегратор представляет собой отдельный блок/компонент, который обычно монтируется на панель или на DIN-рейку, требует источника питания постоянного тока и выдает на приборы сигналы низкого напряжения или тока. Размер и гибкость поясов Роговского делают их хорошо подходящими для замыкания вокруг более крупных сборных шин в коммерческих зданиях или на заводах, особенно когда они уже построены, а измерение мощности добавлено в качестве модернизации, но они дороже, чем ТТ с сопоставимым входом. диапазон.

Рис. 7. Для катушек Роговского требуется внешнее питание, интегрирующая схема (расположена в черном монтажном блоке на изображении выше) и они дороже, чем типичные твердотельные/разъемные ТТ, но обеспечивают быструю фазовую характеристику и подходят для модернизации установках и шинах больших размеров благодаря их большому гибкому отверстию. (Изображение предоставлено Magnelab)

Датчики на эффекте Холла

Датчики на эффекте Холла основаны на «эффекте Холла», названном в честь Эдвина Холла, когда ток, протекающий через полупроводник, расположенный перпендикулярно магнитному полю, создает потенциал напряжения на полупроводнике материал. Для целей измерения тока схема на эффекте Холла размещается в сердечнике перпендикулярно магнитному полю и выдает напряжение, масштабированное к текущей нагрузке в измеряемой линии. ТТ на эффекте Холла обычно имеют лучшую частотную характеристику и могут измерять смещение постоянного тока, но они дороже, требуют питания и могут быть подвержены температурному дрейфу.

Рис. 8. Датчики Холла имеют чувствительную цепь, перпендикулярную магнитному полю, и требуют питания. Датчики на эффекте Холла не имеют ограничений по насыщению, как ТТ, и могут измерять постоянный ток, но они более дорогие.

 

Токовые шунтирующие резисторы

Токовые шунты или токовые шунтирующие резисторы представляют собой резисторы, помещаемые в цепь с целью измерения тока, протекающего через шунт. Это довольно распространенные электрические компоненты, и они существуют для различных применений. Размер шунта будет основан на диапазоне измеряемого тока, диапазоне выходного сигнала и мощности, протекающей по цепи. Для большей точности доступны более дорогие прецизионные резисторы. Шунты не наматываются на провод цепи и размещаются на линии как компонент. Это устраняет изолирующий барьер между измеряемой цепью и измерительным оборудованием и может усложнить установку по сравнению с трансформатором тока или поясом Роговского. Однако шунты могут измерять постоянные токи, имеют лучшую частотную характеристику и лучшую фазовую характеристику. НИ 9238 для CompactRIO и CompactDAQ был разработан с низкочастотным аналоговым интерфейсом (±0,5 В) специально для токовых шунтирующих резисторов. Кроме того, NI 9238 имеет межканальную изоляцию 250 В.

 

Электроэнергия и энергия | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитать мощность, рассеиваемую резистором, и мощность, отдаваемую источником питания.
  • Расчет стоимости электроэнергии при различных обстоятельствах.

Энергия в электрических цепях

Энергия у многих людей ассоциируется с электричеством. Зная, что мощность — это скорость использования энергии или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередач. Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним 25-ваттную лампочку с 60-ваттной. (См. рис. 1(a).) Поскольку обе лампы работают при одинаковом напряжении, лампочка мощностью 60 Вт должна потреблять больший ток, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампочки мощностью 60 Вт должно быть меньше, чем у лампы мощностью 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от сети 120 В, подключается к сети 240 В, она короткое время очень ярко светится, а затем перегорает. Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Рис. 1. (a) Какая из этих ламп накаливания — 25-ваттная (вверху слева) или 60-ваттная (вверху справа) — имеет большее сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания 25 Вт холоднее? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Dickbauch, Wikimedia Commons; Greg Westfall, Flickr) (b) Этот компактный люминесцентный светильник (КЛЛ) излучает ту же интенсивность света, что и лампочка мощностью 60 Вт, но с мощностью от 1/4 до 1/10 входной мощности. (кредит: dbgg1979, Flickr)

Электрическая энергия зависит как от задействованного напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — пройденный заряд, а q — напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость, с которой перемещается энергия, поэтому электрическая мощность равна

[латекс]P=\frac{PE}{t}=\frac{qV}{t}\\[/latex].

Учитывая, что ток равен q / t (обратите внимание, что здесь Δ t = t ), выражение для мощности принимает вид

P = IV

Электрическая мощность ( P ) — это просто произведение силы тока, умноженной на напряжение. Мощность имеет привычные единицы измерения ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность измеряется в джоулях в секунду или ваттах. Таким образом, 1 А ⋅ В = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства. Эти розетки могут быть рассчитаны на 20 А, чтобы цепь могла выдавать максимальную мощность P = IV = (20 А) (12 В) = 240 Вт. В некоторых приложениях электрическая мощность может быть выражена в вольт-амперах или даже в киловольт-амперах (1 кА ⋅ В = 1 кВт). Чтобы увидеть отношение мощности к сопротивлению, мы объединим закон Ома с P = IV . Подстановка I = V/R дает P = ( В / R ) В = В 2 / R . Точно так же замена В = IR дает P = I(IR) = I 2 R . Для удобства здесь перечислены вместе три выражения для электрической мощности: 9{2}R\\[/латекс].

Обратите внимание, что первое уравнение справедливо всегда, а два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных цепях P может быть мощностью, рассеиваемой одним устройством, а не общей мощностью в цепи. ) Из трех разных выражений для электрической мощности можно получить разные выводы. Например, В 2 / R означает, что чем меньше сопротивление, подключенное к данному источнику напряжения, тем больше отдаваемая мощность. Кроме того, поскольку квадрат напряжения равен P = В 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение удваивается до 25-ваттной лампы, ее мощность увеличивается почти в четыре раза до примерно 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампочки оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также выше.

Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная мощность

(a) Рассмотрим примеры, приведенные в Законе Ома: Сопротивление и простые цепи и Сопротивление и удельное сопротивление. Затем найдите мощность, рассеиваемую автомобильной фарой в этих примерах как в горячем, так и в холодном состоянии. б) Какой ток он потребляет в холодном состоянии?

Стратегия для (a)

Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать 9{2}}{0,350\text{ }\Omega }=411\text{ W}\\[/latex].

Обсуждение для (a)

Рассеиваемая горячей фарой мощность 30 Вт является типичной. Но 411 Вт в холодном состоянии на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.

Стратегия и решение для (b)

Ток при холодной лампе можно определить несколькими способами. Преобразуем одно из уравнений мощности, I 2 R и введите известные значения, получив

[латекс]I=\sqrt{\frac{P}{R}}=\sqrt{\frac{411\text{W} }{{0,350}\text{ }\Omega }}=34,3\text{ A}\\[/latex].

Обсуждение для (b)

Ток в холодном состоянии заметно выше установившегося значения 2,50 А, но ток быстро снизится до этого значения по мере повышения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) рассчитаны на то, чтобы кратковременно выдерживать очень высокие токи при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей.

Стоимость электроэнергии

Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот известный факт основан на соотношении между энергией и мощностью. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что

E = Pt

— это энергия, потребляемая устройством с мощностью P за интервал времени

0 1 t . Например, чем больше горит лампочек, тем больше P б/у; чем дольше они горят, тем больше т . Единицей энергии в счетах за электроэнергию является киловатт-час (кВт ⋅ ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если иметь представление об их энергопотреблении в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашего электроснабжения. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, могут быть преобразованы в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3,6 × 10 J.

Потребляемая электрическая энергия ( E ) может быть уменьшена либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и уменьшит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов сократить потребление электроэнергии в доме или на предприятии. Около 20% энергии, потребляемой домом, идет на освещение, в то время как в коммерческих учреждениях этот показатель приближается к 40%. Люминесцентные лампы примерно в четыре раза более эффективны, чем лампы накаливания — это верно как для длинных трубок, так и для компактных люминесцентных ламп (КЛЛ). (См. рис. 1(b).) Таким образом, лампочку накаливания мощностью 60 Вт можно заменить КЛЛ мощностью 15 Вт, имеющей ту же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они соединены со стандартным ввинчивающимся основанием, которое подходит для стандартных патронов для ламп накаливания. (Первоначальные проблемы с цветом, мерцанием, формой и высокими первоначальными вложениями в КЛЛ были решены в последние годы.) Теплопередача от этих КЛЛ меньше, и они служат в 10 раз дольше. Значение инвестиций в такие лампочки рассматривается в следующем примере. Новые белые светодиодные лампы (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза эффективнее, чем КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.

Установление связей: энергия, мощность и время

Отношение  E = Pt  вы найдете полезным во многих различных контекстах. Энергия, которую ваше тело использует во время упражнений, связана, например, с уровнем мощности и продолжительностью вашей активности. Величина нагрева источником питания связана с уровнем мощности и временем его применения. Даже доза облучения рентгеновского изображения связана с мощностью и временем облучения.

Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)

Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования 60-ваттной лампы накаливания в течение 1000 часов (срок службы этой лампы), если лампочка стоит 25 центов ? (b) Если мы заменим эту лампочку компактной люминесцентной лампой, которая дает такой же световой поток, но в 1/4 меньше мощности, и которая стоит 1,50 доллара, но служит в 10 раз дольше (10 000 часов), какова будет общая стоимость?

Стратегия

Чтобы найти эксплуатационные расходы, мы сначала найдем используемую энергию в киловатт-часах, а затем умножим на стоимость киловатт-часа.

Решение для (a)

Использованная энергия в киловатт-часах находится путем ввода мощности и времени в выражение для энергии:

E = Pt = (60 Вт)(1000 ч) = 60 000 Вт ⋅ ч

В киловатт-часах это

= 60,0 кВт ⋅ ч.

 

Теперь стоимость электроэнергии составляет

стоимость = (60,0 кВт ⋅ ч) (0,12 долл. США/кВт ⋅ ч) = 7,20 долл. США.

Общая стоимость составит $7,20 за 1000 часов (около полугода при 5 часах в день).

Решение для (b)

Поскольку КЛЛ потребляет только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20/4 = 1,80 доллара. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты составят 1/10 стоимости лампы за этот период использования, или 0,1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость составит $1,95 за 1000 часов.

Обсуждение

Таким образом, использование компактных люминесцентных ламп намного дешевле, хотя первоначальные инвестиции выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывалась.

Выполнение подключений: Возьми домой эксперимент — Инвентаризация использования электроэнергии

1) Составьте список номинальных мощностей различных электроприборов в вашем доме или комнате. Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем электронные часы. Оцените энергию, потребляемую этими приборами в среднем в день (путем оценки времени их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение 120 В, то используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что мощность используемых флуоресцентных ламп составляет 32 Вт.) Предположим, что здание было закрыто на все выходные, и что эти лампы оставались включенными с 18:00 до 18:00. Пятница до 8 утра понедельника. Во что обойдется эта оплошность? Как насчет целого года выходных? 9{2}R\\[/латекс].

  • Энергия, потребляемая устройством мощностью P за время t , составляет E = Pt .

Концептуальные вопросы

1. Почему лампы накаливания тускнеют в конце срока службы, особенно непосредственно перед тем, как их нити накаливания порвутся?

Мощность, рассеиваемая на резисторе, определяется как P = V 2 /R , что означает, что мощность уменьшается при увеличении сопротивления. Тем не менее, эта сила также дается P = I 2 R , что означает увеличение мощности при увеличении сопротивления. Объясните, почему здесь нет противоречия.

Задачи и упражнения

1. Какова мощность разряда молнии 1,00 × 10 2 МВ с током 2,00 × 10 4 А ?

2. Какая мощность подается на стартер большого грузовика, потребляющего ток 250 А от аккумуляторной батареи 24,0 В?

3. Заряд 4,00 Кл проходит через солнечные элементы карманного калькулятора за 4,00 ч. Какова выходная мощность, если выходное напряжение калькулятора составляет 3,00 В? (См. рис. 2.)

Рисунок 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих энергетических потребностей. (кредит: Эван-Амос, Wikimedia Commons)

4. Сколько ватт потребляет фонарик, через который проходит 6,00×10 2 за 0,500 ч, если его напряжение составляет 3,00 В?

5. Найдите мощность, рассеиваемую в каждом из этих удлинителей: (a) удлинитель с сопротивлением 0,0600 Ом, через который протекает ток 5,00 А; (b) более дешевый шнур с использованием более тонкой проволоки и сопротивлением 0,300 Ом.

6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .

7. Покажите, что единицы измерения 1 В 2 / Ом = 1 Вт, что следует из уравнения P = В 2 / R .

8. Покажите, что единицы измерения 1 A 2 ⋅ Ω = 1 Вт, что следует из уравнения P = I 2 R .

9. Проверить эквивалентность единицы энергии, что 1 кВт ⋅ ч = 3,60 × 10 Дж.

10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к мишени для получения рентгеновских лучей. Рассчитайте мощность электронного пучка в этой трубке при силе тока 15,0 мА.

11. Электрический водонагреватель потребляет 5,00 кВт в течение 2,00 ч в сутки. Какова стоимость его эксплуатации в течение одного года, если электричество стоит 12,0 центов/кВт⋅ч? См. рис. 3.

Рис. 3. Электрический водонагреватель по требованию. Тепло подается воде только тогда, когда это необходимо. (кредит: aviddavid, Flickr)

12. Сколько электроэнергии требуется для тостера мощностью 1200 Вт, чтобы приготовить ломтик тоста (время приготовления = 1 минута)? Сколько это стоит при 9,0 центов/кВт·ч?

13. Какова будет максимальная стоимость КЛЛ, чтобы общая стоимость (инвестиции плюс эксплуатация) была одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов/кВтч. Рассчитайте стоимость 1000 часов, как в примере с экономической эффективностью КЛЛ.

14. Некоторые модели старых автомобилей имеют электрические системы на 6,00 В. а) Каково тепловое сопротивление фары мощностью 30,0 Вт в таком автомобиле? б) Какой ток течет по нему?

15. Преимущество щелочных батарей заключается в том, что они обеспечивают постоянное напряжение практически до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А ⋅ ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?

16. Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его мощность? б) Чему равно сопротивление пути?

17. Говорят, что в среднем телевизор включен 6 часов в день. Оцените годовую стоимость электроэнергии для эксплуатации 100 миллионов телевизоров, предполагая, что их средняя потребляемая мощность составляет 150 Вт, а средняя стоимость электроэнергии составляет 12,0 центов/кВт⋅ч.

18. Старая лампочка потребляет только 50,0 Вт вместо исходных 60,0 Вт из-за истончения ее нити накаливания. Во сколько раз уменьшится его диаметр, если предположить равномерное утончение по длине? Любыми эффектами, вызванными разницей температур, пренебречь.

19. Медная проволока калибра 00 имеет диаметр 9,266 мм. Рассчитайте потери мощности на километр такого провода, когда он несет 1,00 × 10 2 А.

20.  Комплексные концепции

Холодные испарители пропускают ток через воду, испаряя ее лишь при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует переменное напряжение 120 В с КПД 95,0%. а) Какова скорость испарения в граммах в минуту? (б) Сколько воды нужно налить в испаритель за 8 часов ночной работы? (См. рис. 4.)

Рисунок 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим повышением температуры.

21. Integrated Concepts  (a) Какая энергия рассеивается при ударе молнии с силой тока 20 000 А, напряжением 1,00 × 10 2 МВ и длительностью 1,00 мс? (b) Какая масса древесного сока может быть поднята с 18ºC до точки кипения, а затем испарена за счет этой энергии, если предположить, что сок имеет те же тепловые характеристики, что и вода?

22. Integrated Concepts  Какой ток должен производить подогреватель бутылочек 12,0 В, работающий от батареи, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00×10 2 алюминия от 20ºC до 90º за 5,00 мин?

23. Интегрированные концепции Сколько времени потребуется хирургическому прижигателю, чтобы поднять температуру 1,00 г ткани с 37º до 100, а затем выкипятить 0,500 г воды, если он выдает 2,00 мА при 15,0 кВ? Не учитывать передачу тепла в окружающую среду.

24. Комплексные концепции  Гидрогенераторы (см. рис. 5) на плотине Гувера производят максимальный ток 8,00 × 10 3  А при напряжении 250 кВ. а) Какова выходная мощность? (b) Вода, питающая генераторы, входит и выходит из системы с малой скоростью (таким образом, ее кинетическая энергия не меняется), но теряет 160 м по высоте. Сколько кубических метров в секунду необходимо, при КПД 85,0%?

Рисунок 5. Гидрогенераторы на плотине Гувера. (кредит: Джон Салливан)

25. Интегрированные концепции  (a) Если предположить, что эффективность преобразования электроэнергии двигателем составляет 95,0 %, какой ток должны обеспечить 12,0-В аккумуляторы 750-килограммового электромобиля: (a) для ускорения из состояния покоя до 25,0 м/с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин с постоянной скоростью 25,0 м/с, прилагая силу 5,00 × 10 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м/с, прилагая 5,00 × 10 Н сила для преодоления сопротивления воздуха и трения? См. Рисунок 6.

Рисунок 6. Этот электромобиль REVAi заряжается на одной из улиц Лондона. (предоставлено: Frank Hebbert)

26. Интегрированные концепции Легкорельсовый пригородный поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении. а) Какова его потребляемая мощность в киловаттах? (b) Сколько времени потребуется, чтобы достичь скорости 20,0 м/с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 кг, при условии, что 9КПД 5,0% и постоянная мощность? в) Найдите его среднее ускорение. (d) Обсудите, как ускорение, которое вы нашли для легкорельсового поезда, можно сравнить с тем, которое может быть типичным для автомобиля.

27. Интегрированные концепции  (a) Алюминиевая линия электропередачи имеет сопротивление 0,0580 Ом/км. Какова его масса на километр? б) Какова масса километра медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева. Обсудите практические пределы ускорения нагрева за счет снижения сопротивления.

28. Integrated Concepts  (a) Погружной нагреватель на 120 В может поднять температуру 1,00 × 10 2  г алюминиевой чашки, содержащей 350 г воды, с 20º C до 95 º C за 2,00 мин. Найти его сопротивление, считая его постоянным в процессе. (б) Более низкое сопротивление сократит время нагрева. Обсудите практические пределы ускорения нагрева за счет снижения сопротивления.

29. Интегрированные концепции  (a) Какова стоимость нагрева джакузи, содержащего 1500 кг воды, с 10ºC до 40ºC, при условии, что КПД 75,0% учитывает теплопередачу в окружающую среду? Стоимость электроэнергии 9центов/кВт ⋅ ч. б) Какой ток потреблял электрический нагреватель на 220 В переменного тока, если на это уходило 4 часа?

30 . Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 МВт мощности при напряжении 480 В? б) Какая мощность рассеивается линиями передачи, если они имеют сопротивление 1,00 Ом? в) Что неразумного в этом результате? (d) Какие предположения неразумны, а какие предпосылки противоречивы?

31. Необоснованные результаты  (a) Какой ток необходим для передачи 1,00 × 10 МВт мощности на 10,0 кВ? б) Найдите сопротивление провода длиной 1,00 км, при котором потеря мощности составит 0,0100 %. в) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? г) Что неразумного в этих результатах? (e) Какие допущения неразумны или какие предпосылки противоречивы?

32. Создайте свою собственную задачу  Рассмотрим электрический погружной нагреватель, используемый для нагревания чашки воды для приготовления чая. Составьте задачу, в которой вы вычисляете необходимое сопротивление нагревателя, чтобы он повышал температуру воды и чашки за разумное время. Также рассчитайте стоимость электроэнергии, используемой в вашем процессе. Среди вещей, которые следует учитывать, — используемое напряжение, задействованные массы и теплоемкости, тепловые потери и время, в течение которого происходит нагрев. Ваш инструктор может пожелать, чтобы вы рассмотрели тепловой предохранительный выключатель (возможно, биметаллический), который остановит процесс до того, как в погружном блоке будет достигнута опасная температура.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *