Site Loader

Содержание

Силовой трансформатор на феррите | Электрознайка. Домашний Электромастер.

Силовой трансформатор на феррите

Здравствуйте уважаемые коллеги!!

     Чтобы намотать импульсный выходной трансформатор на ферритовом сердечнике на любую мощность, необходимо провести предварительный, прикидочный расчет.  Сначала  нужно определиться с мощностью, которую необходимо получить на выходе трансформатора. 
     Обратимся к таблице параметров ферритовых магнитопроводов, в ней указаны размеры, площадь сечения магнитопровода, площадь окна и мощность, которую «теоретически»  можно получить от сердечника.
     Эту таблицу я «откопал» еще в «советской технической литературе» по электротехнике и не один раз убедился в ее верности.
Ферритовые кольца на разные размеры по позициям №1 — №16 имеют рабочую мощность Рвт, от 9 до 951 и более, ватт. Нетрудно заметить, что начиная с позиции №6, даже незначительное увеличение размеров ферритового кольца, приводит к резкому увеличению «пропускаемой» мощности  Р вт.
     Кольцо  К18,5×11х6,5 (Наруж. диам. х Внутр. диам. х Ширина кольца, в миллиметрах)  соответствует мощности 70 ватт.

    Кольцо К28×16х9 уже 232 ватта.   И так далее… 

     Начиная с позиции №5 уже можно использовать кольца для изготовления выходного трансформатора в импульсном блоке питания на мощность 10 — 15  ватт. С позиции №7 можно изготовить импульсный блок питания на 25 — 30 ватт.
     Количество витков в обмотках ферритового трансформатора (количество витков на один  вольт) зависит от поперечного сечения магнитопровода «Sк».  Выбор размера того или иного ферритового кольца или Ш — сердечника, для задуманного ИБП, зависит в основном от условия — уместятся ли заявленные количества витков в обмотках,  в окне.
      Чем  больше мощность трансформатора, тем диаметр провода обмоток  должен быть  выше. Чем меньше поперечное сечение феррита, тем больше число витков  в обмотках (выше количество витков, приходящееся на один вольт).
     Теоретически, все кольца, начиная с позиции №7, «дадут мощность» свыше 232 ватт, что вполне достаточно для среднемощного, до 200 ватт источника питания. Но пытаться «вымучить» из него 200 ватт бесполезно, площадь окна в 202 мм.кв. для этого очень мала.  Витки всех обмоток не влезут в его окно. Чтобы получить мощность 200 ватт, нужно брать больше размер кольца.

     Существуют также П — образные ферритовые сердечники (строчный трансформатор в телевизорах с кинескопами).
     Исходя из практики, импульсные трансформаторы, выполненные на Ш — образных и П — образных ферритовых сердечниках, имеют те же свойства, что и на ферритовом кольце.
     Ш — образный сердечник № 17: поперечное сечение среднего стержня  »  «Sк»= 56 мм.кв.;  площадь окна -«Sо» = 7,5 х 20 = 150 мм.кв…
     Ш — образный сердечник № 18 от ИБП компьютера: сечение «Sк» = 8,0 х 12,5 = 100мм.кв. = 1см.кв.;  Площадь окна «Sо» = 7,5 х 19 = 142 мм.кв…
     Сердечник № 19: «Sк» = 10 х 10 = 100 мм.кв. = 1 см.кв.;   «Sо» = 7,5 х 25 = 187 мм.кв…
Из всего перечня ферритовых магнитопроводов, я использовал для построения маломощных импульсных трансформаторов кольца: № 5,№ 6, № 7.
     Из Ш — образных сердечников: № 17, № 18, № 19.
     Из П — образных, от строчных трансформаторов с «Sк»= 1,1 — 1,3 см.кв.
     Основной параметр у кольца, П и Ш — сердечников, это площадь поперечного сечения магнитопровода «Sк».  Этот параметр определяет  количество витков провода в обмотках.  Чем больше площадь «Sк», тем меньше витков в обмотках.
     Для определения количества витков в обмотках трансформатора, необходимо определить число витков на 1 вольт, исходя из площади Sк. Для этого я постоянно  использую свою простую формулу, полученную эмпирическим путем:
     n = 0,7/Sк
     где: n — количество витков на 1 вольт для данного сердечника;
     0,7 — коэффициент;
      Sк  — площадь поперечного сечения феррита в см.кв.

     Второй основной параметр ферритового сердечника, это площадь окна Sо.       

     В таблице о ферритах видно — увеличивается площадь окна  «Sо», увеличивается объем феррита в сердечнике. Следовательно, запасается больше индуктивной энергии в феррите, увеличивается «пропускаемая» электрическая мощность Рвт.
Увеличить мощность ферритового трансформатора любой конфигурации, можно двумя путями:
     1. Взять феррит заведомо больших размеров;
     2. Применить складывание однотипных сердечников вместе.
При этом суммарная площадь поперечного сечения сердечника «Sк», будет кратна количеству штук, а общая площадь окна «Sо» остается прежней.

     Какой же конфигурации (П, Ш или кольцо) ферритовый сердечник наиболее подходит для построения трансформатора.  У каждой формы магнитопровода есть свои особенности.
     Например, кольцо:
     — обмотки трансформатора покрывают всю поверхность кольца, максимальное потокосцепление магнитного поля катушки и сердечника;
     — минимально поле рассеивания электромагнитной энергии;
     — максимальна площадь теплового излучения обмоток при нагревании, хороший теплоотвод — естественная вентиляция;
     — площадь окна у кольца больше, чем у Ш — образного сердечника, значит при одинаковой площади «Sк» (у кольца и Ш — сердечника), с кольца можно «снять» большую мощность.
     Трансформатор на Ш — сердечнике (при одинаковой мощности) более компактен, чем на кольце и П — образном сердечнике. Обмотки на Ш — обр. сердечнике сильно нагреваются, т. к. находятся внутри корпуса трансформатора, требуется обдув вентилятором.
     Силовые ферритовые трансформаторы в компьюторных блоках питания выполнены в основном на Ш — образных сердечниках.
Разбирая старый ферритовый трансформатор, обратите внимание, есть ли немагнитный зазор в прилегающих плоскостях. Для ферритовых сердечников, применяемых в двухтактных импульсных источниках питания, такой зазор не нужен.  Если зазор существует,  нужно аккуратно сточить на бруске, наждачной шкурке или мелком напильнике боковые стержни сердечника таким образом, чтобы сохранялась плоскость соприкосновения.

Как рассчитать ферритовый трансформатор. Импульсный трансформатор – виды, принцип работы, формулы для расчета

И все таки меня пригласили! Теперь дело со статьями пойдет более оперативно. Темой следующей части изначально я хотел сделать схемотехнику какого нибудь блока, а чего ждать? Но тут вспомнил свою школьную молодость и саму великую проблему с которой сталкивался — как изготовить неведомое для меня на тот момент зверя устройство —
импульсный трансформатор
. Прошло десять лет и я понимаю, что у многих (и не только начинающих) радиолюбителей, электронщиков и студентов возникают такие трудности — они попросту их боятся, а как следствие стараются избегать мощных импульсных источников питания (далее ИИП ).
После этих размышлений я пришел к выводу, что первая тема должна быть именно про трансформатор и ни о чем другом! Хотелось бы еще оговориться: что я подразумеваю под понятием «мощный ИИП» — это мощности от 1 кВт и выше или в случае любителей хотя бы 500 Вт.

Рисунок 1 — Вот такой трансформатор на 2 кВт для Н-моста у нас получится в итоге

Великая битва или какой материал выбрать?
Когда-то внедрив в свой арсенал импульсную технику думал, что трансформаторы можно делать только на доступном всем феррите. Собрав первые конструкции первым делом решил выставить их на суд более опытных товарище и очень часто слышал такую фразу:
«Ваш феррит гавно не самый лучший материал для импульсника»
. Сразу я решил узнать у них какую же альтернативу можно ему противоспоставить и мне сказали — альсифер или как его еще называют синдаст.

Чем же он так хорош и действительно ли лучше феррита?

Для начала надо определиться что должен уметь почти идеальный материал для трансформатора:
1) должен быть магнитомягким , то есть легко намагничиваться и размагничиваться:



Рисунок 2 — Гистерезисные циклы ферромагнетиков: 1) жесткий цикл, 2) мягкий цикл

2) материал должен обладать как можно большей индукцией насыщения, что позволит либо уменьшить габариты сердечника, либо при их сохранение повысить мощность.

Насыщение

Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.
В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.


3) материал должен иметь как можно меньшие потери на перемагничивание и токи Фуко

4) свойства материала не должны сильно изменяться при внешнем воздействии: механические усилия (сжатие или растяжение), изменение температуры и влажности.
Теперь рассмотрим свойства феррита и насколько он соответствует предъявленным выше требованиям.

Феррит — является полупроводником, а значит обладает собственным высоким электрическим сопротивлением. Это означает, что на высоких частотах потери на вихревые токи (токи Фуко ) будут достаточно низкими. Получается как минимум одно условия из списка выше у нас уже выполнено. Идем дальше…
Ферриты бывают термостабильными и не стабильными, но этот параметр не является определяющим для ИИП. Важно то, что ферриты работают стабильно в температурном диапазоне от -60 и до +100 о С и это у самый простых и дешевых марок.



Рисунок 3 — Кривая намагничивания на частоте 20 кГц при разных температурах

И наконец-то самый главный пункт — на графике выше мы увидели параметр, который будет определять практически все — индукция насыщения . Для феррита она обычно принимается 0,39 Тл. Стоит запомнить, что при разных условиях — этот параметр будет меняться. Он зависит как от частоты, так и от температуры работы и от других параметров, но особый акцент стоит сделать на первых двух.

Вывод: феррит ништяк! отлично подходит для наших задач.

Несколько слов об альсифере и чем он отличается

1) альсифер работает в чуть большем широком спектре температур: от -60 и до +120 о С — подходит? Еще лучше чем феррит!
2) коэффициент потерь на гистерезис у альсиферов постоянный лишь в слабых полях (при малой мощности), в мощном поле они растут и очень сильно — это очень серьезный минус, особенно на мощностях более 2 кВт, так что тут проигрывает.
3) индукция насыщения
до 1,2 Тл!
, в 4 раза больше чем у феррита! — главный параметр и так обгоняет, но не все так просто… Конечно это достоинство никуда не уйдет, но пункт 2 ослабляет его и очень сильно — определенно плюс.

Вывод: альсифер лучше чем феррит, в этом дядьке мне не соврали.

Результат битвы: любой прочитав описание выше скажет альсифер нам подавай! И правильно… но попробуйте найти сердечник из альсифера и чтобы с габаритной мощностью 10 кВт? Тут обычно человек приходит в тупик, оказывается их и нету особо в продаже, а если и есть, то на заказ напрямую у производителя и цена вас испугает.
Получается используем феррит, тем более если оценивать в целом, то он проигрывает очень незначительно… феррит оценивается относительно альсифера в «8 из 10 попугаев».

Хотел я обратиться к своему любимому матану, но решил этого не делать, т.к. +10 000 знаков к статье считаю избыточным. Могу лишь посоветовать книгу с очень хорошими расчетами авторства Б. Семенова «Силовая электроника: от простому к сложному». Смысла пересказывать его выкладки с некими добавлениями смысла не вижу

Итак, приступаем к выполнению расчета и изготовлению трансформатора
Первым делом хочется сразу вспомнить очень серьезный момент — зазор в сердечнике. Он может «убить» всю мощность или добавить еще так на 30-40%. Хочу напомнить, что делаем мы трансформатор для Н-моста , а он относится к — прямоходовым преобразователям (forward по-буржуйский). Это значит, что зазор в идеале должен быть 0 мм.
Как-то раз, обучаясь курсе на 2-3 решил собрать сварочный инвертор, обратился к топологии инверторов Kemppi. Там я увидел в трансформаторах зазор 0,15 мм. Стало интересно для чего же он. Подходить к преподавателям не стал, а взял и позвонил в российское представительство Kemppi! А что терять? На моей удивление меня соединили с инженером-схемотехником и он рассказал мне несколько теоретических моментов, которые позволили мне «выползти» за потолок в 1 кВт.
Если в кратце зазор в 0,1-0,2 мм просто необходим! Это увеличивает скорость размагничивания сердечника, что позволяет прокачать через трансформатор большую мощность. Максимальный эффект от такого финта ушами зазора достиг в топологии «косой мост» , там введение зазор 0,15 мм дает прирост 100%! В нашем Н-мосту эта прибавка скромнее, но 40-60% думаю тоже не дурно.

Для изготовления трансформатора нам понадобится вот такой набор:

А)
Рисунок 4 — Ферритовый сердечник Е70/33/32 из материала 3С90 (чуть лучший аналог N87)

Б)
Рисукок 5 — Каркас для сердечника Е70/33/32 (тот что больше) и дроссель D46 из распыленного железа

Габаритная мощность такого трансформатора составляет 7,2 кВт. Такой запас нам нужен для обеспечения пусковых токов в 6-7 раз больше номинальных (600% по ТЗ

Импульсные блоки питания


Для статьи «Двухтактный автогенератор — ИБП своими руками».
Трансформатор Тр2 можно намотать на ферритовом кольце, на Ш – образном сердечнике или другой формы.


     Сердечник трансформатора подбирается по требуемой мощности на выходе инвертора.

    Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания.

     Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант.

     Вот некоторые рассуждения по этому поводу.
     Во первых: рекомендуемые к использованию, в результате расчетов, ферритовые сердечники (кольца, Ш-образные, броневые) не всегда имеются в наличии в торговых точках.
     Во вторых: тот ферритовый магнитопровод, что мы можем достать, как правило, не имеет никаких обозначений на корпусе о его магнитной проницаемости.
     Вот и получается, что все с таким трудом проведенные выкладки и расчеты количества витков в обмотках ферритового трансформатора из за неопределенности в магнитной проницаемости, теряют ценность.

     Я подошел к подбору выходного ферритового трансформатора с чисто практической стороны.
     Из технической литературы приведу таблицу  ферритовых колец для использования в качестве высокочастотный трансформаторов.
      В этой таблице дан размер магнитопровода, его поперечное сечение по сердечнику, размер окна.
     Произведение площадей, сечения магнитопровода и окна, дает возможность определить его габаритную мощность на частоте в 20 килогерц.
     На другой частоте соответственно и мощности будут другие.
     Ферритовые сердечники будут работать и на более высокой частоте, но увеличатся потери в магнитопроводе и КПД трансформатора уменьшится. Но ничего, для нашего случая частота автогенератора не превысит 45 — 50 КГц, это нормально.
     В нашем случае нужно подобрать ферритовый сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со старой аппаратуры вполне подходящее под наш случай. Его размер: К28х18х8 (наружний диаметр 28, внутренний 18, толщина 8 мм.).
     По таблице его габаритная мощность свыше 200 ватт, что более чем достаточно  для данного устройства. Не нужно стремиться брать ферритовое кольцо меньших размеров, это якобы уменьшает габариты устройства. Ничего подобного.
     Чем больше окно кольца, тем удобнее расположить в нем витки и не нужно стеснять себя в диаметре провода. Чем больше диаметр провода обмоток, тем меньше потерь в проводах и стабильнее выходное напряжение. К тому же, с увеличением сечения магнитопровода,  уменьшается количество витков на вольт, то есть будет меньше витков во всех обмотках.
     Количество витков на 1 вольт у ферритового трансформатора зависит от сечения сердечника магнитопровода.
     Известная формула для определения количества витков на вольт при расчете обмоток трансформатора изготовленного из стальных листов и работающего на частоте 50 герц:
           n=50/S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см. кв.

     Для расчета количества витков на вольт ферритового трансформатора на частоты свыше 20 килогерц, я применяю  немного видоизмененную формулу:
          n = 0,7 / S;
     где: S – площадь поперечного сечения ферритового сердечника в см. кв..
     Площадь поперечного сечения выбранного нами кольца К28х18х8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2 x 8 = 40 мм. кв. или 0,4 см. кв..
      Количество витков на 1 вольт выбранного мной ферритового магнитопровода:
    n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.

     Тогда количество витков первичной обмотки трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем 254 витка.
Диаметр провода 0,25 — 0,35 мм. Чем больше диаметр провода, тем мощнее будет ИБП, но все должно быть в разумных пределах.
     Вторичная обмотка состоит из двух полуобмоток w2-1 и w2-2, каждая из которых рассчитана на полное выходное напряжение.
     Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
     С учетом падения напряжения на диодах Д9, Д10 количество витков во вторичной обмотке примем: w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 — 0,7 мм.
     Напряжение обратной связи в обмотке w3 должно быть достаточным для работы генератора.  Для трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи w3: w3 = n x 6,5 = 1,75 x 6,5 = 11,3 витка. Примем: w3 = 12 витков. Диаметр провода 0,3 мм.
     Трансформатор Тр2 будем мотать на ферритовом кольце по схеме приведенной на рисунке.

     На рисунке показана последовательность намотки ферритового трансформатора.


     Ферритовое кольцо (рис. а) необходимо обмотать лакотканью или лучше  фторопластовой лентой (рис. б).
     Поверх мотается первичная обмотка w1. На начало и конец провода, для жесткости, надевается хлорвиниловая трубочка и провод вместе с трубочкой закрепляется нитками.
     Витки обмотки необходимо равномерно распределить по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца разделить на секторы.
Например на четыре сектора. Тогда в каждом секторе будет по 254/4 = 63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко второму, еще 63,5 витка и т.д.
     Идеальный случай, обмотку намотать виток к витку, но это вряд ли получится.
Начало и конец обмотки не должны касаться друг друга, между ними надо сохранить промежуток в 2-3 мм.. Это делается для избежания пробоя между витками начала и конца первичной обмотки.
Намотка на кольцо производится с помощью самодельного челнока, который можно изготовить из медной проволоки, по форме как на рисунке.
    
     Предварительно рассчитав необходимую длину провода (количество витков в обмотке умноженное на длину одного витка, плюс длину выводов) с небольшим запасом, наматываем  на челнок.  Закрепляем начало обмотки , провод вместе с трубочкой, нитками на кольце и при помощи челнока мотаем.  При намотке провода на кольцо необходимо следить, чтобы провод не скручивался и не образовывались «барашки». Нужно запастись большим терпением и тогда все получится.
     Сначала процедура намотки кольца будет проходить с трудом, но по мере накопления опыта работа ускорится.
     Поверхность намотанной первичной обмотки w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или лучше фторопласта (рис. г).
     Далее мотается вторичная обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются одновременно двумя проводами.
     Предварительно измеряется длина одного витка, а затем умножается на количество витков, плюс 10 сантиметров на длину выводов, плюс запас 20 см.
     Провод для вторичной обмотки толстый и мотается без челнока, одновременно двумя проводами. Начала двух проводов закрепляются нитками, а затем виток за витком, двумя проводами продеваются в кольцо. Между началами и концами вторичных полуобмоток нужно оставить на кольце свободным расстояние 5-6 мм. В него разместить витки обмотки w3
     Нужно стараться меньше гнуть провода и чтобы они оба не переплетались между собой.
Необходимо так же равномерно распределить количество витков вторичной обмотки по всему кольцу, т.е. разбить количество витков на четыре сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка уложилась в один ряд по всей длине, как на рисунке д).
     Конец одной полуобмотки (w2-1) спаять с началом другой полуобмотки (w2-2). Получится полная обмотка w2 с выводом посередине (рис. д).
      Обмотка обратной связи w3 мотается на первичную обмотку в одном слое с вторичной w2. Мотать ее поверх обмотки w2 нельзя, так как это может повлиять на режим автогенерации.

Ферриты для импульсных трансформаторов | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

 

Ферриты марок 300ННИ, 300ННИ1, 350ННИ, 450ННИ, 1000ННИ, 1100ННИ, 1100НМИ (группа V) предназначены для импульсных режимов намагничивания. Из ферритов этой группы изготавливаются кольцевые и П-образные сердечники импульсных трансформаторов для аппаратуры различного назначения, работающей в импульсных режимах. Марки характеризуются величиной импульсной магнитной проницаемости и температурной стабильностью магнитной проницаемости. Для ферритов, применяемых в мощных импульсных трансформаторах, обычно приводятся зависимости значения удельных объемных магнитных потерь от магнитной индукции и длительности намагничивающего импульса. Удельные объемные магнитные потери при импульсном намагничивании являются основным фактором, определяющим перегрев сердечника.

В табл.1.5.1 приведены основные электромагнитные параметры ферритов для импульсных полей, а вспомогательные — в табл.1.5.2 и 1.5.3. На рис.1.5.1 показана зависимость импульсной магнитной проницаемости от температуры окружающей среды. Зависимость удельных объемных магнитных потерь ферритов марок 1000ННИ, 450ННИ, 1100НМИ от индукции приведены на рис. 1.5.2, а зависимость импульсной магнитной проницаемости от длительности импульса — на рис.1.5.3.

Основные электромагнитные параметры ферритов V группы.

Марка феррита μИ при τИ=
=1…3 мкс и fИ=
=0,5…5 кГц
HИ opt, A/м ΔμИ/μИ, %, в интервале температур, °С
Номинальное значение Предельное отклонение -60…+20 -40…+20 +20…+85 +20…+100
300ННИ* 300 +80
-50
64 -4…+8 -8…+4
350ННИ* 350 ±75 80 0…45 -30…+30
450ННИ 450 ±50 240 0…-25 0…+10
1000ННИ 1000 +300
-250
64 0…-30 0…-30
1100ННИ 1100 ±250 80 0…-50 0…-50
1100НМИ 1100 ±150 80 -25…+25 -25…+25
300ННИ* 300 ±50 80…240 -30…+30 -30…+30

* — Импульсная магнитная проницаемость μИ определяется при длительности импульса τИ = 0,5…3мкс.

Вспомогательные параметры ферритов V группы.

Марка феррита fкр, МГц, при tgδ=0,1 Параметры петли гистерезиса в статическом режиме h
&times109 при f=0,1 МГц
ρ, Ом&timesм Θ, °С, не менее Конфигурация сердечников
μmax H_, A/м, при μmax B, Тл Br, Тл Hc, A/м
при H_= 800 A/м
300ННИ 300ННИ*
350ННИ 450ННИ 1000ННИ
1100ННИ
1100НМИ
2,00 2,00
2,50 1,00 0,500
0,400
0,300
300 400
1000 2100 3000
3000
3000
240 160
80 56 32
32
32
0,30 0,22
0,26 0,37 0,30
0,27
0,40
0,28 0,06
0,120 0,160 0,090
0,080
0,150
160,0 96,0
48,0 40,0 16,0
20,0
24,0
23 33
38 31 7,6
5,0
3,8
10 104
107 103 103
10
0,10
240 160
180 230 120
110
180
Кольцевые, П-образные
Кольцевые
Кольцевые,
О-образные
Кольцевые, П-образные
Кольцевые

Значение dk для ферритов V группы составляет 4,7…4,9.

Относительный температурный коэффициент начальной магнитной проницаемости для ферритов V группы.

Марка феррита αμ×106, 1/°C, в интервале температур, °C
-60…+20 -40…+20 +20…+50 +20…+100
300ННИ*
350ННИ
450ННИ
1000ННИ
1100ННИ
1100НМИ
-2,0…+1,0
+3,0…+24,0
+8,0…+14,0
+4,0…+9,0
+3,0…+6,0
+1,0…+3,0
+3,0…+1,0
+7,0…+24,0
+7,0…+14,0
+4,0…+9,0
+3,0…+6,0
+1,0…+3,0
-6,0…+1,0
+4,0…+17,0
+4,0…+17,0
+3,0…+9,0
+3,0…+5,0
-2,0…+1,0
-2,0…+1,0
+4,0…+17,0
+6,0…+18,0
+2,0…+6,0
+2,0…+4,0
+1,0…+3,0

 

ФЕРРИТ-ХОЛДИНГ: Новости

 

23.01 20 

ВНИМАНИЕ! Новый склад компании ЛЭПКОС находится по адресу: 196626, г. Санкт-Петербург, Московское шоссе, д.101, к.3.


30.12 19 

Уважаемые коллеги и партнеры! Коллектив компании ЛЭПКОС поздравляет с наступающими Новым годом и Рождеством! Желаем уверенно идти к самым амбициозным целям, всегда держать руку на пульсе и реализовать в Новом году все самые смелые идеи. Интересных проектов, хороших новостей и финансовых успехов!




24.12 19 

Режим работы склада ЛЭПКОС:31.12.2019 склад ЛЭПКОС работает с 8-30 до 15-00. В период с 01.01.2020 по 13.01.2020 в связи с новогодними праздниками и переездом склада ЛЭПКОС отгрузки продукции заказчикам производиться не будут. С 14 января 2020 года отгрузки будут осуществляться с нового склада по адресу: СПб, Московское шоссе, д.101, к.3. Приносим извинения за временные неудобства!




08.10 19 

ООО «ЛЭПКОС» приглашает посетить стенд нашей компании на выставке ChipEXPO 2019, которая пройдет с 16 по 18 октября 2019 года в г. Москве на территории ЦВК «Экспоцентр» на Красной Пресне, павильон «Форум», стенд C23.




26.06 19 

По итогам 2018 года компания «ЛЭПКОС» награждена компанией TDK памятным знаком «Лучший продавец ферритов 2018».



 

Ферритовые сердечники E, EF | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

 

Фирма Epcos выпускает 29 наименований типоразмеров ферритовых сердечников E размером от E5 до E80/30/20. Наиболее часто применяются сердечники из базовых силовых марок феррита N27 (для трансформаторов и дросселей, предназначенных для работы в диапазоне частот до 100 кГц) и N87 (до 500 кГц).

К преимуществу использования ферритовых сердечников конфигурации E можно отнести невысокую стоимость самих сердечников в сочетании с большим выбором намоточных каркасов, а также низкую трудоемкость изготовления на них моточных изделий за счет простоты выполнения рядовой намотки на станках.

Номенклатура ферритовых cердечников E | Каркасы и скобы
Проверить наличие сердечников на складе

Типоразмер A [мм] B [мм] C [мм] D [мм] h2 [мм] h3 [мм]
E 6,3 6,3-0,25 2,0-0,1 3,6+0,2 1,4-0,1 2,9-0,1 1,85+0,15
E 13/7/4 12,6±0,5/-0,4 3,7-0,3 8,9+0,6 3,7-0,3 6,5-0,2 4,5+0,3
E 16/8/5 16,0,+0,7/-0,5 4,7-0,4 11,3+0,6 4,7-0,3 8,2-0,3 5,7+0,4
E 16/8/4 (Ш4*4) 16,0±0,5-0,7 4,0-0,4 10,4+1,0 4-0,5 8±0,25 5,2+0,4
E 16/8/7,8 (Ш4*8) 16,0±0,5 8,0-0,5 10,9±0,5 4-0,4 8+0,25 5,2+0,4
E 20/10/6 20,4-0,8 5,9-0,3 14,1+0,6 5,9-0,3 10,1-0,3 7,0+0,3
E 25/13/7 25,0+0,8/-0,7 7,5-0,5 17,5+0,8 7,5-0,5 12,8-0,5 8,7+0,5
E 30/15/7 30,0+0,8/-0,6 7,3-0,5 19,5+0,8 7,2-0,5 15,2-0,4 9,7+0,6
E 32/16/11 32,0+0,7/-0,5 11,0-0,7 22,7+1 9,5-0,6 16,4-0,6 11,2+0,6
E 36/18/11 36,0+1/-0,7 11,5-0,5 24,5+1,2 10,2-0,5 18,0-0,4 12,0+0,6
E 40/16/12 40,6±0,6 12,5±0,25 мин. 28,6 12,5±0,25 16,5±0,2 10,5±0,3
E 42/21/15 42,0+1/-0,7 15,2-0,5 29,5+1,2 12,2-0,5 21,2-0,4 14,8+0,7
E 42/21/20 42,0+1/-0,7 20,0-0,8 29,5+1,2 12,2-0,5 21,2-0,4 14,8+0,7
E 55/28/21 55,0+1,2/-0,9 21,0-0,6 37,5+1,2 17,2-0,5 27,8-0,6 18,5+0,8
E 55/28/25 55,0+1,2/-0,9 25,0-0,6 37,5+1,2 17,2-0,5 27,8-0,6 18,5+0,8
E 65/32/27 65,0+1,5/-1,2 27,4-1,0 44,2+1,8 20,0-0,7 32,8-0,6 22,2+0,8
E 70/33/32 70,5±1,0 32,0-0,8 48,0+1,5 22,0-0,7 33,2-0,5 21,9+0,7
E 80/38/20 80,0±1,8 20,2-0,8 58,9+2,6 20,2-0,8 38,5-0,8 27,9+0,8

С информацией о стандартной номенклатуре намоточных аксессуаров, выпускаемых Epcos AG для ферритовых сердечников конфигурации E Вы можете ознакомиться, открыв соответствующий pdf файл из таблицы выше.

Компания ЛЭПКОС, по разрешению Epcos AG на территории России и СНГ, также рекомендует использовать с ферритовыми сердечниками конфигурации E, производства Epcos AG, дополнительный номенклатурный перечень недорогих намоточных каркасов и скоб других фирм, хорошо зарекомендовавших себя с точки зрения качества и более чем 15 летнего опыта применения ведущими изготовителями РЭА России.

Пример расшифровки кода EPCOS и обозначение в конструкторской документации:

Единица измерения — штука (половинка)
E42/21/20 B66329GX187 — полное наименование ферритового сердечника.
E42/21/20 — конфигурация и типоразмер сердечника.
B66329 — код типоразмера E42/21/20.
87 — сердечник выполнен из феррита марки N87.

Практически весь отечественный типоразмерный ряд Ш-образных сердечников имеет полные аналоги по геометрическим размерам ферритовым сердечникам E, что облегчает их замену на аналоги производства Epcos, выполненные из современных материалов без изменения установочных размеров на плате. Таблицу соответствия можно посмотреть здесь.

Для уменьшения потерь при транспортировке и хранения рекомендуем по-возможности заказывать сердечники кратно количеству в заводской упаковке. С информацией о количестве сердечников в стандартной заводской пенопластовой упаковке можно ознакомиться здесь.

 

ФЕРРИТ-ХОЛДИНГ: Новости

 

23.01 20 

ВНИМАНИЕ! Новый склад компании ЛЭПКОС находится по адресу: 196626, г. Санкт-Петербург, Московское шоссе, д.101, к.3.


30.12 19 

Уважаемые коллеги и партнеры! Коллектив компании ЛЭПКОС поздравляет с наступающими Новым годом и Рождеством! Желаем уверенно идти к самым амбициозным целям, всегда держать руку на пульсе и реализовать в Новом году все самые смелые идеи. Интересных проектов, хороших новостей и финансовых успехов!




24.12 19 

Режим работы склада ЛЭПКОС:31.12.2019 склад ЛЭПКОС работает с 8-30 до 15-00. В период с 01.01.2020 по 13.01.2020 в связи с новогодними праздниками и переездом склада ЛЭПКОС отгрузки продукции заказчикам производиться не будут. С 14 января 2020 года отгрузки будут осуществляться с нового склада по адресу: СПб, Московское шоссе, д.101, к.3. Приносим извинения за временные неудобства!




08.10 19 

ООО «ЛЭПКОС» приглашает посетить стенд нашей компании на выставке ChipEXPO 2019, которая пройдет с 16 по 18 октября 2019 года в г. Москве на территории ЦВК «Экспоцентр» на Красной Пресне, павильон «Форум», стенд C23.




26.06 19 

По итогам 2018 года компания «ЛЭПКОС» награждена компанией TDK памятным знаком «Лучший продавец ферритов 2018».



 

как изготовить ферритовый трансформатор | Электрознайка. Домашний Электромастер.

Трансформатор для двухтактного ИБП.

Для статьи: «Двухтактный ИБП своими руками»

     Трансформатор Тр2 можно намотать на ферритовом кольце, на Ш – образном сердечнике или на сердечнике другой формы.

Сердечник трансформатора подбирается по требуемой мощности на выходе инвертора.

    Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания.   Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант расчета ферритового сердечника для импульсного блока питания.

     Вот некоторые мои рассуждения по этому поводу.
     Во первых: рекомендуемые к использованию, в результате расчетов, ферритовые сердечники (кольца, Ш-образные, броневые) не всегда имеются в наличии в торговых точках.
     Во вторых: тот ферритовый магнитопровод, что мы можем достать, как правило, не имеет никаких обозначений на корпусе о его магнитной проницаемости.
     Вот и получается, что все с таким трудом проведенные выкладки и расчеты количества витков в обмотках ферритового трансформатора, из за неопределенности в магнитной проницаемости феррита, теряют ценность.

      Я подошел к подбору выходного ферритового трансформатора с чисто практической стороны.
     Из технической литературы приведу таблицу  ферритовых колец для использования в качестве высокочастотный трансформаторов.
В этой таблице дан размер магнитопровода, его поперечное сечение по сердечнику, размер окна.
     Произведение площадей, сечения магнитопровода и окна, дает возможность определить его габаритную мощность на частоте в 20 килогерц.
На другой частоте соответственно и мощности будут другие.
Ферритовые сердечники будут работать и на более высокой частоте, но увеличатся потери в магнитопроводе и КПД трансформатора уменьшится. Но ничего, для нашего случая частота автогенератора не превысит 45 — 50 КГц, это нормально.
     В нашем случае нужно подобрать ферритовый сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со старой аппаратуры вполне подходящее под наш случай. Его размер: К28×18х8 (наружний диаметр 28, внутренний 18, толщина 8 мм.).
По таблице его габаритная мощность свыше 200 ватт, что более чем достаточно  для данного устройства. Не нужно стремиться брать ферритовое кольцо меньших размеров, это якобы уменьшает габариты устройства. Ничего подобного.
     Чем больше окно кольца, тем удобнее расположить в нем витки и не нужно стеснять себя в диаметре провода. Чем больше диаметр провода в первичной и вторичной обмоток, тем меньше потерь в проводах и стабильнее выходное напряжение. К тому же, с увеличением сечения магнитопровода,  уменьшается количество витков на вольт, то есть будет меньше витков во всех обмотках.
     Количество витков на 1 вольт у ферритового трансформатора зависит от сечения сердечника магнитопровода.
  Известная формула для определения количества витков на вольт при расчете обмоток трансформатора изготовленного из стальных листов и работающего на частоте 50 герц:
n = 50  /S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см. кв.

     Для расчета количества витков на вольт ферритового трансформатора на частоты свыше 20 килогерц, я применяю  немного видоизмененную формулу:

       n = 0,7 / S;
где: S – площадь поперечного сечения ферритового сердечника в см. кв…
Площадь поперечного сечения выбранного нами кольца К28×18х8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2 x 8 = 40 мм. кв. или 0,4 см. кв..
Количество витков на 1 вольт выбранного мной ферритового магнитопровода:
n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.

     Тогда количество витков первичной обмотки трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем 254 витка.
Диаметр провода 0,25 — 0,35 мм. Чем больше диаметр провода, тем мощнее будет ИБП, но все должно быть в разумных пределах.
     Вторичная обмотка состоит из двух полуобмоток w2-1 и w2-2, каждая из которых рассчитана на полное выходное напряжение.
Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
С учетом падения напряжения на диодах Д9, Д10 количество витков во вторичной обмотке примем: w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 — 0,7 мм.
     Напряжение обратной связи в обмотке w3 должно быть достаточным для работы генератора.  Для трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи  w3 = n x 6,5 = 1,75 x 6,5 = 11,3 витка. Примем: w3 = 12 витков. Диаметр провода 0,3 мм.
     Трансформатор Тр2 будем мотать на ферритовом кольце по схеме приведенной на рисунке.

На рисунке показана последовательность намотки ферритового трансформатора.

     Ферритовое кольцо (рис. а) необходимо обмотать лакотканью или лучше  фторопластовой лентой (рис. б).
Поверх мотается первичная обмотка w1. На начало и конец провода, для жесткости, надевается хлорвиниловая трубочка и провод вместе с трубочкой закрепляется нитками.
     Витки обмотки необходимо равномерно распределить по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца разделить на секторы. Например на четыре сектора. Тогда в каждом секторе будет по 254 витка / 4 = 63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко второму, еще 63,5 витка и т.д.

Идеальный случай, это  намотать обмотку виток к витку, что вряд ли получится.
     Начало и конец проводов обмотки не должны касаться друг друга, между ними надо сохранить промежуток в 2-3 мм… Это делается для избежания пробоя между витками начала и конца первичной обмотки.
     Намотка на кольцо производится с помощью самодельного челнока, который можно изготовить из медной проволоки, по форме как на рисунке.

     Предварительно рассчитав необходимую длину провода (количество витков в обмотке умноженное на длину одного витка, плюс длину выводов) с небольшим запасом, наматываем  на челнок.  Закрепляем начало провода обмотки , провод вместе с трубочкой, нитками на кольце и мотаем при помощи челнока.  При намотке провода на кольцо необходимо следить, чтобы провод не скручивался и не образовывались «барашки». Нужно запастись большим терпением и тогда все получится.
     Сначала процедура намотки кольца будет проходить с трудом, но по мере накопления опыта, работа ускорится.
     Поверхность намотанной первичной обмотки w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или лучше фторопласта (рис. г).
     Далее мотается вторичная обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются одновременно двумя проводами.
     Нужно определить длину каждого провода для w2-1 и w2-2. Предварительно измеряется длина одного витка, а затем умножается на количество витков, плюс 10 сантиметров на длину выводов, плюс запас 20 см.
       Провод для вторичной обмотки толстый и мотается без челнока, одновременно двумя проводами. Начала двух проводов закрепляются нитками, а затем виток за витком, двумя проводами продеваются в кольцо. Между началами и концами вторичных полуобмоток нужно оставить на кольце свободным расстояние 5-6 мм. В этот зазор  разместить витки обмотки w3
 Нужно стараться меньше гнуть провода и чтобы они оба не переплетались между собой.
     Необходимо так же равномерно распределить количество витков вторичной обмотки по всему кольцу, т.е. разбить количество витков на четыре сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка уложилась в один ряд по всей длине, как на рисунке д).
Конец одной полуобмотки (w2-1) спаять с началом другой полуобмотки (w2-2). Получится полная обмотка w2 с выводом посередине (рис. д).
     Обмотка обратной связи w3 мотается на первичную обмотку в одном слое с вторичной w2. Мотать ее поверх обмотки w2 нельзя, так как это может повлиять на режим автогенерации.

УДАЧИ ВАМ!!!!

Выбор размера магнитопровода для силовых трансформаторов и дросселей — Coretech

При выборе сердечника руководствуются его объёмом (V, куб.мм.) и величиной окна для размещения обмотки. Вводят понятие габаритная мощность магнитопровода.
В следующих таблицах приводится пропускная способность мощности (P, Вт) при частоте коммутации 100кГц для различных типоразмеров ферритов:
•  EE, EF, EC, ETD, EFD,
•  UU, UI, P, PM, RM и тороиды (кольца)
.
Данные для разборных сердечников, которые имеют отверстие на главном стержне в таблице снабжены дополнительнительным индексом «о».

~P, Вт

/100кГц/

EE, EF

(V ,мм3)

EC

(V ,мм3)

ETD

(V ,мм3)

EFD

(V ,мм3)

P < 5

EF12.6(369мм3)

5…10 EF16(750мм3) ^
10…20 EF20(1490мм3) ^ EFD15(510мм3)
20…50 EF25(2990мм3) ^ ETD29(5470мм3) EFD20(1460мм3)
50…100 EE30/15/7(4000мм3)

EC35(6530мм3),

EC41(10800мм3)

ETD29(5470мм3),

ETD34(7640мм3)

EFD25(3300мм3),

EFD30(4700мм3)

100…200

EE42/21/15(17300мм3),

EE42/21/20(22700мм3)

EC41(10800мм3),

EC52(18800мм3)

ETD34(7640мм3),

ETD39(11500мм3),

ETD44(17800мм3)

200…500 EE55/28/21(44000мм3) EC52(18800мм3)

ETD44(17800мм3),

ETD49(24000мм3),

ETD54(35500мм3)

P > 500

EE65/32/27(79000мм3)

EE70/33/32(102000мм3)

EC70(40100мм3) ETD59(51500мм3)


~P, Вт

/100кГц/

UU, UI

(V ,мм3)

P, PM

(V ,мм3)

RM

(V ,мм3)

T

(V ,мм3)

P < 5 UU10(309мм3) P11/7(309мм3) RM4(322мм3) T14/9/5(430мм3)
5…10 ^ P14/8(628мм3) RM5(574мм3) T20/10/6(1250мм3)
10…20 UU15(1680мм3) P18/11(1270мм3) RM6(1090мм3) T22/14/6.4(1340мм3)
20…50 UU20(3800мм3)

P22/13(2460мм3),

P26/16(4370мм3)

RM8(2440мм3),

RM10(4310мм3)

T25/15/10(2944мм3)
50…100 ^ P30/19o(6190мм3) RM12(8340мм3) T29/19/15(5410мм3)
100…200

UU25(9180мм3),

UU30(17900мм3)

P36/22o(10700мм3) RM14(13900мм3) T50/30/19(22378мм3)
200…500 UU46(71300мм3)

P42/29o(18200мм3),

PM74/59o(101000мм3)

T63/38/25(46500мм3),

T80/40/15(50200мм3)

P > 500

UI93/16(115000мм3),

UI100/25(158000мм3)

P66/56o(88200мм3),

PM87/70o(133000мм3),

PM114/93o(344000мм3)

T140/106/22
(161100мм3)

В зависимости от специфики работы высокочастотного преобразователя выбирают ту или иную форму и габариты магнитопровода.
В таблицах приведены рекомендации компетентных производителей сердечников, которые помогают конструкторам радиоэлектронной аппаратуры осуществить только предварительный выбор типоразмера феррита.
Спектр магнитопроводов не ограничивается приведенными типоразмерами, существуют промежуточные размеры и совсем другие формы сердечников.
Если Ваш типоразмер отсутствует в этом обзоре, свяжитесь с нами, и наши инженеры предоставят информацию о самом широком спектре продукции.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *