Site Loader

Содержание

Расчет мощности солнечных батарей для дома

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей. Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей. Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Содержание статьи

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи. Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии. То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы. Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах. В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет. Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме. Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

ЭлектроприборВаттСколько часов работы в суткиВт/час
Холодильник250246000
Компьютер1004400
Стиральная машина5001500
Электрочайник10000.3300
Телевизор1506900
Радиоприемник428
Экономлампа 1206120
Экономлампа 215460
Экономлампа 310220

Если вы не знаете потребление электроэнергии того или иного прибора, то для точности расчетов лучше посмотреть это значение в технической документации или на сайте производителя.

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора. Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов. Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей. Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время. Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Во время пасмурной погоды, а также захода солнца, уровень выработки энергии солнечной системы падает на 20-30%.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели. Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете. Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона. Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Рw – мощность.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Солнечная батарея — Википедия

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

В 1842 году Александр Эдмон Беккерель открыл эффект преобразования света в электричество. Чарльз Фриттс (англ. Charles Fritts) начал использовать селен для превращения света в электричество. Первые прототипы солнечных батарей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном.

25 марта 1948 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 10 лет, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Портативная электроника[править | править код]

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили[править | править код]

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Авиация[править | править код]

Одним из проектов по созданию самолёта, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий[править | править код]

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование[1].

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.[2]

Энергообеспечение населённых пунктов[править | править код]

Солнечно-ветровая энергоустановка

Дорожное покрытие[править | править код]

Солнечные батареи как дорожное покрытие:

  • В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.
  • В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учёта отопления)[3][неавторитетный источник?] .
  • В феврале 2017 года в нормандской деревне Tourouvre-au-Perche французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.[4]
  • Также используется для питания автономных светофоров на дорогах[5]

Использование в космосе[править | править код]

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине[править | править код]

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство[6].

Эффективность фотоэлементов и модулей[править | править код]

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[7] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D[8][9]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[10] быть менее 100 Вт/м²[источник не указан 1591 день]. С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %[источник не указан 1591 день]. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях[11][неавторитетный источник?].

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).[12]

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %[13]. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %[14]. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд[15].

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния[16].

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %[17], а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали использующий линзы Френеля фотоэлемент с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 % [18][неавторитетный источник?]. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %[19][неавторитетный источник?][20].

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца[21].

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200—300 нм) светом (то есть электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85 %[22][23].

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов[24]., а также за счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов[25].

В 2019 году российские учёные из Сколковского института науки и технологий (Сколтеха), Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (СО РАН) и Института проблем химической физики РАН получили принципиально новый полупроводниковый материал для солнечных батарей, лишённый большинства недостатков материалов, применяемых сегодня[26]. Группа российских исследователей опубликовала в журнале Journal of Materials Chemistry A[en][27] результаты работы по применению для солнечных батарей нового разработанного ими полупроводникового материала — комплексного полимерного йодида висмута ({[Bi3I10]} и {[BiI4]}), структурно подобного минералу перовкситу (природному титанату кальция), который показал рекордный коэффициент преобразования света в электроэнергию.[27][28] Та же группа учёных создала второй аналогичный полупроводник на основе комплексного бромида сурьмы с перовкситоподобной структурой.[29][30]

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[31][неавторитетный источник?]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие плёнки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов[править | править код]

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Недостатки солнечной электроэнергетики[править | править код]

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.[32]

Cолнечные электростанции подвергаются критике из-за высоких издержек, а также низкой стабильности комплексных галогенидов свинца и токсичности этих соединений. В настоящее время ведутся активные разработки бессвинцовых полупроводников для солнечных батарей, например на основе висмута[27] и сурьмы.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры около 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[33].

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определённое количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована[34].

  1. ↑ Spain requires new buildings use solar power
  2. ↑ Арендаторам домов с солнечными батареями будет выплачиваться дотация, Germania.one.
  3. ↑ Франция построит 1000 км дорог с солнечными батареями
  4. ↑ Во Франции открыли первую дорогу из солнечных панелей, theUK.one.
  5. ↑ Автономный светофор на солнечных батареях — купить в Москве, цена (неопр.). lumenstar.ru. Дата обращения 5 ноября 2019.
  6. ↑ ТАСС: Наука — Ученые Южной Кореи создали подкожную солнечную батарею
  7. ↑ «Solar Spectra: Air Mass Zero»
  8. ↑ «Solar Photovoltaic Technologies» (неопр.) (недоступная ссылка). Дата обращения 7 февраля 2012. Архивировано 26 мая 2012 года.
  9. ↑ «Reference Solar Spectral Irradiance: Air Mass 1.5»
  10. ↑ По материалам: www.ecomuseum.kz (недоступная ссылка)
  11. ↑ «Конкурентоспособность энергетики» Архивная копия от 14 ноября 2007 на Wayback Machine // Photon Consulting
  12. ↑ Виды солнечных батарей (неопр.).
  13. ↑ Австралийцы установили новый рекорд КПД солнечных батарей (рус.). Membrana. Membrana (28 августа 2009). Дата обращения 6 марта 2011.
  14. ↑ На рынок выходят солнечные батареи с рекордным КПД (рус.). Membrana. Membrana (25 ноября 2010). Дата обращения 6 марта 2011.
  15. ↑ Solar Junction Breaks Concentrated Solar World Record with 43,5 % Efficiency
  16. ↑ Как сконцентрировать солнечный свет без концентраторов
  17. ↑ Sharp разработала концентрирующий фотоэлемент с кпд 44,4 % (неопр.) (недоступная ссылка). Дата обращения 11 июля 2013. Архивировано 30 марта 2014 года.
  18. ↑ Новый рекорд КПД фотоэлемента: 44,7 %
  19. ↑ УЧЁНЫЕ ИЗ ИНСТИТУТА СОЛНЕЧНЫХ ЭНЕРГОСИСТЕМ ФРАУНГОФЕРА РАЗРАБОТАЛИ СОЛНЕЧНЫЕ БАТАРЕИ С КПД 46 % И ЭТО НОВЫЙ МИРОВОЙ РЕКОРД
  20. ↑ New world record for solar cell efficiency at 46 % — Fraunhofer ISE
  21. ↑ All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
  22. Б. Берланд. Фотоэлементы уходят за горизонт: Оптические ректенны солнечных батарей (англ.). Национальная лаборатория возобновляемых источников энергии США (2003). Дата обращения 4 апреля 2015.
  23. Краснок А Е, Максимов И С, Денисюк А И, Белов П А, Мирошниченко А Е, Симовский К Р, Кившарь Ю С. Оптические наноантенны // Успехи физических наук. — 2013. — Т. 183, № 6. — С. 561–589. — DOI:10.3367/UFNr.0183.201306a.0561.
  24. Александр Дубов. Физики выдавили из солнечных батарей дополнительную энергию (неопр.). nplus1.ru. Дата обращения 25 апреля 2018.
  25. Александр Дубов. Химики продлили жизнь горячим электронам в перовскитных батареях (неопр.). nplus1.ru. Дата обращения 20 июня 2018.
  26. Софья Алимова. Российские ученые разработали новый материал для солнечных батарей (неопр.). Народные Новости России. Дата обращения 14 мая 2019.
  27. 1 2 3 Pavel A. Troshin, Vladimir P. Fedin, Maxim N. Sokolov, Keith J. Stevenson, Nadezhda N. Dremova. Polymeric iodobismuthates {[Bi3I10} and {[BiI4]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices] (англ.) // Journal of Materials Chemistry A. — 2019-03-12. — Vol. 7, iss. 11. — P. 5957–5966. — ISSN 2050-7496. — DOI:10.1039/C8TA09204D.
  28. ↑ В России разработали новый полупроводник для солнечных батарей. Он не токсичный и очень эффективный! — Хайтек (рус.). hightech.fm. Дата обращения 14 мая 2019.
  29. ↑ В России создали новый полупроводниковый материал для солнечных батарей (неопр.). ТАСС. Дата обращения 14 мая 2019.
  30. ↑ Ученые Сколтеха разработали новые полупроводниковые материалы для электроники (неопр.). naked-science.ru. Дата обращения 14 мая 2019.
  31. ↑ Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях (неопр.) (недоступная ссылка). Nitol Solar Limited. Архивировано 17 июля 2008 года.
  32. Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  33. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Дата обращения 6 июня 2016.
  34. ↑ Производство фотоэлектрического солнечного модуля (неопр.). Архивировано 25 июня 2012 года.

Солнечная электростанция на дом 200 м2 своими руками / Habr

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.



Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?


Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций


Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер?


Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.

Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.

Как выбрать солнечные панели?


На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции


Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей также продают всё сопутствующее оборудование, поэтому я начал поиск отталкиваясь от солнечных батарей. Один из солидных брендов – TopRay Solar. О них есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует и далеко не на последних местах, то есть можно брать. Кроме того, фирма-продавец солнечных панелей TopRay, также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство – вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
Не буду томить, остановился я на более дешевой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  1. Солнечная батарея TopRay Solar 280 Вт Моно – 9 шт
  2. Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
  3. Аккумулятор AGM Парус HML-12-100 – 4 шт

Дополнительно, мне было предложено приобрести профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить. Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Что даёт солнечная электростанция?


Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.

Начинаю собирать


Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыкание\размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции


После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.

Но есть в наличии дома солнечной электростанции и нюансы:

  1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
  2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
  3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Заключение


Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.

On-Line калькулятор солнечных батарей, он-лайн расчет солнечных электростанций

 

Данный калькулятор предназначен для оценки выработки электрической энергии солнечными батареями.

Для каждой точки местности России, мы собрали данные по инсоляции с точностью 0,1 градуса по широте и долготе. Данные были любезно предоставлены сервисом NASA где история измерений ведется с 1984 года.

Для использования нашего калькулятора выберите местоположение вашей солнечной электростанции передвигая метку по карте или воспользуйтесь полем поиска на карте. Наш калькулятор работает только по территории России.

1. Если вы знаете какие солнечные батареи вы будете использовать, или они уже установлены в вашей солнечной станции — выберите солнечные батареи нужной мощности и их количество.

2. Укажите угол наклона вашей крыши, место установки. Также наш калькулятор автоматически показывает оптимальный угол наклона солнечной батареи для выбранной точки местности. Угол показывается для зимы, оптимальный — средний для всего года, для лета. Это особенно важно если вы только планируете установку солнечной станции и при ее строительстве сможете указать строителям необходимый угол для монтажа СБ.

Если например вы планируете установить солнечные батареи на крышу вашего дома и угол установки предопределен конструкцией, просто укажите его в поле ввода произвольного угла.
Наш калькулятор будет вести расчет учитывая угол вашей крыши.

3. Очень важно правильно оценивать мощность потребителей электроэнергии вашей солнечной станции при подборе необходимого количества солнечных батарей.

В калькуляторе нагрузок для солнечной электростанции выберите электроприборы которые вы будете использовать, задайте их количество и мощность в ваттах, а также примерно время использования в сутки.

Например для небольшого дома выбираем:
  • Электролампа — 3шт мощностью 50Вт каждая, работают 6 часов в сутки — итого 0,9 кВт часов/сутки.
  • Телевизор — 1шт мощностью 150Вт, работает 4 часа в сутки — итого 0,6 кВт часов/сутки.
  • Холодильник — 1шт мощностью 200Вт, работает 6 часов в сутки — итого 1,2 кВт часов/сутки.
  • Компьютер — 1шт мощностью 350Вт, работает 3 часа в сутки — итого 1,05 кВт часов/сутки.

Телевизор современный с плоским экраном, светодиодный потребляет от 100 до 200 Вт, холодильник, в нем работает компрессор и работает не постоянно, а тогда когда нужен холод, т.е. чем чаще вы открываете дверь холодильника, тем больше электричества он съест. Обычно холодильник работает 6 часов в сутках, остальное время отдыхает. Компьютер например вы используете в среднем 3 часа в сутки.

При заданных условиях потребления вы получите необходимую мощность для электропитания ваших электроприборов.
Для нашего примера это будет 3,75 кВт / час в сутки.

Давайте подберем необходимое количество солнечных панелей для нашего примера, в регионе Санкт-Петербург:

Возьмем солнечные модули 250Вт, установим оптимальный угол наклона предложенный программой равный 60 градусов.
Увеличивая количество солнечных батарей мы увидим, что при установке 3х солнечных модулей 250Вт потребление наших электроприборов 3,75 кВт час сутки начинает перекрываться на графике выработке уже с апреля по сентябрь, что достаточно для тех людей которые например пребывают на даче летом.
Если вы хотите эксплуатировать СБ круглогодично, то вам понадобится минимум 6 солнечных модулей по 250Вт, а лучше 9шт. Учтите также, что зимой с ноября по середину января в Питере солнца скорее нет, чем оно есть. И в данное время года вы будете использовать бензо-дизель генератор для подзарядки аккумуляторов.

Под графиком выработки находится сводная таблица с числовыми данными о выработке солнечной электростанции в удобном числовом виде.

Заполните форму ниже, отправьте нам данные своего расчета и получите коммерческое предложение для вашей солнечной электростанции.

Расчет солнечной электростанции с помощью калькулятора носит предварительный характер. Каждый объект является индивидуальным, для формирования окончательного предложения под «ключ» с учетом монтажа и технико-экономического обоснования мы рекомендуем провести консультацию с нашими специалистами по телефону или заказать выезд инженера к вам. По итогам общения наши специалисты подготовят и предоставят комплексное предложение по стоимости и монтажу вашей солнечной электростанции.

Для того, чтобы наши менеджеры смогли подготовить для Вас предварительные расчеты по стоимости оборудования и монтажу, отправьте нам данные своего расчета. Если информации будет недостаточно, наш специалист свяжется с Вами для уточнения.

Самые эффективные солнечные панели — обзор 2020 года

23.12.2019

Эффективность солнечной панели — ключевая характеристика, ориентируясь на которую, покупатели делают выбор. При этом под эффективностью принято понимать КПД. Действительно ли эффективность модуля ограничивается коэффициентом полезного действия и какие факторы на нее влияют? Разберем ниже. 

Факторы, влияющие на эффективность фотомодулей

Распространенное мнение, что на КПД влияет только используемый в производстве материал и от него напрямую зависит мощность батареи, но это не совсем так. Существует несколько технологических нюансов. 

Как оценивается КПД солнечных панелей

самые эффективные солнечные панели

КПД — пусть не единственный, но все же ключевой параметр. Он показывает, какой процент солнечного света панель может трансформировать в электроэнергию. КПД измеряется в лабораторных условиях при следующих параметрах:

  • Объем энергии солнечного света — 1000 Вт;
  • Температура — 25 градусов; 
  • Рабочая площадь модуля — 1 м2
  • Угол наклона панели — 30 градусов.

И если производитель указывает КПД в 17%, это значит, что при указанных выше условиях из 1000 Вт батарея демонстрирует выходную мощность в 170 Вт на м2. 

Вообще, эталоном для кремниевых элементов является 20% КПД. Некоторым производителям удалось увеличить этот показатель за счет технологических решений, но в среднем полезное действие составляет 16-18%. При этом:

  • Поликристаллические панели показывают 14-16%;
  • Монокристаллические дотягивают до 17-20%. 

Влияние КПД на эффективность очевидно — чем больше солнечной энергии может преобразовать модуль, тем выше мощность на выходе. Также очевидно, что при эксплуатации достичь лабораторных условий невозможно, поэтому фактический КПД часто отличается от заявленного. 

Соединение и размеры пластин солнечных панелей

самые мощные солнечные панели

Солнечные панели состоят из многочисленных кремниевых пластин (36, 60, 72, 96 хотя возможно и другое количество). От размера и технологии соединения этих пластин напрямую зависит эффективность:

  • Монокристаллические батареи, разделенные на 60 клеток, выдают до 19% КПД; 
  • Панели, разделенные на шинглы — прямые горизонтальные линии — демонстрируют от 17% до 19% КПД;
  • 120-клеточная панель, в которой размер клетки уменьшен вдвое, позволяет повысить производительность до 20%;
  • Новейшие батареи с IBC-структурой на 60 или 96 клеток выдают до 22% эффективности, что пока является рекордом. 

При оценке соединения на первое место выходит количество шин или IBM. Шины — это вертикальные линии, проходящие сквозь всю панель, через которые передается выработанное электричество. Чем больше шин, тем меньше потерь при передаче. Наиболее эффективными на данный момент являются панели IBM 5 с 5-тью горизонтальными шинами. 

 

 

Хотите знать всё о солнечных электростанциях?

 

 

Мощность солнечных батарей на квадратный метр

размер солнечной панелиАльтернативный способ оценки эффективности солнечной панели — измерение производственной мощности на м2 или на 1 модуль (по стандарту — 1,6 м2). В этом случае покупатель получает не абстрактные проценты, а конкретное количество вырабатываемой энергии. 

Мощность и КПД — взаимосвязанные величины и тестируются при одинаковых лабораторных условиях. Поэтому чтобы рассчитать мощность достаточно площадь умножить на КПД и на 1000 Вт (солнечное излучение при испытаниях). Например 1,6*20%*1000 = 320 Вт.

Однако производители добиваются и большей мощности при меньших КПД за счет оптимизации соединений и сокращении энергопотерь при передаче от фотомодуля непосредственно на распределительную коробку. Поэтому одинаковые по КПД панели могут на выходе давать разное количество энергии. 

 

Производство солнечных панелей: материалы и качество 

самые дешевые солнечные панелиВышеперечисленные факторы эффективности напрямую связаны с технологией производства панелей. От изготовителя напрямую зависит два важнейших параметра:

  • Материал модуля — используется монокристалл или поликристалл, ведь КПД и степень очистки у этих материалов отличаются, что также влияет на эффективность;
  • Общее качество сборки — включая целостность материала, степень его очистки, технологию соединения фотографических элементов и прозрачность защитной сборки. 

Если о моно- и поликристаллах и их влиянии на КПД мы поговорили выше, то общее качество сборки стоит рассмотреть подробнее. Различают 4 класса качества солнечных панелей: 

  • Grid A — безупречное качество сборки и материалов. Как правило, это монокристаллические панели от ведущих брендов типа Solar Power, BenQ или LG. Стоят они соответственно своему качеству, но окупаются за счет высокого КПД и длительного срока эксплуатации. 
  • Grid B — допускается незначительное изменение в цвете фотомодуля или несущественные повреждения корпуса, не влияющие на общую производительность — царапины, потертости. 
  • Grid C — наблюдается нарушения структуры фотоэлемента (сколы, трещины) или повреждения вторичных компонентов батареи, некритичные для работы. Сюда же относятся батареи, изготовленные из отходов производства основных панелей — осколки и пластины малых размеров, которые спаиваются между собой. 
  • Grid D — низкое общее качество сборки, дешевые материалы и как следствие быстрая деградация модуля с малым КПД. Класс D характерен для ноунеймов неизвестного происхождения, у которых даже технические характеристики часто отсутствуют. 

Соответственно, панели с самой высокой эффективностью изготавливаются из монокристалла кремния топовыми компаниями с многолетним опытом исследований в области солнечной энергетики. Такие компании часто разрабатывают и новые технологические решения для соединений, общей конструкции и передачи энергии, чем повышают качество и производительность своего продукта. 

 

 

В нашем интернет-магазине есть готовые решения под зеленый тариф

 

 

Обзор солнечных панелей

Чтобы читатель мог наглядно увидеть разницу между модулями различной эффективности проведем краткий обзор нескольких моделей от известных производителей. 

Самые мощные солнечные панели 

В этой категории панели будут размещены в порядке роста КПД: 

солнечная панель 12 вольт 200 ватт

  • LP72-375M PERC — продукт представлен LEAPTON SOLAR состоит из очищенного монокристалла, соединенного по стандарту IBM 5 и имеет КПД в 19,1%. При стандартном размере 1960 х 992 мм выдает 375 Вт энергии, что очень неплохо для батареи такого класса. Стоимость в Украине — 4000 грн*. 
  • LG NeOn 340 W — одна из новейших моделей популярного производителя. Имеет 60 клеток, но при этом 12 токосъемных дорожек, то есть фактически соединение IBM 12. Размер стандартный — 1686 x 1016, а мощность на выходе 340 Вт, что несколько ниже, чем у первой модели. Зато КПД составляет 19,8%. Стоимость в Украине — 6100 грн*. 
  • SunForte PM096B00 333W от BenQ — при относительно стандартных габаритах 1559 x 1046 мм модуль включает целых 96 клеток, способных выдавать на выходе 333 Вт мощности. При этом за счет технологии IBC производитель смог добиться КПД в 20,4%. Обойдется такая панель в 14 000 грн*. 
  • JAM72S03-375/PR 375 от JA Solar — собрана из 144 клеток стандарта HalfCell и имеет соединение IBM 5. Производитель заявляет КПД до 19,5%, но что интересно при габаритах в 2000х991мм панель генерирует те же 375 Вт энергии, то есть фактически мощность на м2 ниже. Стоимость в Украине — 5200 грн*. 

Как можно видеть, стоимость растет пропорционально КПД и известности производителя и борьба тут идет буквально за каждую десятую процента. 

  leapton lp72-375m perc 5bb LG NeOn 340 W BenQ SunForte PM096B00 333W JA Solar JAM72S03-375/PR 375 Wp
Основные        
Производитель Leapton LG BenQ JA Solar
Страна производитель Китай Южная Корея Тайвань Китай
Тип панели Монокристаллическая Монокристаллическая Монокристаллическая Монокристаллическая
Материал изготовления модуля Чистый кремний Чистый кремний Чистый кремний Чистый кремний
Материал рамки Алюминий Алюминий Алюминий Алюминий
Мощность (Вт) 375 340 333 375
Ток при максимальной мощности (А) 9.39 9.86 6,13 9,48
Напряжение при максимальной мощности (В) 39.4 34.5 54,7 39,58
Ток короткого замыкания (А) 9.92 10.53 6.27 10,03
Напряжение холостого хода (В) 48.09 41.1 64.8 47,78
Количество элементов (шт.) 72.0 60 96 144
Минимальная рабочая температура (град.) -40.0 -40.0 -40.0 -40.0
Максимальная рабочая температура (град.) 85.0 90.0 80.0 85.0
Степень защиты IP IP67 IP68 IP67 IP67
КПД, не менее (%) 19.1 19.8 19.6 18,92
Гарантийный срок (мес) 60 300 120 144
         
Габаритные размеры        
Вес (кг) 21.5 17.1 18,6 22,5
Длина (мм) 1960.0 1686.0 1559.0 2 000.0
Ширина (мм) 992.0 1016.0 1046.0 991.0
Толщина (мм) 40.0 40.0 46.0 40.0
         
Температурные коэфициенты        
Температурный коэффициент тока 0.06 0.03 0.05 0.051
Температурный коэффициент напряжения -0.3 -0.27 -0.33 -0.289
Температурный коэффициент мощности -0.4 -0.36 -0.26 -0,36

Самые дешевые солнечные панели 

Теперь рассмотрим несколько бюджетных моделей для сравнения стоимости и технологических характеристик: 

самые лучшие солнечные панели

  • AS-6P30 280W — модель компании Amerisolar. При стандартном размере 1640х992 выдает 280 Вт мощности и имеет соединение IBM 4. Материал — поликристалл, а коэффициент полезного действия 17,4%, что для такой модели неплохо. Интересно, что производитель дает гарантию на 2 года, хотя для панелей более характерно 4-5 лет. Зато стоит всего 2800 грн*.
  • RS 280 POLY — поликристаллическая панель малоизвестного китайского производителя Runda. Состоит из 60 клеток, с четырьмя токопроводящими дорожками. Выдает на стандартном размере 280 Вт, а заявленная эффективность составляет до 17,2%. Цена — 2400 грн*. 
  • RSM60-6-280P — поликристаллическая модель от Risen с пятью токопроводящими дорожками на 60 клеток. Мощность и размеры такие же, как и у предыдущих представителей. Можно купить за 2700 грн*. 
  • Energy AXP120-12-156-290 от AXIOMA — пожалуй уникальная модель. Оснащена 12-тью токопроводящими шинами с мощностью на выходе в 290 Вт. Номинальный КПД — 17,5%, что тоже немало. В основе поликристалл. Уникальна тем, что при таких характеристиках в Украине стоит от 2400 грн*. Как производитель смог снизить цену настолько при сложной технологии производства, остается только догадываться. 

Таким образом на малоэффективные солнечные сетевые электростанции цена в 2-4 раза меньше, чем более производительные, однако и выдают они при этом на 25-20% меньше энергии. Если вы к примеру закупите 10 LP72, то за 40 000 грн* получите 3,7 кВт мощности, а установив на ту же сумму RSM60 (16 штук) 4,4 кВт. Однако при этом потребуется больше площади для монтажа, да и скорость деградации последних будет выше.

 

 

Хотите знать, как работают различные типы солнечных электростанций?

 

 

Лучшие солнечные панели в мире 2019

кпд солнечных батарейЕсли уже говорить о мощности, то хочется упомянуть еще одну модель — MAXEON-3 от SUNPOWER. За счет уникального параллельного соединения, чистейшего монокристалла и минимизации площади проводников на поверхности, компании удалось получить КПД в 22,1%, что можно назвать рекордом среди серийных солнечных батарей. Именно поэтому MAXEON-3 претендует на звание если не мощнейшей, то одной из мощнейших в 2019-м году. Обойдется, кстати, этот рекордсмен в 480 долларов, что дешевле, чем SunForte.

И еще в 2019-м SunPower анонсировала новые панели с увеличенными пластинами на основе производственной технологии MAXEON 3. По заявке они должны выдавать 400-415 Вт энергии, что стало бы абсолютным рекордом среди бытовых солнечных батарей. К сожалению, нам не удалось найти эту модель в онлайн-магазинах. 

Кстати, в сравнение брались только кремниевые модели, производителям комбинированных, в т.ч. и гибких модулей, удавалось добиться и эффективности и в 43%. Однако в серийное производство такие панели не пошли из-за сложной технологии изготовления и дороговизны.

 

Почему эффективность имеет значение 

Эффективность важна в первую очередь при ограниченной площади под установку модуля, ведь высокий КПД позволяет при малом количестве панелей получить нужную мощность на выходе. Кроме того, высокая эффективность свидетельствует об использовании качественных материалов и новых технологичных решений, что в свою очередь увеличивает эксплуатационный период и снижает скорость деградации модуля. 

Чтобы купить электростанцию на солнечных батареях нужно учитывать все эти факторы в совокупности, а также свой бюджет и ожидания от домашней СЭС. Так, если цель — заработать на зеленом тарифе, то возможно выгоднее закупить панели с меньшим КПД, а вот если нужна долговечная и надежная электростанция, стоит обратить внимание на передовые модели.

*Все цены представлены на момент написания статьи.

Как измерить мощность солнечной батареи? © Солнечные.RU

Что нужно для того, чтобы измерить мощность солнечной батареи и не купить, например, батарею мощностью 70 Ватт с маркировкой 100 Ватт? Всего лишь самый дешёвый тестер (мультиметр) и ясная солнечная погода.

 

Способ №1 (самый простой).

Расположите солнечную батарею так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Измерьте вольтметром напряжение холостого хода (Voc), подключив щупы вольтметра к разъемам солнечной панели.

Измерение напряжения холостого хода солнечной батареи 100 Вт

 

Измерьте амперметром ток короткого замыкания (Isc), подключив щупы амперметра к разъемам панели.

Измерение тока короткого замыкания солнечной батареи 100 Вт

 

Посчитайте мощность по следующей эмпирической формуле: P = Voc * Isc * 0.78, где коэффициент 0,78 — это примерное усреднённое отношение паспортной мощности панели к произведению паспортных Voc и Isc.

Чтобы определить мощность солнечной батареи, у которой в паспорте указано 100 Вт, мы провели измерения напряжения и тока, которые видны на фото выше: Voc = 22.08 Вольт и Isc = 6.37 Ампера. Подставив эти значения в формулу, можно узнать, что её мощность составляет 22.08 * 6.37 * 0.78 = 109.7 Вт.

Конечно, это не точный способ измерения и он даёт погрешность около 10%, но если при таком измерении Вы насчитаете только 70-80 Вт, то стоит задуматься, сколько же Вы реально заплатите за каждый Ватт мощности…

На протяжении многих лет мы неоднократно измеряли ток короткого замыкания солнечных батарей и заметили, что весной-летом при ясном небе в Москве ток обычно лежит в пределах от 95 до 105% от номинала. Самые низкие показания тока (около 70-80% от номинала) наблюдаются зимой и связано это с очень низким углом Солнца над горизонтом и большими потерями солнечной энергии в атмосфере.

Все фото измерений сделаны в Москве, в августе при температуре около 18 градусов в очень ясную погоду, в связи с чем мощность панели превышает свой номинал.

 

Способ №2 (более сложный).

Это более точный способ, дающий погрешность около 5%, но и более сложный, поскольку понадобится MPPT-контроллер с дисплеем и немного разряженный аккумулятор.

Как и в первом способе, нужно расположить солнечную панель так, чтобы на ВСЮ её поверхность падал прямой солнечный свет ПЕРПЕНДИКУЛЯРНО поверхности. Необходимо проводить измерения при ясной погоде в середине дня весной-летом, когда Солнце находится максимально высоко над горизонтом (угол Солнца должен быть более 42 градусов над горизонтом).

Кроме того, нужно подключить MPPT-контроллер к аккумулятору, а затем панель к MPPT-контроллеру.

На дисплее контроллера отображается напряжение солнечной панели (Vmp) и ток (Imp) в точке максимальной мощности.

Измерение напряжения и тока в точке максимальной мощности солнечной батареи 100 Вт

 

Посчитайте мощность по следующей формуле: P = Vmp * Imp

Как видно на фото, для той же панели мощностью 100 Вт, Vmp = 18 Вольт, Imp = 6.0 Ампер. Следовательно её мощность составляет 18 * 6 = 108 Вт.

Отметим, что показания контроллера могут иметь погрешность и для большей точности лучше ориентироваться не на них, а на показания мультиметра, которым можно измерить ток и напряжение солнечной панели, подключенной к контроллеру.

Если контроллер показывает только ток и напряжение аккумулятора, то для вычисления мощности панели нужно учесть КПД контроллера, который составляет около 95%. В этом случае расчет реальной мощности солнечной панели следует выполнять по формуле: P = Vakb * Iakb / 0.95 , где Vakb — напряжение АКБ, Iakb — ток заряда АКБ.

 

Способ №3 (самый точный).

Абсолютно точный способ — сдать панель в сертифицированную лабораторию, где проведут измерение мощности на специальном оборудовании. Такая лаборатория есть, например, в Зеленограде у компании «Телеком-СТВ».

 

Если при покупке Вам не повезло с погодой, то Вы можете провести измерения дома и если мощность не будет соответствовать заявленной, то можно сдать панель в магазин в течение 14 дней с момента покупки согласно закону о защите прав потребителей.

 

Результатами своих измерений мощности по этой методике Вы можете поделиться на нашем форуме.

 

Смотрите также:

 

Возобновляемый источник энергии — солнечная энергия от Гелиос Хаус

Опубликовано 21 октября 2016

Для сравнения различных моделей фотоэлектрических модулей между собой и с изделиями других  производителей используется параметр номинальной мощности солнечной батареи,  например 280Ватт.

Это означает, что солнечный модуль будем вырабатывать  не менее 280Ватт, в солнечный день при соблюдении определённых условий:

  • Освещенность не менее 1000 Ватт *м²;
  • Ориентация строго на Юг и под углом, соответствующим азимуту;
  • Окружающая температура воздуха 25°С;
  • Отсутствие затенений и другие менее значительные.

Каждое, из условий эксплуатации, влияющих на работу и вырабатываемую мощность солнечной батареи, стоит разобрать подробнее,  но это мы сделаем позднее.  В этой статье мы хотим сделать акцент на маркировке завода-изготовителя и ответить на самый популярный вопрос: «почему панели разных производителей, но с одинаковой площадью имеют разные показатели номинальной мощности?».

Почему солнечные батареи разных производителей, но с одинаковыми размерами имеют различные показатели номинальной мощности?

Однозначного ответа здесь дать нельзя, так как существует несколько вариаций:

1.Эффективность ячеек, будь то монокристалл 125х125мм или поликристаллические 155х155мм (а также любые другие их вариации в нарезке),  — каждый год растёт. С изменением эффективности увеличивается и мощность готовых изделий  — солнечных батарей. Но так как увеличение эффективности носит мировой характер, то и найти устаревшие ячейки сложно, они быстро выходят из обихода и редко используются известными производителями. То есть процесс должен быть максимально равномерным для всех производителей и поставщиков, а разрыв номинальной мощности в пределах одного размера — не заметным для потребителей.

2.Более явной причиной различия заявленной номинально мощности является «классификация завода-изготовителя своих конечных продуктов».  Здесь стоит упомянуть, что в мировых стандартах ценообразования, цена на солнечные батареи указывается за Ватт. То есть чем выше мощность изделия, тем дороже оно в конечном виде. Такая система ценообразования заставляет заводы с низким набором конкурентных преимуществ указывать номинал панели по максимальному параметру, с оговоркой «Power tolerance ± 5%»

Увидев такой показатель в паспорте модуля, конечный заказчик должен понимать, что номинальная мощность солнечной панели указана с вероятным отклонением, как в большую, так и в меньшую сторону с вероятностью 5%. Для солнечной панели 280 Ватт это означало бы диапазон от 266 Ватт до 294 Ватт. Но, это исключительно о производителях с низким показателем конкурентоспособности, потому как заводы-изготовители с хорошим имиджем никогда не завышают номинальную мощность и показатель «Power tolerance», а заявляют только в плюс, например «Power tolerance 0~+5%».

3.Существующая система OEM (англ. original equipment manufacturer — «оригинальный производитель оборудования» — организация, продающая под своим именем и брендом оборудование, сделанное другими предприятиями), получившая широкое распространение, в том числе и в России, вкупе с «жгучим желанием» заводов, не имеющих возможность выпускать конкурентный продукт, иногда выпускает на рынок товары, мощности которых указаны «по желанию заказчика», в частичном «отрыве от реальности». Одним словом покупатель, роль которого выполняет компания-поставщик товаров на российский рынок, по собственному желанию может указать номинал и другие характеристики товара, заведомо округлив их в большую сторону.  Так получаются «сверхэффективные», но только «по бумажкам» солнечные панели. К сожалению, такие продукты очень часто встречаются как в «эконом», так и в среднем сегменте. Как проверить? До покупки, к сожалению, никак. Проверить можно лишь в реально работающих системах и в сравнении.

Отвлекаясь на возможные причины различий номинала солнечных батарей, мы совсем забыли рассказать о фактическом наличии разницы параметров, в разрезе даже одной партии одного производителя она обязательно есть.

Рассмотрим сертификат завода, прилагаемый к паллету с 26тью солнечными панелями HH-POLY280W. Нужно отметить, каждая солнечная панель имеет свой уникальный серийный номер! Это обязательное условие заводов, производящих качественную продукцию. Серийный номер содержит всю информацию о сроке производства и позволяет отследить данные используемых материалов. Серийные солнечные батареи проходят обязательно исследование параметров готового изделия. Полученные данные заносятся в систему и прилагаются вместе с поставкой. Например, рассмотрим рис.1:

В паллете №10 с завода прибыло 26 солнечных панелей с номенклатурой HH-POLY280W, 280Вт. Каждое изделие имеет серийный номер из 20 букв и цифр. Для каждого указаны параметры рабочего напряжения, напряжения холостого хода, тока короткого замыкания, максимальной мощности и эффективности. Обратите внимание, что для большинства фотоэлектрических модулей с номинальной мощностью 280Ватт (заявленной заводом и поставщиком), согласно исследованиям Pmax находится в диапазоне 295,33~303,19 Ватт. А эффективность поликристаллических панелей достигает 18,56%.

То есть солнечная панель HH-POLY280W — 280Вт по праву может считаться 300Вт моделью солнечной батареи, о чем свидетельствую проведенные исследования.

Рис.1

       

Читать другие статьи..

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *