Site Loader

Содержание

В чем измеряется мощность: активная, реактивная, полная

Электрические приборы характеризуются многими параметрами, одной из которых является мощность. Об этом многие слышали, но не каждый может точно объяснить, что это такое, в чем измеряется мощность и как ее определить.

Знание мощности помогает сравнивать однотипные устройства, подбирать необходимый источник питания, прогнозировать расход электроэнергии и некоторое другое. В первую очередь, конечно же, необходимо познакомиться с этим термином.

Что такое мощность электрического тока

Под мощностью электрического тока понимают некоторые изменения, связанные с энергией. Например, передача электроэнергии по проводам. В этом случае определяется мощность линии.

Или это может быть преобразование, так электродвигатель может совершать какую-то механическую работу, телефон преобразует электричество в радиоволны, расходует энергию на работу процессора, экрана и тому подобное. Получается, что под мощностью понимают потребление энергии за определенный промежуток времени.

Но есть и обратный процесс. Так генератор, напротив, вырабатывает электроэнергию, отдавая ее потребителю, обладает какой-то мощностью. Аккумулятор может быть как источником энергии, так и потребителем во время заряда. По своей сущности мощность является скалярной величиной и определяется в точечном отрезке времени.

Скалярная – величина, определяемая только числом, без указания направления движения электрического тока.

Кроме того, сам потребитель может менять свою мощность в зависимости от поставленной задачи. На примере съемочной камеры это легче объяснить.

При работе камеры ток потребления один, если делается фотосъемка, то мощность другая, а если применяется вспышка, то мощность уже третья. И каждый раз можно определить потребление энергии с помощью простой формулы.

Формула расчета мощности, тока и напряжения

Сначала следует определить входящие в формулу единицы измерения мощности или определить, что делает электрическую энергию способной выполнять какие-либо действия?

Электрический заряд, из которого состоит ток, должен перемещаться, только в этом случае возможно его проявление, так как по определению электрический ток – это движение заряженных частиц по замкнутой цепи. Поэтому мощность напрямую зависит от количества перемещенной энергии за точку времени в определенной цепи.

Что заставляет заряды перемещаться? Это создаваемая источником питания разность потенциалов. Измеряется она в Вольтах и называется напряжением. Другое, что еще нужно учесть – количество зарядов, проходящих в этот момент через поперечное сечение проводника. Это называется силой тока и измеряется в Амперах. Вот две составляющие, которые необходимы для упрощенной формулы.

Что нужно сделать с этими составляющими? Чтобы проще было понять, будем считать, что напряжение отвечает за скорость передвижения, а ток за количество заряда. Пусть напряжение будет равно 1 единице, а ток начнется с 2 зарядов. В этом случае за единицу времени будет перемещено 2 заряда.

А если напряжение увеличить до 2 единиц? Тогда и зарядов будет перемещено в два раза больше, поскольку скорость перемещения будет увеличена.

Из этого делаем вывод: чтобы узнать мощность (количество перемещенных зарядов), необходимо напряжение умножить на ток. Подставив условные обозначения, получим формулу мощности: P=UI;

  • где P – мощность,
  • U – напряжение,
  • I – сила тока.

Осталось узнать, в чем измеряется электрическая мощность.

Ватт и другие единицы измерения мощности

Впервые понятие ватт было использовано в 1882 году. До этого мощность измерялась в лошадиных силах. В международную систему этот термин был включен в 1960 году. Для обозначения используют букву W в международной системе и Вт, как русский эквивалент. Понятие мощности используется не только в электротехнике, мощность может быть:

  • механической;
  • тепловой;
  • электромагнитной и так далее.

Если разбираться в чем измеряется мощность тока, то здесь существуют производные от основной единицы. Полный список приводится в таблице.

В быту чаще всего используются Ватты и килоВатты. И здесь может возникнуть путаница. Когда нужно узнать, в чем измеряется мощность, то следует уточнять, о чем идет речь.

Дело в том, что есть еще одно измерение – киловатт в час. В чем разница между килоВатт и килоВатт в час?

Первое понятие указывает на мощность прибора, то есть способность прибора преобразовывать электрическую энергию во что-то другое. Например, лампочка мощностью 1 кВт способна за один час потребить энергию равную мощности в 1 кВт.

Лампочка мощностью 100 Вт за 10 часов потребит такую же энергию. А счетчик, который контролирует потребление энергии, за один час учитывает потребление всей энергии, проходящей через него. За этот же час может быть расходовано несколько килоВатт.

Получается, что мощность прибора не зависит от времени работы, а вот потребляемая мощность, напротив, напрямую связана со временем. Поскольку речь пошла о переменном токе, то следует также отметить, что и здесь не все так просто.

В чем измеряется активная, реактивная и полная мощность

Когда речь идет о постоянном токе, тогда приведенная выше формула применима к вычислению. Она также может быть использована для измерения мгновенного значения мощности в переменном токе, но что касается определения мощности в длительном временно́м значении, то здесь эта формула неприменима. Дело в том, что в переменном токе существует несколько определяемых мощностей:

  • активная;
  • реактивная;
  • полная.

Сразу отметим, что полная мощность включает в себя активную и реактивную мощности. Что представляют собой эти составляющие и в чем измеряется мощность каждой из них?

Реактивная мощность, если не вдаваться в сложности, состоит из мощности нагрузки, в цепи которой включены индуктивности и (или) емкости.

Индуктивностью называются катушки, с сердечником или без. Например, трансформатор, двигатель, дроссель. Под емкостью подразумевают конденсаторы.

Она определяется по формуле Q=U·I·sinφ. Единицей измерения служит

ВАр (Вольт-Ампер реактивный) или var. Новая составляющая sinφ определяет сдвиг фазы в градусах или радианах. Что это значит?

При прохождении переменного тока через индуктивность ток начинает опаздывать от меняющегося напряжения. Связано это с электромагнитным полем, возникающим при прохождении через проводник тока. Это поле мешает менять направление. Такой сдвиг называют положительным.

Емкость, напротив, действует в обратном направлении. Конденсатор стремится сравнять разность потенциалов на своих обкладках. Поэтому ток опережает напряжение. Такой сдвиг называют отрицательным.

Активная мощность определяется по формуле P=U·I·cosφ. В цепи с активной нагрузкой емкостные и индуктивные составляющие выражены очень слабо. Измеряется в Ваттах (Вт).

Полная мощность определяется суммой активной и реактивной мощности для вектора. Измеряется в Вольт Амперах для СИ, в России используется ВА (Вольт-Ампер).

Мощность бытовых электрических приборов

Мощность служит основной характеристикой прибора, поэтому она указывается на каждом выпускаемой промышленностью электроприборе. Как варьирует эта мощность можно увидеть из таблицы.

Знание, в чем измеряется мощность прибора и что она характеризует, помогает согласовать нагрузку с источником тока, а это, в свою очередь, обеспечивает надежную работу всей системы.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Всё о ваттметрах

Ваттметр (ватт + др.-греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

Каждый потребитель, питаемый от электрической сети, потребляет какую-то мощность. Мощность характеризует в данном случае скорость выполнения электрической сетью работы, необходимой для функционирования того или иного прибора либо цепи, которая от этой сети питается. Разумеется, сеть должна быть в состоянии обеспечить данную мощность и не быть при этом перегруженной, иначе может случиться авария.

Для измерения потребляемой мощности в цепях переменного тока используют специальные приборы — ваттметры. Ваттметры показывают текущую потребляемую мощность, а некоторые из них способны даже подсчитать количество энергии в киловатт-часах, израсходованной за определенное время, пока потребитель работал. В данной статье мы рассмотрим несколько основных видов ваттметров.

Ваттметры находят применение в самых разных сферах промышленности и быта, особенно в электроэнергетике и в машиностроении. Кроме того ваттметры часто полезны в быту.

Их используют для определения мощности различной бытовой техники, для расчета приблизительной стоимости электроэнергии в месяц, для диагностики приборов, для тестирования сетей, да и просто в качестве наглядных индикаторов. Есть щитовые ваттметры, ваттметры в виде сетевых адаптеров, цифровые и аналоговые ваттметры.

Принцип работы данных приборов в общем виде прост: измеряются напряжение питания и потребляемый ток, а мощность определяется как произведение данных величин с учетом коэффициента мощности исследуемой цепи. Коэффициент мощности определяется по разности фаз между током и напряжением. Цифровые ваттметры отображают показания на дисплее или записывают их в цифровой форме, а аналоговые — показывают стрелкой на шкале.

Аналоговые ваттметры

К аналоговым устройства относятся ваттметры электродинамической системы. Их работа основана на взаимодействии пары катушек, первая из которых неподвижна, а вторая — подвижна, то есть может отклоняться в сторону. Неподвижная катушка связана с током, а подвижная — с напряжением.

Неподвижная катушка имеет небольшое число витков и включается в цепь измерения мощности последовательно, в то время как подвижная катушка имеет значительно большее количество витков и включается через резистор параллельно исследуемому прибору.

Чем больший ток проходит по неподвижной катушке — тем сильнее ее магнитное поле отклоняет подвижную катушку, связанную со стрелкой. Шкала прибора отградуирована в ваттах. Как вы уже поняли, здесь автоматически учитываются и ток, и напряжение, и коэффициент мощности цепи.

Схема подключения ваттметра:

Цифровые ваттметры

Цифровой ваттметр работает совершенно иначе. Ток измеряется косвенным путем по закону Ома посредством оценки падения напряжения на калиброванном шунте, а напряжение — по схеме цифрового вольтметра.  Датчиком тока может быть не обязательно шунт, но и трансформатор тока.

Измеренные схемой мгновенные параметры тока и напряжения обрабатываются микропроцессором, который вычисляет на основе этих данных потребляемую мощность, а также величину суммарной электроэнергии, которая была израсходована потребителем за время проведения замеров. Результат отображается на цифровом дисплее прибора.

Аналоговые приборы часто можно встретить в виде щитовых, модульных изделий, а цифровые — в виде профессионального оборудования и портативных устройств.

Бытовой ваттметр

Очень распространенный пример простого цифрового ваттметра — бытовой ваттметр в виде сетевого адаптера — переходника. Он предназначен для наблюдения мощности потребления, а также для оперативной оценки стоимости электроэнергии в домашних условиях. Ваттметр вставляется в ту розетку, от которой обычно питается прибор, потребление которого необходимо узнать. Затем в розетку ваттметра втыкается вилка самого прибора.

По нажатии соответствующей кнопки, ваттметр начинает отсчет времени и запись количества потребленной с этого момента электроэнергии, то есть той энергии, которая была отдана через его розетку. Тут же считается стоимость электроэнергии, если предварительно задана цена киловатт-часа. Пока прибор работает а ваттметр измеряет мощность, стоимость на дисплее периодически обновляется. Ваттметры такого типа способны измерять мощности до 3600 Вт.

Стоит вставить прибор в розетку и воткнуть в него вилку — на дисплее тут же начинается отсчет времени и в режиме реального времени отображается потребляемая мощность. При помощи кнопок можно переключить отображаемый параметр с мощности — на ток, на напряжение, посмотреть пиковую мощность, минимальную мощность и т. д.

Кроме того на дисплее можно увидеть частоту переменного тока в розетке. Задав стоимость киловатт-часа электроэнергии, при помощи бытового ваттметра можно оценить стоимость электроэнергии, потребляемой холодильником, компьютером, вентилятором, кондиционером, обогревателем, водонагревателем и т. д.

Профессиональные ваттметры

Профессиональные ваттметры отличаются расширенным функционалом и повышенным классом точности. Данные приборы позволяют тестировать более простые измерительные приборы, а сами способны измерять мощности в значительно более широком диапазоне величин токов, напряжений и частот нежели бытовые.

Профессиональный ваттметр стоит дороже, как любой стационарный прибор подобного класса, просто в силу повышенных требований к точности и качеству измерений. Зачастую профессиональные ваттметры не критичны к форме тока, они могут измерять переменный и постоянный, синусоидальной, прямоугольный, пульсирующий и пилообразный токи, вычислять при этом мощность потребления с указанием коэффициента мощности и характера нагрузки (активная, индуктивная, емкостная, смешанная). Выпускаются как для работы с однофазными цепями, так и для трехфазных.

Щитовые ваттметры

Для осуществления замеров и индикации активной и реактивной мощности в сетях трехфазного или однофазного переменного тока, полезны щитовые встраиваемые ваттметры. Значение текущей мощности индикатор показывает в виде цифр на своем дисплее, который может иметь обычно до четырех разрядов для обеспечения достаточно высокой точности. Прибор имеет вид своеобразной измерительной головки, монтируемой в корпус.

Привычное применение ваттметров данного вида — индикаторные панели различных электротехнических устройств, работающих в сетях с частотой 50 Гц, то есть такие, где ваттметр установлен стационарно и больше не снимается. Возможно сопряжение ваттметра с электронными схемами, которые корректируют работу цепи в которой он установлен в зависимости от динамики активной или реактивной мощности потребления.

Ранее ЭлектроВести писали, что правительство Южной Кореи опубликовало «Четвёртую дорожную карту исследований и разработок в области приоритетных энергетических технологий», которая предусматривает повышение эффективности солнечных модулей до 24% к 2030 году и одновременно снижение их стоимости более чем вдвое.

По материалам: electrik. info.

Отличие «киловатт» от «киловатт-час»

Отличие «киловатт» от «киловатт-час»

«киловатт» и «киловатт-час» – схожие в названии две большие разницы. «киловатт» – кратная «ватт», системная единица измерения мощности. «киловатт-час» – внесистемная единица учёта потребленной или произведенной электрической энергии. В ватт и киловатт выражается величина мощности электрического устройства, в киловатт-час – считываются показания электросчетчика.

«ватт» и «киловатт»

«ватт» (Вт, W) – производная системная единица измерения мощности, связанная с основными единицами системы СИ:

  • Вт = Дж/с;
  • Вт = H•м/с;
  • Вт = В•А.

«1 ватт» определяется мощностью устройства, совершающего работу величиной в 1 джоуль за 1 секунду времени. Как единица измерения мощности, ватт принят в 1882г., включён в систему СИ в 1960г. и назван в честь Джеймса Уатта (Ватта) – создателя универсальной паровой машины. В системе СИ «ватт-ами» обозначают величину механической, тепловой, электрической и любой другой мощности. Образование кратных и дольных единиц от ватт производится применением набора стандартных префиксов системы СИ – кило, мега, гига …

  • 1 ватт
  • 1000 ватт = 1 киловатт
  • 1000 000 ватт = 1000 киловатт = 1 мегаватт
  • 1000 000 000 ватт = 1000 мегаватт = 1000 000 киловатт = 1гигаватт
  • «киловатт» – кратная «ватт» единица измерения мощности

«киловатт-час»

Киловатт-час (кВт•ч, kW•h) – внесистемная единица учёта количества потребленной или произведённой электрической энергии. Использование «киловатт-час» на территории России регламентирует переработанный советский ГОСТ 8.417, однозначно определяющий наименование, обозначение и область применения «киловатт-час».

Скачать ГОСТ 8.417-2002. pdf [510,78 Kb] (cкачиваний: 3391)

Выдержка из ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин», п.6 Единицы, не входящие в СИ (фрагмент таблицы 5).

Внесистемные единицы, допустимые к применению наравне с единицами СИ

  • Наименование величины: Энергия
  • Наименование единицы: киловатт-час
  • Обозначение: kW•h (кВт•ч)
  • Соотношение с единицей СИ: 3,6×106 Дж
  • Область применения: Для счётчиков электрической энергии

ГОСТ 8.417-2002 рекомендует использовать «киловатт-час», как основную единицу измерения для учёта количества использованной электроэнергии. Потому как, «киловатт-час» – наиболее простая, удобная и практичная форма, позволяющая получать максимально приемлемые человекопонятные результаты. ГОСТ 8.417-2002 абсолютно не возражает против использования на потребительском и узко-профессиональном уровне кратных и дольных единиц, образованных от «киловатт-час»:

  • 1 киловатт-час = 1000 ватт-час
  • 1 мегаватт-час = 1000 киловатт-час

Большинство национальных технических стандартов постсоветских стран увязаны со стандартами бывшего Советского Союза. В метрологии постсоветского пространства существуют аналоги российского ГОСТ 8.417 или ссылки на него.

Обозначение бытовой электротехники

Общепринятая практика – обозначать мощность электрических устройств на их корпусе. Выбор единиц измерения происходит индивидуально, на усмотрение производителя. Учитывая особенности производимой электротехники, возможны (и не есть ошибкой) следующие варианты обозначения:

  • в ваттах и киловаттах (Вт, кВт, W, kW)
    (обозначение механической или тепловой мощности электроприбора)
  • в ватт-часах и киловатт-часах (Вт·ч, кВт·ч, W·h, kW·h)
    (обозначение потребляемой электрической мощности электроприбора)
  • в вольт-амперах и киловольт-амперах (VA, кVA )
    (обозначение полной потребляемрй электрической мощности электроприбора)

Единицы измерения для обозначения мощности электроприборов

ватт и киловатт (Вт, кВт, W, kW)
— единицы измерения мощности в системе СИ
Используются для обозначения общей физической мощности чего угодно, в том числе и электроприборов. Если на корпусе электроагрегата стоит обозначение в ваттах или киловаттах – это значит, что этот электроагрегат, во время своей работы, развивает указанную мощность. Как правило, в «ваттах» и «киловаттах» указывается мощность электроагрегата, который является источником или потребителем механического, теплового или иного вида энергии. В «ваттах» и «киловаттах» целесообразно обозначать механическую мощность электрогенераторов и электродвигателей, тепловую мощность электронагревательных приборов и агрегатов и т.д. Обозначение в «ваттах» и «киловаттах» производимой или потребляемой физической мощности электроагрегата происходит при условии, что применение понятия электрической мощности будет дезориентировать конечного потребителя. Например, для владельца электронагревателя важно количество полученного тепла, а уже потом – электрические расчёты.
ватт-час и киловатт-час (Вт·ч, кВт·ч, W·h, kW·h)
— внесистемные единицы измерения потребляемой электрической энергии (потребляемой мощности). Потребляемая мощность – это количество электроэнергии, расходуемое электрооборудованием за единицу времени своей работы. Чаще всего, «ватт-часы» и «киловатт-часы» применяются для обозначения потребляемой мощности бытовой электротехники, по которой её собственно и выбирают.
вольт-ампер и киловольт-ампер (ВА, кВА, VA, кVA )
— Единицы измерения электрической мощности в системе СИ, эквивалентные ватт (Вт) и киловатт (кВт). Используются в качестве единиц измерения величины полной мощности переменного тока. Вольт-амперы и киловольт-амперы применяются при электротехнических расчётах в тех случаях, когда важно знать и оперировать именно электрическими понятиями. В этих единицах измерения можно обозначать электрическую мощность любого электроприбора переменного тока. Такое обозначение будет наиболее соответствовать требованиям электротехники, с точки зрения которой – все электроприборы переменного тока имеют активную и реактивную составляющие, поэтому общая электрическая мощность такого прибора должна определяться суммой её частей. Как правило, в «вольт-амперах» и кратным им единицам измеряют и обозначают мощность трансформаторов, дросселей и других, чисто электрических преобразователей.

Встречаются бытовые микроволновки от разных производителей, мощность которых указана в киловаттах (кВт, kW), в киловатт-часах (кВт⋅ч, kW⋅h) или в вольт-амперах (ВА, VA ). И первое, и второе, и третье – не будет ошибкой. В первом случае производитель указал тепловую мощность (как нагревательного агрегата), во втором – потребляемую электрическую мощность (как электропотребителя), в третьем – полную электрическую мощность (как электроприбора).

Поскольку бытовое электрооборудование достаточно маломощное, чтобы учитывать законы научной электротехники, то на бытовом уровне, все три цифры – практически совпадают.

Разница «киловатт и киловатт-час»

  • Киловатт — единица ИЗМЕРЕНИЯ мощности, киловатт-час – единица УЧЕТА потребления электроэнергии. На бытовом уровне понятия киловатт и киловатт-час отождествляются с измерением производимой и потребляемой мощности электроприборов.
  • На уровне бытового прибора-электропреобразователя:
    — в киловаттах измеряется выдаваемая тепловая или механическая мощность электроагрегата.
    — в киловатт-часах измеряется потребляемая электрическая мощность электроагрегата.
    Для бытового электроприбора цифры вырабатываемой (механической или тепловой) и потребляемой (электрической) энергии практически совпадают.
  • Связывание единиц измерения киловатт и киловатт-час применимо для случаев прямого и обратного преобразования электрической энергии в механическую, тепловую и т.д.
  • Недопустимо применять единицу измерения «киловатт-час» при отсутствии процесса преобразования электроэнергии.
  • Не правильно измерять «киловатт-час» производимую тепловую мощность дровяного отопительного котла, но, допустимо – потребляемую мощность электрического отопительного котла.
  • Принципиально, в «киловатт-час» не измеряют мощность электромотора.
  • В случае прямого или обратного преобразования электрической энергии в механическую или тепловую, увязать киловатт-час с другими единицами измерения энергии можно при помощи онлайн-калькулятора сайта tehnopost.kiev.ua:
    Перевести киловатт-часы =>
    в Джоули, калории и кратные им единицы

Разница в обозначении мощности механических и тепловых электроприборов

Для механических электроприборов (электродвигателей) указывают номинальную (рабочую) механическую мощность в ваттах или киловаттах, которую максимально может выдавать электромотор при своей нормальной работе. Реальная потребляемая электрическая мощность электромотора будет отличаться от указанной, в зависимости от его механической нагрузки. Например, при холстом ходе электродвигатель потребляет электричества, примерно 30% от номинальной мощности, а при максимальной нагрузке 101%…103% от номинала.

Для тепловых электроприборов (плиты, печки, обогреватели) указывают максимальную тепловую мощность, которую может выдать тепловой (нагревающий) элемент. Реальная потребляемая электрическая мощность электронагревателя будет отличаться от указанной, в зависимости от положения регулятора мощности.

Обозначение:
Вт•ч, кВт•ч, kW•h
Упрощенное обозначение:
Вт*ч, кВт*ч, kW*h

М мощь. Мощность в чем измеряется

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных сил ах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I — сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока , помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность , даже если они имеют одинаковое предназначение.

Мощность — это физическая величина , характеризующая скорость работы.

Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:

Т. е. мощность — это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт — это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?




Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

У каждого современного прибора есть электрическая мощность. Ее цифровое значение указывается производителем на корпусе фена либо электрического чайника, на крышке кухонного комбайна.

Единицы измерения

Расчет электрической мощности позволяет определять стоимость электрической энергии, потребляемой разными приборами за определённый промежуток времени. Ватты и киловатты в избыточном количестве приводят к выходу из строя проводов, деформации контактов.

Зависимость между электрическим током и мощностью, потребляемой приборами

Электрическая мощность представляет собой работу, которая совершается за промежуток времени. Включенный в розетку прибор совершает работу, измеряемую в ваттах (Вт). На корпусе указывается количество энергии, которое будет потреблено прибором за определенный промежуток времени, то есть дается потребляемая электрическая мощность.

Потребляемая мощность

Она расходуется на то, чтобы в проводнике происходило перемещение электронов. В случае одного электрона, имеющего единичный заряд, она сопоставима с величиной напряжения сети. Полная энергия, которая необходима для перемещения всех электронов, будет определяться как произведение напряжения на число электронов, находящихся в цепи при работе электрического прибора. Ниже представлена формула электрической мощности:

Учитывая, что число электронов, протекающих за промежуток времени через поперечное сечение проводника, представляет собой электрический ток, можно представить его в выражение для искомой величины. Формула электрической мощности будет выглядеть:

В реальности приходится вычислять не саму мощность, а величину тока, зная напряжение сети и номинальную мощность. Определив ток, который потребляется определенным прибором, можно соотнести номинал розетки и автоматического выключателя.

Примеры расчетов

Для чайника, электрическая мощность которого рассчитана на два киловатта, потребляемый ток определяется по формуле:

I=P/U=(2*1000)/220=9А

Чтобы подключать такой прибор в обычную электрическую сеть, разъем, рассчитанный на 6 ампер, явно не подойдет.

Приведенные выше зависимости между мощностью и электрическим током уместны только при полном совпадении по фазе значений напряжения и тока. Практически для всех бытовых электрических приборов подходит формула электрической мощности.

Исключительные ситуации

В том случае, если в цепи присутствует большая емкость либо индуктивность, используемые формулы будут недостоверными, ими нельзя пользоваться для проведения математических расчетов. Например, электрическая мощность для двигателя переменного тока будет определяться следующим образом:

cosφ — это коэффициент мощности, который для электрических двигателей составляет 0,6-0,8 единиц.

Определяя параметры прибора в трехфазной сети с напряжением 380 В, необходимо суммировать мощность из отдельных величин для каждой фазы.

Пример расчета

Например, в случае трехфазного котла, рассчитанного на мощность в 3 кВт, в каждой фазе потребляется по 1 кВт. Рассчитаем величину фазного тока по формуле:

I=P/U_ф =(1*1000)/220=4,5А.

Для современного человека характерно постоянное применение на производстве и в быту электричества. Он использует приборы, которые потребляют электрический ток, применяет такие устройства, которые его производят. Работая с такими источниками, важно учитывать те максимальные возможности, которые предполагаются в технических характеристиках.

Такая физическая величина, как электрическая мощность, является одним из основных показателей любого прибора, функционирующего при протекании через него потока электронов. Для транспортировки либо передачи электрических мощностей в большом объеме, необходимой в производственных условиях, применяются высоковольтные линии электрических передач.

Преобразование энергии выполняется на мощных трансформаторных подстанциях. Трехфазное преобразование характерно для промышленных и бытовых приборов разной сферы применения. Например, благодаря такому преобразованию, функционируют лампы накаливания разного номинала.

В теоретической электротехнике существует такое понятие, как мгновенная электрическая мощность. Связана такая величина с протеканием через определенную поверхность за незначительный временной промежуток единичного элементарного заряда. Происходит совершение работы этим зарядом, который и связан с понятием мгновенной мощности.

Выполняя несложные математические вычисления, можно определить величину мощности. Зная данную величину, можно подбирать напряжение для полноценного функционирования разнообразных бытовых и промышленных приборов. В таком случае можно избежать рисков, связанных с перегоранием дорогостоящих электрических приборов, а также с необходимостью периодически менять в квартире либо офисе электрическую проводку.

Ватт, согласно системе СИ – единица измерения мощности. В наши дни используется для измерения мощности всех электрических и не только приборов.

Джеймс Уатт и его универсальная паровая машина.

Что такое Ватт

Впервые эта величина была предложена для измерения мощности в 1882 году. Название единицы было дано в честь известного английского (а если по месту рождения, то шотландского) изобретателя Джеймса Уатта (James Watt). Одного из самых известных ученых в мире, создавшего универсальную паровую машину, доработав машину Ньюкомена. Однако, наибольшую известность ему принесла единица измерения, названная в его честь. До этого мощность рассчитывалась в лошадиных силах (л.с.), которые, кстати, были предложены для использования самим Уаттом. В наше же время, л.с. используются в основном для измерения мощности только в автомобилях, хотя бывают редкие исключения.

Согласно теории физики, мощность – это скорость расходования энергии, выраженная в отношении энергии ко времени: 1 Вт = 1 Дж/1 с. Один ватт равен отношению одного джоуля (единице измерения работы) к одной секунде. На сегодняшний день для обозначения мощности электроприборов чаще применяется единица измерения киловатт (сокращенное обозначение – кВт). Несложно догадаться, сколько ватт в киловатте – приставка «кило» в системе СИ обозначает величину, полученную в результате умножения на тысячу.

Ниже рекомендуем посмотреть простое и понятное видео о предмете нашего разговора, думаю станет все понятно, если на слух вы воспринимаете информацию легче, да и в любом случае для закрепления материала, видео может быть полезным.

Ватты в киловатты
То есть, 1 кВт=1000 Вт (один киловатт равен тысячи ваттам). Обратный перевод так же прост: можно разделить число на тысячу либо переместить запятую на три цифры левее. Например:

  • мощность стиральной машины 2100 Вт = 2,1 кВт;
  • мощность кухонного блендера 1,1 кВт = 1100 Вт;
  • мощность электродвигателя 0,55 кВт = 550 Вт и т.д.

Килоджоули в киловатты и киловатт-час
Иногда наших читателей интересует, как перевести килоджоули в киловатты. Для ответа на этот вопрос, вернемся к базовому отношению ватт и джоулей: 1 Вт = 1 Дж/1 с. Нетрудно догадаться, что:
1 килоджоуль = 0.0002777777777778 киловатт-час (в одном часе 60 минут, а в одной минуте 60 секунд, следовательно в часе 3600 секунд, а 1/3600= 0.000277778).

1 Вт= 3600 джоуль в час

Ватты в лошадиные силы
1 лошадиная сила =736 Ватт, следовательно 5 лошадиных сил = 3,68 кВт.

1 киловатт = 1,3587 лошадиных сил.

Ватты в калории
1 джоуль = 0,239 калории, следовательно 239 ккал = 0.0002777777777778 киловатт-час.

Не путать с киловатт-час

Наверное, каждый хотя бы раз в жизни слышал о такой единице, как киловатт-час (кВт*ч). С помощью этой единицы измеряется работа, совершаемая устройством за единицу времени. Для того чтобы понять её отличие от киловатта, приведем в пример домашний телевизор с потребляемой мощностью в 250 Вт. Если присоединить его к электрическому счетчику и включить, то ровно через час на счетчике будет показано, что телевизор израсходовал 0,25 кВт электроэнергии. То есть, потребление телевизора равно 0,25 кВт*ч. Прибор с такой величиной потребления, оставленный во включенном состоянии на 4 часа, «сожжёт», соответственно, 1 кВт энергии. Суточное потребление того или иного прибора зависит от особенностей его конструкции и иногда может оказаться, что приборы, которые нам кажутся наименее «прожорливыми», на самом деле составляют большую долю от общих расходов на электричество. Так, к примеру, обычный телевизор имеет в 4 раза более низкое потребление по сравнению с 100 Вт лампой накаливания. В свою очередь, электрический чайник «сжигает» в три раза больше света, чем такая лампочка. Среднее суточное энергопотребление персонального компьютера – около 14 кВт, а холодильника – до 1,5 кВт.

По работе квартирного электросчётчика можно проследить, что накручивание киловатт-часов происходит тем быстрее, чем большая нагрузка подается на сеть. На этом основан один из способов того, как измеряется мощность. Существует несколько разновидностей показателя, обозначаемого по первой букве английского watt — W. От параметров электросхемы жилища зависит величина энергопотребления — оно прямо пропорционально мощности подключённых токоприёмников.

Виды электрической мощности

Физическая величина W представляет собой скорость изменения, передачи, потребления и преобразования энергии рассматриваемой системы. Конкретно определение мощности звучит как отношение выполняемой в какой-то период работы к промежутку времени действия: W=ΔА/Δ t, Дж/с=ватт (Вт).

В отношении электрической сети речь идёт о перемещении заряда под действием напряжения: А=U. Потенциал между двумя точками проводника — и есть показатель энергии движения единичного нуклона. Полная работа протекания всего количества электронов — Ап=U*Q, где Q — общее число зарядов в сети. В этом случае формула мощности приобретает вид W=U*Q/t, выражение Q/t — электроток (I), то есть W=U*I.

В энергетике различают несколько терминов W:

Характер установленного оборудования предопределяет избыточность Wр, когда преобладают ёмкостные приборы и потенциал увеличивается, или дефицитность, если превалирует индуктивность сети (напряжение снижается). При использовании принципа противоположности действия разработаны устройства, позволяющие компенсировать вредность Wр и повысить качество и эффективность энергоснабжения.

Влияние параметров сети на киловатты

Из формулы W=U*I, видно, что мощность зависит одновременно от двух характеристик энергосистемы — напряжения и силы тока. Их влияние на параметры сети паритетное. Процесс образования электрической мощности можно описать следующим образом:

  • U — это работа, потраченная на перемещение 1 кулона;
  • I — количество зарядов, протекающих через проводник за 1 секунду.

По расчётному значению W определяют потреблённую энергию сети, умножив величину мощности на время её расходования. Изменяя один из параметров W в сторону уменьшения или увеличения, можно сохранить энергетику системы на постоянном уровне — получить высокую силу тока при малом напряжении или большой потенциал сети при слабом движении кулонов.

Преобразовательные приборы, предназначенные для перемены параметров, называются трансформаторами напряжения или тока . Их устанавливают на повышающих или понижающих электроподстанциях для передачи энергии от источника к потребителям на дальние расстояния.

Способы измерения нагрузки

Узнать мощность прибора можно, обратившись к его инструкции или паспорту, а при отсутствии — посмотреть на шильдик, прикреплённый к корпусу. Если нет данных производителя, то доступны другие способы, чтобы определить энергетику оборудования. Основной из них — измерить нагрузку с помощью ваттметра (прибора для фиксирования электрической мощности).

По назначению их разделяют на 3 класса: постоянного тока и низкочастотные (НЧ), оптические и высокоимпульсивные. Последние относят к радиодиапазону и дробят на 2 вида: включаемые в разрыв линии (проходящая мощность) и монтируемые в конечной точке маршрута как согласованная (поглощаемая) нагрузка. По способу доведения информации до оператора различают приборы цифровые и аналоговые — показывающие стрелочные и самопишущие. Краткие характеристики некоторых измерителей:

Помимо помощи специальных приборов, мощность узнают посредством применения расчётной формулы: в разрыв одного из питающих проводов включают амперметр, определяют ток и напряжение сети. Перемножение величин даст искомый результат.

Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Мощность постоянного тока

Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:

P = I ⋅ U {\displaystyle P=I\cdot U} .{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.

Мощность переменного тока

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности , удобно обратиться к теории комплексных чисел . Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол (сдвиг фаз) — аргументом.{2}\cdot g} . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S {\displaystyle S} активная связана соотношением P = S ⋅ cos ⁡ φ {\displaystyle P=S\cdot \cos \varphi } .

.

Вар определяется как реактивная мощность цепи с синусоидальным переменным током при действующих значениях напряжения 1 В и тока 1 А, если сдвиг фазы между током и напряжением π 2 {\displaystyle {\frac {\pi }{2}}} .

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U {\displaystyle U} и тока I {\displaystyle I} , умноженному на синус угла сдвига фаз φ {\displaystyle \varphi } между ними: Q = U ⋅ I ⋅ sin ⁡ φ {\displaystyle Q=U\cdot I\cdot \sin \varphi } (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).{2}}}} .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина для значений φ {\displaystyle \varphi } от 0 до плюс 90° является положительной величиной. Величина sin ⁡ φ {\displaystyle \sin \varphi } для значений φ {\displaystyle \varphi } от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = U I sin ⁡ φ {\displaystyle Q=UI\sin \varphi } , реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор , являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности .

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и ёмкостной нагрузки в источник переменного напряжения.

Полная мощность

Единица измерения в СИ — ватт. Кроме того, используется внесистемная единица вольт-ампер (русское обозначение: В·А ; международное: V·A ). В Российской Федерации эта единица допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «электротехника» .{2}}},} где P {\displaystyle P} — активная мощность, Q {\displaystyle Q} — реактивная мощность (при индуктивной нагрузке Q > 0 {\displaystyle Q>0} , а при ёмкостной Q ).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: S ⟶ = P ⟶ + Q ⟶ . {\displaystyle {\stackrel {\longrightarrow }{S}}={\stackrel {\longrightarrow }{P}}+{\stackrel {\longrightarrow }{Q}}.}

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода , кабели , распределительные щиты , трансформаторы , линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Комплексная мощность

Мощность, аналогично импедансу , можно записать в комплексном виде:

S ˙ = U ˙ I ˙ ∗ = I 2 Z = U 2 Z ∗ , {\displaystyle {\dot {S}}={\dot {U}}{\dot {I}}^{*}=I^{2}\mathbb {Z} ={\frac {U^{2}}{\mathbb {Z} ^{*}}},} где U ˙ {\displaystyle {\dot {U}}} — комплексное напряжение, I ˙ {\displaystyle {\dot {I}}} — комплексный ток, Z {\displaystyle \mathbb {Z} } — импеданс, * — оператор комплексного сопряжения .

Модуль комплексной мощности | S ˙ | {\displaystyle \left|{\dot {S}}\right|} равен полной мощности S {\displaystyle S} . Действительная часть R e (S ˙) {\displaystyle \mathrm {Re} ({\dot {S}})} равна активной мощности P {\displaystyle P} , а мнимая I m (S ˙) {\displaystyle \mathrm {Im} ({\dot {S}})} — реактивной мощности Q {\displaystyle Q} 15…200

Мощность электричества в чем измеряется. Что такое Ватт? Разница между понятием киловатт и киловатт-час. Единицы измерения тепловой энергии

Вольт (часто обозначается просто V) — это величина напряжения, которое толкает ток по цепи. В Европе ток, снабжающий домашние строения, обычно имеет напряжение в 240 вольт, хотя напряжение может варьировать до 14 вольт выше или ниже этой величины.

Ампер (амп. или А, для сокращения) — это величина, которая используется для измерения силы тока, т.е. количества электрических заряженных частиц, называемых электронами, которые проходят через данную точку цепи каждую секунду. Биллионы электронов необходимы, чтобы получить один ампер. Величина, выраженная в амперах, определяется частично напряжением и частично сопротивлением.

Существует три типа счетчика

Это приводит к тому, что «непиковая скорость» ниже. ночной измеритель скорости: это устройство, предназначенное для электроустановок.

Пример с односкоростным счетчиком
Заявление для частных генераторов.
  • Единый измеритель скорости: скорость равна тем же пиковым и непиковым часам.
  • У этого счетчика обычно есть только один счетчик.
Этот счетчик может использоваться для отображения следующей информации, среди прочего.

Количество электричества из сети, в котором вы использовали количество избыточного электричества, которое вы создали и повторно ввели в сеть. Эта энергия вычитается из вашего счета, и вам платят ту же сумму за это, что и цена, которую вы платите, когда покупаете электроэнергию. Благодаря этой системе кредитования и дебетования ваш поставщик оплачивает вас напрямую и только за разницу между киловатт-часами, которые вы получили, и теми, которые вы создали. Он выполняет двоякую цель: он используется не только для определения результатов вашей установки, но и для определения того, на что вы имеете право.

Ом — величина, служащая для измерения сопротивления. Она названа в честь немецкого физика 19 века Георга Симона Ома, который установил закон, гласящий, что сила тока, проходящего через проводник, обратно пропорциональна сопротивлению. Этот закон можно выразить уравнением: Вольты/Омы = Амперы. Следовательно, если вам известны две из названных величин, вы можете вычислить и третью.

Как работает счетчик электроэнергии?

Большинство домов в Брюсселе оснащены «электромеханической» моделью. Если работает как маленький двигатель: проходя через две катушки, ток превращает постоянный магнит, прикрепленный к колесу. Это приводит к созданию механизма зубчатого счетчика. Чем больше ток проходит через катушки, тем быстрее поворачивается механизм и больше потребляется метр.

Хотя он прочный и долговечный, этот тип счетчика в один прекрасный день будет заменен электронной моделью, которая не включает никаких движущихся частей. Измерьте потребляемую мощность и эксплуатационные расходы любого подключаемого устройства с помощью измерителя мощности редукции.

Ватт (W) — это величина энергии, показывающая, какое количество тока в приборе потребляется в любой момент. Соотношение между вольтами, амперами и ваттами выражено другим уравнением, которое поможет вам сделать любые расчеты. Они вам могут понадобиться для вычислений в данной книге:

Вольты х Амперы = Ватты

Принято пользоваться киловаттом (kW) как единицей энергии для крупных вычислений. Один киловатт равен одной тысяче ваттов.

  • Стоимость — кВтч, умноженная на ваш тариф на электроэнергию.
  • Другое — вольт, ампер, коэффициент мощности и время работы устройства.
Измеритель мощности поможет вам раскрыть ваши самые энергоемкие устройства. Тогда вы можете приступить к сокращению ваших счетов за электроэнергию!

Как использовать измеритель мощности

Вот некоторые энергозависимые и связанные с этим сбережения, идентифицированные с помощью этого измерителя мощности. Этот измеритель мощности измеряет энергопотребление любого устройства, подключенного к стандартной розетке. Он также может измерять группу приборов, подключенных к одной плате питания.

Киловатт-час — это величина для измерения полного количества потребляемой энергии. Например, если вы из расходуете 1 kW энергии за 1 час, это будет отражено на счетчике, и это значение израсходованной электроэнергии будет включено в вашу книгу расчета за электричество.

5 Единицы измерения тепловой энергии

Значение потребленной тепловой энергии (количества теплоты ) может выводиться измерения – Гкал, ГДж, МВтч, кВтч. тепловая энергия может передаваться потребителю с помощью двух видов теплоносителей: горячая вода или водяной пар.

Измеритель потребляемой мощности — Технические характеристики

Чтение времени выполнения только накапливается, когда потребляемая мощность больше 2 Вт. Эти показания могут быть легко сброшены до перехода к следующему устройству.

Это точный измеритель мощности
Индикатор мощности, изображенный слева, был замечен в крупных магазинах, супермаркетах и ​​онлайн-магазинах. Но это ненадежно точно. Он может пропустить значительные электрические нагрузки, в то время как другие завышены.

Альтернативы для регистрации данных или субзаметки

Хотя этот элемент представляет отличную ценность, это не лучший выбор для каждого приложения мониторинга мощности. Если вы пользуетесь профессиональным инструментом для очень частого использования, мы рекомендуем использовать его. Если вам действительно требуется решение для выставления счетов суб-арендатору, мы рекомендуем один из наших. Если вы хотите захватить потребление энергии всего вашего имущества, вне нашего диапазона.

К этому прилагается инструкция
Насколько точны показания. Какая минимальная потребляемая мощность может измеряться. Самые низкие показания, которые мы видели, предназначены для небольших источников питания.

Тепловая энергия может быть измерена в виде:

теплоты (количество теплоты), которая является характеристикой процесса теплообмена и определяется количеством энергии, получаемым (отдаваемым) телом в процессе теплообмена; в международной системе единиц (СИ) измеряется в джоулях (Дж), устаревшая единица — калория (1 кал = 4,18 Дж)).

Сколько тарифов можно ввести?

Измеряет ли измеритель мощности реальную мощность
Да — измеритель мощности измеряет «реальную мощность» — для чего вам выставлен счет. Мощность измеряется мгновенно в Ваттах и ​​с течением времени в киловатт-часах. Другие недорогие измерители мощности не выполняют измерения точно и не всегда отображают реальную мощность.

Вот как вы вычисляете реальную мощность в ваттах. Вы можете видеть из приведенного выше примера, почему важно правильно это вычисление. Другие измерители мощности иногда не могут сделать это правильно. Есть несколько ключевых терминов, которые каждый менеджер объектов должен понимать.

энтальпии теплоносителя , которая является термодинамическим потенциалом (или функцией состояния) и определяется массой, температурой и давлением теплоносителя, в международной системе единиц (СИ) измеряется в калориях

Энтальпию теплоносителя, используют в качестве меры (количественной характеристики) тепловой энергии. Технологические особенности тепловой энергии предопределяют своеобразие его отпуска и приемки и, как следствие, порядок учета тепловой энергии, который зависит, во-первых, от вида теплоносителя, с помощью которого передается тепловая энергия; во-вторых, от системы теплоснабжения, подразделяющейся на открытые водяные (или паровые) и закрытые.

Вот почему разница между кВт и кВтч необходима для управления вашей энергией. Мы склонны думать, что мы рассчитываем исключительно за то, сколько кВт-часов мы используем, но более 30% счета за электроэнергию для коммерческих и промышленных потребителей энергии определяется потреблением вашего кВт. Знание разницы между вашим кВт и кВтч может помочь вам значительно сэкономить на следующем счете.

Таким образом, это мертвое простое объяснение разницы между кВт и кВтч в том, что касается использования электроэнергии. В мире управления энергией кВт часто называют «спрос» и кВтч как «использование» или «потребление». Обе машины проходят 7-часовой поезд. Как только он попадает на шоссе, скорость Энцо колеблется от 80 до 140 миль в час. Это «требование» водителя надеть ее машину. Если бы это было здание, мы бы сказали, что он использовал в период от 80 до 140 кВт в любой момент.

Измерение тепловой энергии и ее учет не являются тождественными понятиями, поскольку измерение есть нахождение значения физической величины опытным путем при помощи средств измерения, а учет тепловой энергии — использование результатов измерения.

Киловатт — кратная единица, образованная от «Ватт»

Обозначение мощности электроприборов

Как только Гольф попадает на шоссе, он заканчивается со скоростью 60 миль в час и идет так же медленно, как 45 миль в час. Если бы это было здание, мы бы сказали, что он имеет максимальный спрос, или «максимальный спрос», 60 кВт, а минимальный спрос или «базовый уровень» — 45 кВт.

Единицы измерения для обозначения мощности электроприборов

Таким образом, киловатт является мерой использования энергии в данный момент, а не с течением времени. Когда мы говорим о количестве энергии, которую требует здание, — это электрическая «нагрузка» — мы говорим в киловаттах. Несмотря на то, что обе машины ехали в течение того же количества часов, количество пройденного расстояния было существенно иным.

Ватт

Ватт (Вт, W) — системная единица измерения мощности.
Ватт — универсальная производная единица в системе СИ, имеющая специальное наименование и обозначение. Как единица измерения мощности, «Ватт» был признан в 1889г. Тогда же эта единица и была названа в честь Джеймса Уатта (Ватта).

Джеймс Ватт — человек, который придумал и сделал универсальную паровую машину

Если вы думаете о расстоянии, охватываемом как использование, вы можете увидеть, как два здания могут работать в течение того же количества времени, но использовать резко разные кВт-ч. В этом примере здание «Энцо» использовало 980 кВт-ч за тот же период времени, когда «здание» гольфа использовало 420 кВт-ч.

Единицы измерения тепловой энергии

Таким образом, киловатт-час является, по сути, мерой общей энергии, которую вы используете в течение определенного периода времени, а не в данный момент. Когда мы говорим о количестве энергии, используемой в течение месяца, мы говорим в киловатт-часах.

Как производная единица системы СИ, «Ватт» был включён в неё в 1960г.
С тех пор, в Ваттах измеряется мощность всего подряд.

В системе СИ, в Ваттах, допускается измерять любую мощность — механическую, тепловую, электрическую и т.д. Также допускается образование кратных и дольных единиц от исходной единицы (Ватт). Для этого рекомендовано использовать набор стандартных префиксов системы СИ, вида — кило, мега, гига и т.д.

Чтобы подвести итог, киловатт является требованием здания или тем, сколько энергии он использует в данный момент. Киловатт-час — это потребление здания, или сколько энергии он использует в течение определенного периода времени. Определение разницы между кВт и кВтч имеет важное значение, но так же понимают, как с ними обращаются по-разному на счет за электроэнергию.

Предположим, вы покупаете лампочку с «100 ваттами», напечатанными на ней. И когда вы платите счет за коммунальные услуги, вы можете видеть, что потребление энергии измеряется в киловатт-часах. Ватт, очевидно, определенная единица измерения, но что такое ватт?

Единицы измерения мощности, кратные ватт:

  • 1 ватт
  • 1000 ватт = 1 киловатт
  • 1000 000 ватт = 1000 киловатт = 1 мегаватт
  • 1000 000 000 ватт = 1000 мегаватт = 1000 000 киловатт = 1гигаватт
  • и т.д.
Киловатт-час

В системе СИ нет такой единицы измерения.
Киловатт-час (кВт⋅ч, kW⋅h) — это внесистемная единица, которая выведена исключительно для учёта использованной или произведённой электроэнергии. В киловатт-часах учитывается количество потреблённой или произведённой электроэнергии.

Ватт — это электрический блок для скорости, с которой генерируется или потребляется энергия. Итак, когда вы включаете лампу с 100-ваттной лампой в ней, она потребляет 100 ватт электроэнергии каждую секунду, когда она горит. Важно отметить, что при покупке лампочек эта мощность не равна яркости. Это означает, что 150-ваттная лампочка не обязательно ярче 50-ваттной лампы. Помните, что ватт — это количество потребляемой энергии, тогда как яркость измеряется в люменах.

Весь кредит на соглашение о присвоении ваттов распространяется на обширные исследования ученого 19-го века Джеймса Уотта. Достаточно большое имя в свое время, Джеймс лучше всего помнят за его большой вклад в изобретение парового двигателя. Благодаря его исследованиям Джеймс работал над разработкой другой единицы измерения для «власти», чтобы описать замечательную мощность парового двигателя: мощность.

Использование «киловатт-час», как единицы измерения, на территории России регламентирует ГОСТ 8.417-2002, в котором однозначно указано наименование, обозначение и область применения для «киловатт-час».

Скачать ГОСТ 8.417-2002 (cкачиваний: 2305)

Выдержка из ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин», п.6 Единицы, не входящие в СИ (фрагмент таблицы 5).

Ватт придумал термин «лошадиная сила» для измерения механической мощности и помочь объяснить влияние его изобретений на более понятные термины. Фактически, даже сегодня мы используем лошадиные силы для оценки всех видов локомотивов, автомобильных двигателей и других машин и даже вашего пылесоса.

Подключение лошадиных сил к ваттам

Есть интересная связь между мощностью и ваттами. Механическая мощность — это в основном энергия от движущихся машин, таких как автомобильный двигатель, который вращает шины. Ну, электричество можно считать энергией от движущихся электронов, что по сути одно и то же: кинетическая энергия. И хотя механическая мощность, измеренная в лошадиных силах, достаточно легка для воссоздания с мельничной лошадью и некоторым весом, электричество немного сложнее измерить с помощью мельницы.

Внесистемные единицы, допустимые к применению наравне с единицами СИ

Для чего нужен киловатт-час

ГОСТ 8.417-2002 рекомендует использовать «киловатт-час», как основную единицу измерения для учёта количества использованной электроэнергии. Потому что «киловатт-час» — это наиболее удобная и практичная форма, позволяющая получать наиболее приемлемые результаты.

Вот еще несколько фактов о ватт для вас

С течением времени использование ватт как электрической единицы измерения стало более распространенным явлением. Мы гордимся тем, что являемся вашим экспертом по энергетике, чтобы ответить на все ваши энергетические вопросы — будь то то, что такое ватт.

Вы знаете, с чем нам хотелось бы помочь? Помогая вам контролировать свои расходы на электроэнергию и природный газ. Узнайте больше о своей мощности, чтобы выбрать поставщика и что это может означать для вашего бюджета. Знать, сколько электроэнергии потребляет ваша семья, является важным шагом к экономии электроэнергии. Вы можете найти более подробную информацию о последних расчетах электроэнергии. Если потребление электроэнергии выше, чем в сопоставимых домохозяйствах, самое время заняться оборудованием и его использованием.

При этом, ГОСТ 8.417-2002 абсолютно не возражает против использования кратных единиц, образованных от «киловатт-час» в тех случаях, когда это уместно и необходимо. Например, при лабораторных работах или при учёте выработанной электроэнергии на электростанциях.

Образованные кратные единицы от «киловатт-час» выглядят, соответственно:

Однако даже при среднем годовом потреблении электроэнергии часто существует несколько способов значительно сократить потребление и тем самым сэкономить затраты на электроэнергию. Прежде чем вы входите в дорогостоящие новые покупки или нарушаете семейный спор с забора, потому что зарядное устройство не используется в текущем состоянии, стоит посмотреть более внимательно: какие устройства вносят свой вклад в расчет электроэнергии? Которые часто используются или даже в непрерывной работе, например, в холодильнике?

Измерение энергопотребления на дому: это то, что делают измерительные приборы энергопотребления

В режиме ожидания также могут влиять затраты на электроэнергию в течение года. Но как вы можете измерить энергопотребление отдельных устройств? Существуют многочисленные измерители тока или энергосберегающие мониторы, которые можно использовать, чтобы узнать, сколько электроэнергии потребляет устройство и что вызывает электричество. Чтобы измерить потребление энергии, измеритель потребляемой мощности вставлен между испытываемыми нагрузками и гнездом. На дисплее отображается текущее потребление текущего пользователя в ваттах.

  • 1 киловатт-час = 1000 ватт-час,
  • 1 мегаватт-час = 1000 киловатт-час,
  • и т.д.
Как правильно писать киловатт-час⋅

Правописание термина «киловатт-час» по ГОСТ 8.417-2002:

  • полное наименование нужно писать через дефис:
    ватт-час, киловатт-час
  • краткое обозначение нужно писать через точку:
    Вт⋅ч, кВт⋅ч, kW⋅h

Прим. Некоторые браузеры неверно интерпретируют HTML-код страницы и вместо точки (⋅) отображают знак вопроса (?) или иной кракозябр.

Аналоги ГОСТ 8.417-2002

Большинство национальных технических стандартов нынешних постсоветских стран увязаны со стандартами бывшего Союза, поэтому в метрологии любой страны постсоветского пространства можно найти аналог российского ГОСТ 8.417-2002, либо ссылку на него, либо его переработанный вариант.

Обозначение мощности электроприборов

Общепринятая практика — обозначать мощность электроприборов на их корпусе.
Возможно следующее обозначение мощности электрооборудования:

  • в ваттах и киловаттах (Вт, кВт, W, kW)
    (обозначение механической или тепловой мощности электроприбора)
  • в ватт-часах и киловатт-часах (Вт⋅ч, кВт⋅ч, W⋅h, kW⋅h)
    (обозначение потребляемой электрической мощности электроприбора)
  • в вольт-амперах и киловольт-амперах (VA, кVA)
    (обозначение полной электрической мощности электроприбора)
Единицы измерения для обозначения мощности электроприборов
ватт и киловатт (Вт, кВт, W, kW) — единицы измерения мощности в системе СИ Используются для обозначения общей физической мощности чего угодно, в том числе и электроприборов. Если на корпусе электроагрегата стоит обозначение в ваттах или киловаттах — это значит, что этот электроагрегат, во время своей работы, развивает указанную мощность. Как правило, в «ваттах» и «киловаттах» указывается мощность электроагрегата, который является источником или потребителем механического, теплового или иного вида энергии. В «ваттах» и «киловаттах» целесообразно обозначать механическую мощность электрогенераторов и электродвигателей, тепловую мощность электронагревательных приборов и агрегатов и т.д. Обозначение в «ваттах» и «киловаттах» производимой или потребляемой физической мощности электроагрегата происходит при условии, что применение понятия электрической мощности будет дезориентировать конечного потребителя. Например, для владельца электронагревателя важно количество полученного тепла, а уже потом — электрические расчёты.

ватт-час и киловатт-час (Вт ⋅ч, кВт ⋅ч, W ⋅h, kW ⋅h) — внесистемные единицы измерения потребляемой электрической энергии (потребляемой мощности). Потребляемая мощность — это количество электроэнергии, расходуемое электрооборудованием за единицу времени своей работы. Чаще всего, «ватт-часы» и «киловатт-часы» применяются для обозначения потребляемой мощности бытовой электротехники, по которой её собственно и выбирают.

вольт-ампер и киловольт-ампер (ВА, кВА, VA, кVA) — Единицы измерения электрической мощности в системе СИ, эквивалентные ватт (Вт) и киловатт (кВт). Используются в качестве единиц измерения величины полной мощности переменного тока. Вольт-амперы и киловольт-амперы применяются при электротехнических расчётах в тех случаях, когда важно знать и оперировать именно электрическими понятиями. В этих единицах измерения можно обозначать электрическую мощность любого электроприбора переменного тока. Такое обозначение будет наиболее соответствовать требованиям электротехники, с точки зрения которой — все электроприборы переменного тока имеют активную и реактивную составляющие, поэтому общая электрическая мощность такого прибора должна определяться суммой её частей. Как правило, в «вольт-амперах» и кратным им единицам измеряют и обозначают мощность трансформаторов, дросселей и других, чисто электрических преобразователей.

Выбор единиц измерения в каждом случае происходит индивидуально, на усмотрение производителя. Поэтому, можно встретить бытовые микроволновки от разных производителей, мощность которых указана в киловаттах (кВт, kW), в киловатт-часах (кВт⋅ч, kW⋅h) или в вольт-амперах (ВА, VA). И первое, и второе, и третье — не будет ошибкой. В первом случае производитель указал тепловую мощность (как нагревательного агрегата), во втором — потребляемую электрическую мощность (как электропотребителя), в третьем — полную электрическую мощность (как электроприбора).

Поскольку бытовое электрооборудование достаточно маломощное, чтобы учитывать законы научной электротехники, то на бытовом уровне, все три цифры — практически совпадают

Учитывая вышеизложенное можно ответить на главный вопрос статьи

Киловатт и киловатт-час | Какая разница?

  • Самая большая разница заключается в том, что киловатт — это единица измерения мощности, а киловатт-час — это единица измерения электроэнергии. Путаница и неразбериха возникает на бытовом уровне, где понятия киловатт и киловатт-час отождествляются с измерением производимой и потребляемой мощности бытового электроприбора.
  • На уровне бытового прибора-электропреобразователя — разница только в разделении понятий выдаваемой и потребляемой энергии. В киловаттах измеряется выдаваемая тепловая или механическая мощность электроагрегата. В киловатт-часах измеряется потребляемая электрическая мощность электроагрегата. Для бытового электроприбора цифры вырабатываемой (механической или тепловой) и потребляемой (электрической) энергии практически совпадают. Поэтому, в быту нет никакой разницы, в каких понятиях выражать и в каких единицах измерять мощность электроприборов.
  • Связывание единиц измерения киловатт и киловатт-час применимо только для случаев прямого и обратного преобразования электрической энергии в механическую, тепловую и т.д.
  • Совершенно недопустимо применять единицу измерения «киловатт-час» в случае отсутствия процесса преобразования электроэнергии. Например, в «киловатт-час» нельзя измерять потребляемую мощность дровяного отопительного котла, но можно измерять потребляемую мощность электрического отопительного котла. Или, например, в «киловатт-час» нельзя измерять потребляемую мощность бензинового двигателя, но можно измерять потребляемую мощность электромотора
  • В случае прямого или обратного преобразования электрической энергии в механическую или тепловую, увязать киловатт-час с другими единицами измерения энергии можно при помощи онлайн-калькулятора сайта tehnopost.kiev.ua:

Механическая мощность формула и определение. Мощность — физическая величина, формула мощности. Мощность в чем измеряется. Мощность — физическая величина, формула мощности Основная единица измерения мощности

С понятием мощность (М) связана продуктивность работы того или иного механизма, машины или двигателя. М можно определить как объём работы, выполненный в единицу времени. То есть М равна отношению работы к затраченному времени на её выполнение.91

Измерение М в механике

Все тела в реальном мире приводятся в движение приложенной к ним силой. Воздействие на тело одного или нескольких векторов называют механической работой (Р). Например, сила тяги автомобиля приводит его в движение. Этим самым совершается механическая Р.

С научной точки зрения Р является физическая величина «А», определяемая произведением величины силы «F», расстояния перемещения тела «S» и косинуса угла между векторами этих двух величин.

Формула работы выглядит так:

A = F х S х cos (F, S).

М «N» в данном случае будет определяться отношением величины работы к периоду времени «t», в течение которого силы воздействовали на тело. Следовательно, формула, определяющая М, будет такой:

Механическая М двигателя

Физическая величина М в механике характеризует возможности различных двигателей. В автомобилях М двигателя определяется объёмом камер сгорания жидкого топлива. М мотора – это работа (количество вырабатываемой энергии) в единицу времени. Двигатель во время своего функционирования преобразует один вид энергии в другой потенциал. В данном случае мотор переводит тепловую энергию от сгорания топлива в кинетическую энергию крутящего движения.

Важно знать! Основным показателем М двигателя является максимальный крутящий момент.

Именно крутящий момент создаёт силу тяги мотора. Чем выше этот показатель, тем больше М агрегата.

В нашей стране М силовых агрегатов рассчитывают в лошадиных силах. Во всём мире происходит тенденция расчёта М в Вт. Сейчас уже силовую характеристику указывают в документации сразу в двух измерениях в л.с. и киловаттах. В какой единице измерять М, определяет сам производитель силовых электрических и механических установок.

М электричества

Электрическая М характеризуется скоростью преобразования электрической энергии в механическую, тепловую или световую энергию. Согласно Международной системе СИ, ватт – эта ЕИМ, в чём измеряется полная мощность электричества.

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power Factor PF )

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)


АОСН-2-220-82
Латр 1.25АОСН-4-220-82
Латр 2.5АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности) .

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e»+ie»
  4. Магнитная проницаемость m=m»+im»
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

Мощность — физическая величина , равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В чем измеряется мощность?

Единицы измерения мощности, которые известны каждому школьнику и являются принятыми в международном сообществе – ватты. Названы так в честь ученого Дж. Уатта. Обозначаются латинской W или вт.

1 Ватт – единица измерения мощности, при которой за секунду происходит работа, равная 1 джоулю. Ватт равен мощности тока, сила которого 1 ампер, а напряжение – 1 вольт. В технике, как правило, применяются мегаватты и киловатты. 1 киловатт равен 1000 ватт.
Измеряется мощность и в эрг в секунду. 1 эрг в сек. Равен 10 в минус седьмой степени ватт. Соответственно, 1 ватт равен 10 в седьмой степени эрг/сек.

А еще единицей измерения мощности считается внесистемная «лошадиная сила». Она была введена в оборот еще в восемнадцатом веке и продолжает до сих пор применяться в автомобилестроении. Обозначается она так:

  • Л.С. (в русском),
  • HP (в английском).
  • PS (в немецком),
  • CV (во французском).

При переводе мощности помните, что в рунете существует невообразимая путаница при конверте лошадиных сил в ватты. В России, странах СНГ и некоторых других государствах 1 л.с. равняется 735, 5 ватт. В Англии и Америке 1 hp равняется 745, 7 ватт.

Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок, часто, измеряют в лошадиных силах . Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I — сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока, помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины , которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность, даже если они имеют одинаковое предназначение.

Мощность — это физическая величина, характеризующая скорость работы.

Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:

Т. е. мощность — это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт — это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности . Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?



Здравствуйте! Для вычисления физической величины, называемой мощностью, пользуются формулой, где физическую величину — работу делят на время, за которое эта работа производилась.

Выглядит она так:

P, W, N=A/t, (Вт=Дж/с).

В зависимости от учебников и разделов физики, мощность в формуле может обозначаться буквами P, W или N.

Чаще всего мощность применяется, в таких разделах физики и науки, как механика, электродинамика и электротехника. В каждом случае, мощность имеет свою формулу для вычисления. Для переменного и постоянного тока она тоже различна. Для измерения мощности используют ваттметры.

Теперь вы знаете, что мощность измеряется в ваттах. По-английски ватт — watt, международное обозначение — W, русское сокращение — Вт. Это важно запомнить, потому что во всех бытовых приборах есть такой параметр.

Мощность — скалярная величина, она не вектор, в отличие от силы, которая может иметь направление. В механике, общий вид формулы мощности можно записать так:

P=F*s/t, где F=А*s,

Из формул видно, как мы вместо А подставляем силу F умноженную на путь s. В итоге мощность в механике, можно записать, как силу умноженную на скорость. К примеру, автомобиль имея определенную мощность, вынужден снижать скорость при движении в гору, так как это требует большей силы.

Средняя мощность человека принята за 70-80 Вт. Мощность автомобилей, самолетов, кораблей, ракет и промышленных установок , часто, измеряют в лошадиных сил ах. Лошадиные силы применяли еще задолго до внедрения ватт. Одна лошадиная сила равна 745,7Вт. Причем в России принято что л. с. равна 735,5 Вт.

Если вас вдруг случайно спросят через 20 лет в интервью среди прохожих о мощности, а вы запомнили, что мощность — это отношение работы А, совершенной в единицу времени t. Если сможете так сказать, приятно удивите толпу. Ведь в этом определении, главное запомнить, что делитель здесь работа А, а делимое время t. В итоге, имея работу и время, и разделив первое на второе, мы получим долгожданную мощность.

При выборе в магазинах, важно обращать внимание на мощность прибора. Чем мощнее чайник, тем быстрее он погреет воду. Мощность кондиционера определяет, какой величины пространство он сможет охлаждать без экстремальной нагрузки на двигатель. Чем больше мощность электроприбора, тем больше тока он потребляет, тем больше электроэнергии потратит, тем больше будет плата за электричество.

В общем случае электрическая мощность определяется формулой:

где I — сила тока, U-напряжение

Иногда даже ее так и измеряют в вольт-амперах, записывая, как В*А. В вольт-амперах меряют полную мощность, а чтобы вычислить активную мощность нужно полную мощность умножить на коэффициент полезного действия(КПД) прибора, тогда получим активную мощность в ваттах.

Часто такие приборы, как кондиционер, холодильник, утюг работают циклически, включаясь и отключаясь от термостата, и их средняя мощность за общее время работы может быть небольшой.

В цепях переменного тока , помимо понятия мгновенной мощности, совпадающей с общефизической, существуют активная, реактивная и полная мощности. Полная мощность равна сумме активной и реактивной мощностей.

Для измерения мощности используют электронные приборы — Ваттметры. Единица измерения Ватт, получила свое название в честь изобретателя усовершенствованной паровой машины, которая произвела революцию среди энергетических установок того времени. Благодаря этому изобретению развитие индустриального общества ускорилось, появились поезда, пароходы, заводы, использующие силу паровой машины для передвижения и производства изделий.

Все мы много раз сталкивались с понятием мощности. Например, разные автомобили характеризуются разной мощностью двигателя. Также, электроприборы могут иметь различную мощность , даже если они имеют одинаковое предназначение.

Мощность — это физическая величина , характеризующая скорость работы.

Соответственно, механическая мощность — это физическая величина, характеризующая скорость механической работы:

Т. е. мощность — это работа в единицу времени.

Мощность в системе СИ измеряется в ваттах: [N ] = [Вт].

1 Вт — это работа в 1 Дж, совершенная за 1 с.

Существуют и другие единицы измерения мощности, например, такие, как лошадиная сила:

Именно в лошадиных силах чаще всего измеряется мощность двигателя автомобилей.

Давайте вернемся к формуле для мощности: Формула, по которой вычисляется работа, нам известна: Поэтому мы можем преобразовать выражение для мощности:

Тогда в формуле у нас образуется отношение модуля перемещения к промежутку времени. Это, как вы знаете, скорость:

Только обратите внимание, что в получившейся формуле мы используем модуль скорости, поскольку на время мы поделили не само перемещение, а его модуль. Итак, мощность равна произведению модуля силы, модуля скорости и косинуса угла между их направлениями.

Это вполне логично: скажем, мощность поршня можно повысить за счет увеличения силы его действия. Прикладывая бо́льшую силу, он будет совершать больше работы за то же время, то есть увеличит мощность. Но даже если оставить силу постоянной, и заставить поршень двигаться быстрее, он, несомненно, увеличит работу, совершаемую в единицу времени. Следовательно, увеличится мощность.

Примеры решения задач.

Задача 1. Мощность мотоцикла равна 80 л.с. Двигаясь по горизонтальному участку, мотоциклист развивает скорость равную 150 км\ч. При этом, двигатель работает на 75% от своей максимальной мощности. Определите силу трения, действующую на мотоцикл.


Задача 2. Истребитель, под действием постоянной силы тяги, направленной под углом 45° к горизонту, разгоняется от 150 м/с до 570 м/с. При этом, вертикальная и горизонтальная скорость истребителя увеличиваются на одинаковое значение в каждый момент времени. Масса истребителя равна 20 т. Если истребитель разгонялся в течение одной минуты, то какова мощность его двигателя?




Если вам нужно единицы измерения мощности привести в одну систему, вам пригодится наш перевод мощности – конвертер онлайн. А ниже вы сможете почитать, в чем измеряется мощность.

то есть произведение векторов силы на скорость движения — и есть мощность. В чем измеряется она? По международной системе СИ, единицей измерения данной величины является 1 Ватт.

Ватт и другие единицы измерения мощности

Ватт означает мощность, где за одну секунду производится работа в один джоуль. Последнюю единицу назвали так в честь англичанина Дж.Уатта, который изобрел и соорудил первую паровую машину. Но он при этом использовал другую величину — лошадиную силу, каковая применяется и по сей день. Одна лошадиная сила приблизительно равна 735,5 Ватт.

Таким образом, кроме Ватта, мощность измеряют в метрической лошадиной силе. А при очень малом значении также используют Эрг, равный десяти в минус седьмой степени Ватт. Возможно и измерение в одной единице массы/силы/метров в секунду, что равно 9,81 Ватт.

Мощность в двигателе

Названная величина является одной из самых важных в любом моторе, который бывает самой разной мощности. Например, электрическая бритва имеет сотые доли киловатта, а ракета космического корабля насчитывает миллионы.

Для разной нагрузки необходима различная мощность для сохранения определенной скорости. Например, машина станет тяжелее, если в нее поместить больше груза. Тогда сила трения о дорогу увеличится. Поэтому, чтобы поддерживать ту же скорость, что и в ненагруженном состоянии, потребуется большая мощность. Соответственно, мотор будет съедать больше топлива. Об этом факте известно всем водителям.

Но при большой скорости важна и инерция машины, которая прямо пропорциональна ее массе. Бывалые водители, знающие об этом факте, находят при езде лучшее сочетание топлива и скорости, чтобы бензина уходило меньше.

Мощность тока

В чем измеряется мощность тока? В той же самой единице по системе СИ. Она может быть измерена прямым или косвенным методом.

Первый способ реализуется при помощи ваттметра, потребляющего существенную энергию и сильно нагружающего источник тока. С его помощью измеряется от десяти Ватт и более. Косвенный метод используют при необходимости измерить малые значения. Приборами для этого служат амперметр и вольтметр, подсоединенные к потребителю. Формула в данном случае будет иметь такой вид:

При известном сопротивлении нагрузки, измеряем протекающую через нее величину тока и находим мощность так:

P = I 2 ∙ R н.

По формуле P = I 2 /R н также может быть вычеслена мощность тока.

В чем измеряется она в сети трехфазного тока, тоже не секрет. Для этого применяют уже знакомый прибор — ваттметр. Причем решить задачу, чем измеряется электрическая мощность, можно с помощью одного, двух или даже трех приборов. Например, для четырехпроводной установки потребуется три устройства. А для трехпроводной при несимметричной нагрузке — два.

Мощность. Единицы измерения, таблиц перевода мощности

Мо́щность — это скалярная физическая величина (выраженная одним числом), равная отношению работы, совершаемой за некоторый временной промежуток, к этому промежутку времени (определение Википедии).

Таблица 1. Таблица перевода некоторых единиц измерения мощности:

Xкгс x м/скВтМВтл. с.ккал/чГкал/чБЕТ/сCHU/с
1 кгс х м/с19,81 x 10-39,81 x 10-613,33 x10-38,4358,435 x 10-69,29 x 10-35,16 x 10-3
1 кВт102  110-31,368600,86 x 10-30,9480,527
1 МВт102 x 10310311,36 x 103860 x 1030,860948527
1 л. с.750,7360,736 x10-3632,40,6324 x10-30,6970,387
1 ккал/ч0,1191,163 x10-31,163 x10-61,58 x 10-3110-61,102 x10-30,6125 x 10-3
1 Гкал/ч118,5 x10311631,163632,4 x 1061061102612,5
1 БЕТ/с107,61,0551,055 x10-31,435907,40,9074 x 10-310,5556
1 CHU/с193,71,8991,899 x10-32,58416331,633 x 10-31,81

Таблица 2. Соотношение физических единиц измерения мощности (дополнительная):

 
 1 Вт 1 кВт 1 МВт 1 кгс·м/с 1 эрг/с л.с. (мет.) л.с. (анг.)
1 ватт110−310−60,1021071,36×10−31,34×10−3
1 киловатт103110−310210101,361,34
1 мегаватт1061031102×10310131,36×1031,34×103
1 килограмм-сила-метр в секунду9,819,81×10−39,81×10−619,81×1071,33×10−21,31×10−2
1 эрг в секунду10−710−1010−131,02×10−811,36×10−101,34×10−10
1 лошадиная сила (метрическая)735,5735,5×10−3735,5×10−6757,355×10910,9863
1 лошадиная сила (английская)745,7745,7×10−3745,7×10−676,047,457×1091,0141

 

Киловатт, кратная физическая единица измерения от ватта — единицы мощности Международной системы единиц физических величин; равняется мощности, при которой за временной промежуток в одну секунду совершается работа равная один килоджоуль; Киловатт обозначают квт или kW. 1 квт = 1000 вт = 1010 эрг/сек = 101,97 кгс·м/сек = 1,36 лошадиных сил.

 

Лошадиная сила (сокращённо по-русски: л. с.; по-английски: hp; по-немецки: PS; по-французски: CV ) — это внесистемная единица измерения мощности, установленная шотландским инженером Джеймсом Ваттом (James Watt) в XVIII веке. Он охарактеризовал одну лошадиную силу как груз массой в 250 килограмм, который могла бы поднять лошадь на высоту 0,3 метров за временной интервал в одну секунду, то есть 1 л.с. = 75 кгм/с.

 

Калория, единица тепла. Одна калория — это количество тепла, которое необходимо чтобы нагреть один грамм воды на один градус по шкале Цельсия (от 14,5 до 15,5 °С). В системе единиц СИ вместо калории используют джоуль (1 калория = 4,184 джоуля).

 

Товары на сайте:

Наименование: 

Наименование: 

Наименование: 

Наименование:

 

   

Как измеряются мощность и энергия?

Энергия против мощности

Если вы не поставщик коммунальных услуг или физик, вам, вероятно, не приходилось спрашивать себя, в чем разница между энергией и мощностью? Хотя различия могут показаться незначительными, знание различий может улучшить ваше понимание счета за электроэнергию. Давайте пройдемся по определениям энергии и мощности, чтобы лучше понять, о чем мы говорим.

Что такое энергия?

Энергия — это способность выполнять работу или, другими словами, создавать изменения с помощью физических или химических процессов и ресурсов.Когда дело доходит до энергии в вашем доме, проделанная работа приводит к питанию ваших электрических устройств (например, лампочек, телевизора) и тепла от ваших газовых приборов (например, печи, водонагревателя).

Существует много различных типов энергии, включая химическую, тепловую, ядерную, электрическую и гравитационную, которые делятся на две основные категории энергии: потенциальную и кинетическую. Типы энергии, протекающей через ваш дом, в основном химическая, тепловая и электрическая.Химическая и тепловая энергия являются потенциальной и кинетической соответственно, а электрическая энергия — это понемногу и того и другого. Давайте подробнее рассмотрим эти разные типы энергии.

Потенциальная и кинетическая энергия

Есть два основных типа энергии: потенциальная и кинетическая .

Потенциальная энергия — это запасенная энергия. Это возможность чего-то работать или создавать изменения. Химическая энергия , энергия, удерживающая молекулярные связи вместе, является примером потенциальной энергии.Когда связи разрываются, эта химическая энергия высвобождается.

Кинетическая энергия — это движение. Это может быть что угодно, от движения атомов и волн до движущегося автомобиля или тела. Тепловая энергия , которая создает тепло за счет быстрого движения частиц воздуха, является примером кинетической энергии.

Энергия может преобразовываться из одного типа в другой, и природный газ является прекрасным примером. При добыче природный газ полон химической энергии. Химическая энергия удерживает вместе молекулярные связи в метане, этане и других типах соединений природного газа, из которых состоит природный газ, который вы получаете дома.

Когда источник тепла — скажем, запальное пламя в вашей домашней печи — нагревает газ, он разрывает эти молекулярные связи. Когда связи разрываются, химическая энергия преобразуется в тепловую энергию , которая течет по всему дому, чтобы поддерживать в нем тепло и уют.

Электроэнергетика

Когда дело доходит до электричества, которое вы используете в своем доме, в игру вступает электрическая энергия . Электрическая энергия может быть потенциальной или кинетической в зависимости от ее состояния.Электрическая потенциальная энергия накапливается, когда атомы в ваших электрических проводах накапливают заряд. Как только вы активируете электрический прибор или, например, включаете свет, эта потенциальная электрическая энергия преобразуется в кинетическую, когда заряженные атомы перемещаются по электрическому проводу. Помните, кинетическая энергия — это движение!

Что такое мощность?

Вместо того, чтобы быть полностью отделенным от энергии объектом, сила на самом деле зависит от энергии. По своей сути, мощность — это поток энергии во времени ; когда мы измеряем мощность, мы измеряем скорость, с которой прибор потребляет энергию.Если энергия — это то, сколько работы выполняется, то сила — это то, как быстро эта работа выполняется. Поскольку при этом учитывается скорость, мощность измеряется в таких единицах, как ватты (джоули в секунду), которые включают время в качестве фактора.

Что касается вашего счета за коммунальные услуги, вы, вероятно, увидите мощность, описывающую ваше использование электроэнергии, а не использование природного газа. Что касается электричества, мощность связана с напряжением , или давлением, которое заставляет электроны двигаться и создавать устойчивый заряд. Электроэнергия — это напряжение, умноженное на объем движущейся электроники, известное как ток.Чем выше напряжение, тем больше у вас электроэнергии.

В чем измеряется энергия?

Итак, мы знаем, что энергия отражает работу — как потенциальную, так и физическую. Но в какой единице измеряется энергия, которая может учесть оба этих аспекта? джоулей измеряют энергию. У нас есть целое руководство, которое поможет вам лучше понять, что такое джоуль, но мы быстро разберем его здесь.

Основной единицей измерения электроэнергии является мощность, которая представляет собой норму потребления энергии.Если ватт (мощность) составляет один джоуль в секунду, то джоуль электрической энергии равен одному ватт-секунду. В следующем разделе мы более подробно рассмотрим, в чем измеряется мощность.

Что касается природного газа, вы можете использовать джоули для измерения количества тепловой энергии, необходимой вашей духовке для выпечки торта или печи, необходимой для обогрева вашего дома. Но для приборов, работающих на природном газе, вы, скорее всего, увидите рейтинг BTU (британская тепловая единица), а не рейтинг в джоулях. Для простоты преобразования одна БТЕ равна 1055 джоулей.Если ваша печь имеет рейтинг БТЕ 100 000 БТЕ / час, она потребляет 105 500 000 джоулей энергии в час.

Джоуль энергии относительно невелик, поэтому ваш поставщик коммунальных услуг, вероятно, измеряет потребление природного газа в гигаджоулях (ГДж). Один ГДж равен одному миллиарду джоулей; для контекста, требуется около 100 гигаджоулей, чтобы отапливать новый дом среднего размера в Канаде в течение одного года.

В чем измеряется мощность?

Поскольку мощность зависит от энергии, в основе этого измерения также лежат единицы измерения энергии, в частности, джоуль.

Мощность измеряется в Вт ; ватт равен джоуль в секунду . Что это значит в реальном мире? Возвращаясь к нашему примеру включения света, ватты измеряют количество энергии, которое ваша лампочка использует за каждую секунду включения света. Итак, если у вас есть лампочка мощностью 60 Вт, она потребляет 10 джоулей энергии на каждую секунду включения.

Один ватт — очень маленькая единица мощности. Поэтому для измерения энергопотребления более крупных машин и приборов (например, вашей электрической плиты или всей системы домашнего освещения) мощность обычно измеряется в киловаттах (кВт) — 1000 ватт.

Когда ваш поставщик электроэнергии измеряет ваше потребление электроэнергии, он должен знать количество киловатт, потребленных за определенный период. Вот тут-то и пригодится киловатт-час (кВтч) , и это, вероятно, то, что вы уже видели в счетах за электроэнергию. Отличить кВт от кВтч просто: киловатт — это единица мощности, а киловатт-часы — это энергия, потребляемая этой выходной мощностью.

Счет за электроэнергию

Чтобы понять ваш счет за электроэнергию, вам просто нужно умножить ежемесячное потребление электроэнергии и природного газа на ставку, взимаемую вашим поставщиком коммунальных услуг.Энергетические компании обычно взимают плату за электроэнергию на основе цены за киловатт-час, а за природный газ — на основе цены за ГДж.

Допустим, у вас есть беговая дорожка на 600 ватт, которую вы используете два часа в день. Чтобы узнать, сколько вы платите за тренировку на беговой дорожке каждый месяц, начните с:

  1. Преобразование ватт в киловатты (кВт).

    600 Вт 1000 Вт = 0,6 кВт

  2. Умножение киловатт на ежедневное потребление

    0.6 кВт X 2 часа = 1,2 кВт · ч

  3. Умножение ежедневного использования на 30 дней (один месяц)

    1,2 кВтч X 30 дней = 36 кВтч / месяц

Наконец, умножьте свое ежемесячное потребление на регулируемый тариф на электроэнергию. Если, например, ваш поставщик электроэнергии взимает 0,08 доллара за киловатт-час, вы должны будете заплатить 2,88 доллара (0,08 доллара х 36 кВтч / месяц) за электроэнергию за использование беговой дорожки в месяц.

Для расчета затрат на природный газ возьмем печь на 100 000 БТЕ / час и предположим, что вы используете ее в течение 150 часов в месяц.Во-первых, нам нужно выяснить, сколько ГДж энергии вы используете для отопления дома:

  1. Умножьте рейтинг в БТЕ на часы использования.

    100000 БТЕ / час X 150 часов = 15000000 БТЕ

  2. Перевести БТЕ в джоули.

    15 000 000 БТЕ X 1055 джоулей / БТЕ = 15 825 000 000 джоулей

  1. Перевести джоули в гигаджоули.

    15 825 000 000 джоулей 1 миллиард джоулей = 15.825 ГДж

Последний шаг к определению стоимости отопления дома — умножение ГДж на регулируемую норму природного газа. В этом примере мы скажем, что это 2,25 доллара за ГДж, что означает, что вы должны заплатить за электроэнергию около 35,60 доллара за месяц.

Дополнительные элементы в вашем счете за электроэнергию

Теперь, когда вы знаете единицы измерения, отражающие мощность и энергопотребление вашего домохозяйства, ваш ежемесячный счет за электроэнергию должен показаться немного более простым. Но также может быть несколько дополнительных позиций, требующих определения:

  • Передача или доставка Стоимость отражает стоимость перемещения электроэнергии или природного газа от источника через систему передачи, провода для электричества и трубопроводов для природного газа, включая содержание линий электропередач, опор и трубопроводов.
  • Распределение Расходы учитывают процесс доставки электричества и природного газа в ваш дом или офис от системы передачи, включая содержание линий электропередачи, опросы электроэнергии и распределительные трубопроводы.
  • Наездники — это корректировки, необходимые передающим или распределительным предприятием, рассмотренные и одобренные Комиссией по коммунальным предприятиям Альберты.
  • Федеральный налог на выбросы углерода — это сбор, установленный федеральным правительством за выбросы парниковых газов, связанные с потреблением природного газа.
  • Административные сборы покрывают расходы на обслуживание клиентов, когда мы вам нужны, а также расходы на расчет и доставку вашего счета.

Как ваш провайдер регулируемого электроснабжения провинции Альберта, мы всегда готовы помочь вам понять ваше энергопотребление и потребление энергии, а также помочь развенчать ваши счета за коммунальные услуги. Для получения дополнительной информации об услугах энергоснабжения Альберты позвоните нам по телефону 1-866-420-3174.

Измерение электроэнергии — У.S. Управление энергетической информации (EIA)

Электроэнергия измеряется в ваттах и ​​киловаттах

Электроэнергия измеряется в единицах мощности, называемых ваттами, в честь Джеймса Ватта, изобретателя паровой машины. Ватт — это единица измерения электрической мощности, равная одному амперу при давлении в один вольт.

Один ватт — это небольшая мощность. Некоторым устройствам для работы требуется всего несколько ватт, а другим устройствам требуется большее количество. Энергопотребление небольших устройств обычно измеряется в ваттах, а потребляемая мощность более крупных устройств — в киловаттах (кВт) или 1000 Вт.

Вырабатываемая мощность часто измеряется в киловаттах, например мегаваттах (МВт) и гигаваттах (ГВт). Один МВт равен 1000 кВт (или 1000000 Вт), а один ГВт равен 1000 МВт (или 1000000000 Вт).

Использование электроэнергии с течением времени измеряется в ватт-часах

Ватт-час (Втч) равен энергии одного ватта, постоянно подаваемой в электрическую цепь или отбираемой из нее в течение одного часа. Количество электроэнергии, производимой электростанцией или потребляемой потребителем электроэнергии, обычно измеряется в киловатт-часах (кВтч).Один кВтч — это один киловатт, который вырабатывается или потребляется в течение одного часа. Например, если вы используете лампочку мощностью 40 Вт (0,04 кВт) в течение пяти часов, вы израсходовали 200 Втч или 0,2 кВтч электроэнергии.

Коммунальные предприятия измеряют и контролируют потребление электроэнергии с помощью счетчиков

Электроэнергетические компании измеряют потребление электроэнергии своими потребителями с помощью счетчиков, которые обычно располагаются за пределами собственности потребителя, где линия электропередачи входит в собственность. Раньше все счетчики электроэнергии были механическими устройствами, которые служащему коммунального предприятия приходилось снимать вручную.Со временем стали доступны автоматизированные считывающие устройства. Эти счетчики периодически сообщают коммунальным предприятиям об использовании электроэнергии механическими счетчиками с помощью электронного сигнала. В настоящее время многие коммунальные предприятия используют электронные интеллектуальные счетчики , которые обеспечивают беспроводной доступ к данным об энергопотреблении счетчика для измерения потребления электроэнергии в режиме реального времени. Некоторые интеллектуальные счетчики могут даже измерять потребление электроэнергии отдельными устройствами и позволяют коммунальному предприятию или клиенту удаленно контролировать использование электроэнергии.

Счетчик электроэнергии механический

Источник: стоковая фотография (защищена авторским правом)

Умный счетчик электроэнергии

Источник: стоковая фотография (защищена авторским правом)

Последнее обновление: 8 января 2020 г.

Power — Energy Education

Мощность — это скорость преобразования или передачи энергии.Проведем аналогию: если энергия подобна деньгам, мощность — это заработная плата или оклад (например, 18 долларов в час или 50 000 долларов в год) или норма использования (например, 20 долларов в час на аренду каноэ или 1500 долларов в месяц на аренду) .

Мощность может быть выражена множеством различных единиц, каждая из которых может быть выражена как единица энергии, деленная на единицу времени. Наиболее распространенная единица измерения — ватт (Вт), определяемый как 1 джоуль (Дж) энергии в секунду. Таким образом, лампочка мощностью 40 Вт потребляет 40 Дж электроэнергии каждую секунду, чтобы оставаться включенным. [1] Средняя выходная мощность человеческого тела при умеренных физических нагрузках составляет около 100 Вт. [2]

Для большинства двигателей и силовых установок существуют две разные мощности. Скорость, с которой энергия поступает в систему из топлива, называется тепловой мощностью. Величина мощности, которую вырабатывает двигатель, и есть механическая мощность. Для электростанции такой выходной мощностью является электроэнергия, поэтому она измеряется в электрических мегаваттах (МВт), в отличие от входной мощности, которая измеряется в тепловых мегаваттах (МВт).

Энергия и мощность

Взаимосвязь между мощностью, энергией и временем может быть описана следующим уравнением [1] :

[математика] P = \ frac {\ Delta E_ {sys}} {\ Delta t} [/ math]
  • P — средняя выходная мощность, измеренная в ваттах (Вт)
  • ΔE sys — чистое изменение энергии системы в джоулях (Дж), также известное как работа.
  • Δt — это продолжительность — сколько времени занимает потребление энергии — измеряется в секундах (с)

Поскольку мощность — это скорость использования энергии (энергия, деленная на интервал времени), Умножение единицы мощности на единицу времени даст количество энергии. Один из таких примеров — киловатт-часы (кВтч) в единицах энергии. Киловатт равен 1000 ватт, поэтому 1 кВт-ч представляет собой количество передачи энергии, которое происходит в течение одного часа при выходной мощности в 1000 ватт (т.е.е., джоулей в секунду). Таким образом, 1 кВтч равен 3 600 000 джоулей передачи энергии (работы).

Больше мощности позволяет выполнить задачу с заданной потребностью в энергии за более короткое время. Например, подняв блок весом 15 кг на 2 метра в воздух. Эта задача требует около 300 Дж потребляемой энергии (работы). Система двигателя и шкива с выходной мощностью 5 Вт может выполнить эту задачу за одну минуту. Однако более мощный мотор мощностью 100 Вт мог поднять коробку на ту же высоту всего за три секунды! Но в итоге оба мотора проделали одинаковую работу (передачу энергии) при подъеме коробки.

Выходная мощность раз Полная передача энергии
5 Вт 60 с 300 Дж
100 Вт 3 с 300 Дж

Преобразование блока питания

Пожалуйста, смотрите ниже, чтобы преобразовать различные единицы мощности:

Для дальнейшего чтения

Список литературы

  1. 1.0 1.1 Р. Д. Найт, «Работа», в Физика для ученых и инженеров: стратегический подход, 2-е изд.Сан-Франциско, США: Pearson Addison-Wesley, 2008, стр. 325–327.
  2. ↑ Р. Вольфсон, «Общество высоких энергий», в Энергия, окружающая среда и климат, 2-е изд. Нью-Йорк, США: Norton, 2012, стр. 20–21.
Объяснение

Power vs Energy — Устранение путаницы

Роб Льюис

«Я сел на диету и потерял 15 лошадиных сил».

«Я залил бензобак своей машины. Потребовалось 20 вольт ».

Большинство людей сочло бы эти утверждения бессмыслицей.В конце концов, кажется очевидным, что вес измеряется не в лошадиных силах, а количество жидкости не измеряется в вольтах. В обоих случаях динамик ошибся в единицах измерения .

Хотя эти ошибки могут быть абсурдными, в области производства и хранения энергии подобные ошибки совершаются постоянно, и, кажется, никто их не замечает. Основная проблема — смешение двух связанных, но разных физических величин: энергии, и мощности, . Это не одно и то же! Если вы прочитаете и поймете эту статью, вы узнаете больше о разнице, чем многие репортеры, и когда вы услышите, что новая ветряная электростанция будет вырабатывать «250 мегаватт в год», вы поймете, что что-то не так!

Так что же такое энергия?

Хотя у всех нас есть смутное представление о том, что такое энергия, полезно знать точное определение.Проще говоря, энергия — способность выполнять работу — . В физике работа — это действие , в котором сила действует на расстоянии . Переместить диван через комнату или поднять ручную кладь в верхний отсек самолета — это тоже работа. (С другой стороны, просто стоять с чемоданом над головой может утомить вас, но технически это не работает, потому что вы фактически не перемещаете багаж.)

Итак, мы можем сказать, что энергия — это то, что позволяет двигать вещи.Это может быть машина, едущая по шоссе, кусок хлебного теста на тестомесильной доске или электрон в нити накаливания лампочки. Раздвигать эти вещи — это работа, и для этого требуется энергия. Если мы знаем силу силы, которая нам нужна, чтобы переместить объект, и расстояние, на которое мы собираемся его переместить, мы можем рассчитать количество энергии, которое нам понадобится.

Существует несколько различных единиц измерения энергии: джоули, БТЕ, ньютон-метры и даже калории. Когда мы говорим об электроэнергии, наиболее распространенной единицей является ватт-час .Один ватт электроэнергии, поддерживаемой в течение одного часа, равен одному ватт-часу энергии. Тысяча из них — это киловатт-час (кВтч), и обратите внимание, что тысяча ватт за один час или один ватт за тысячу часов, оба равны одному кВтч. У них одинаковое количество энергии.

Работает быстрее = больше мощности

Вы видели, как я вставил термин «сила» в последний абзац? Вот критическое различие между ним и энергией: хотя энергия измеряет общее количество выполненной работы, , она не говорит о том, как быстро, , вы можете выполнить работу.Вы могли бы перемещать груженый полуприцеп через всю страну с двигателем газонокосилки, если бы вам было все равно, сколько времени это займет. При прочих равных условиях крошечный двигатель выполнял бы тот же объем работы, что и большой грузовик. И он будет производить такое же количество энергии и сжигать такое же количество топлива. Но у более мощного двигателя больше мощности, поэтому он может выполнять работу быстрее. Мощность определяется как скорость производства или потребления энергии . Повторите это десять раз: «Сила и энергия — это не одно и то же! Мощность — это энергия в единицу времени.”

Стандартной единицей электрической мощности является ватт, который определяется как ток в один ампер, вызванный напряжением в один вольт . Проще говоря, вольт x ампер = ватта (есть сложности, если мы говорим об переменном токе, но мы пока проигнорируем это). В США стандартная настенная розетка выдает 120 вольт. Если вы подключите лампочку и обнаружите, что через нее протекает ток в ½ ампер, вы знаете, что мощность, потребляемая лампочкой, составляет (120) x (½), или 60 Вт.

Вот и хватит власти. Сколько энергии потребляет лампа? Это зависит от того, как долго мы оставим его гореть. 60-ваттная лампочка, горящая в течение одного часа, потребляет 60 ватт-часов энергии. Десять лампочек, горящих в течение десяти часов, потребляли бы 10 x 60 x 10, или 6000 ватт-часов, что мы можем более удобно записать как 6 кВтч. Тысячи домашних хозяйств, которые все это делают, потребляли бы 6000 кВтч, что равняется 6 мегаватт-часам или 6 МВтч (поскольку 1000000 ватт = 1000 киловатт = 1 мегаватт).

Итак, при измерении электрической энергии нужно всегда помнить о «часах».«Просто нет смысла говорить, что электростанция может вырабатывать столько« мегаватт в год ». Вероятно, они имеют в виду «мегаватт-часы в год».

Ну, погоди. Разве «мегаватт-часы в год» не соответствуют нашему определению мощности ? Это энергия (мегаватт-часы) в единицу времени (годы). Абсолютно верно! Так что, вместо того, чтобы писать «мегаватт-часы в год», не было бы проще просто оценить мощность электростанции в ваттах? Действительно было бы. А поскольку в среднем в году 8 766 часов, мы можем преобразовать «МВтч / год» в просто «МВт», разделив на это число.Это говорит нам о том, что наша гипотетическая ветряная электростанция, производящая 250 МВтч / год, вырабатывает электроэнергию со средней скоростью 250 ÷ 8766 или 0,0285 МВт, что равно 28,5 кВт.

Уведомление Я сказал: « средняя скорость ». Когда ветер не дует, мощность производства, конечно же, равна нулю. Таким образом, чтобы в среднем вырабатывать 28,5 кВт, ветряная электростанция должна иногда производить значительно больше. Это приводит к другому важному параметру, называемому «пиковая выходная мощность»: максимум, который ветряные турбины могут производить в идеальных условиях.Для нашей установки мощностью 28,5 (средней) кВт пиковая мощность может составлять 50 кВт или более.

Солнечные электростанции, конечно, имеют аналогичные соображения: нулевая мощность в ночное время и пиковая мощность, как правило, в полдень в летнее время. Но если вы усредните это значение за год, вы получите среднюю мощность в киловаттах или мегаваттах.

Накопитель энергии: как ватт, так и ватт-час

Большая часть дискуссий о чистой энергии касается способов ее хранения для тех времен, когда не дует ветер или не светит солнце.Без эффективного хранения мы вынуждены полагаться на обычные электростанции в эти периоды.

Под накоплением энергии обычно подразумеваются батареи, но есть и другие способы, например, гидроаккумуляция и расплавленная соль. Но какой бы ни была технология, есть два интересных параметра производительности:

.
  1. Сколько всего энергии может хранить система? (Думаю, ватт-часы)
  2. Какую мощность он может выдать в любой момент? (Думаю, Вт)

Полезность системы хранения зависит от обоих этих величин.Система, в которой хранится огромное количество энергии, не была бы очень полезной, если бы могла возвращать эту энергию только по несколько ватт за раз. А система, достаточно мощная, чтобы осветить весь город, не годилась бы, если бы ее батареи разрядились через несколько минут.

Мораль этой истории: системы хранения должны быть способны хранить достаточно энергии, чтобы выдержать периоды «отключения электроэнергии», и они должны иметь возможность доставлять эту энергию достаточно быстро, чтобы соответствовать электрической нагрузке. Если вы знаете как емкость накопителя энергии (скажем, в мегаватт-часах), так и выходную мощность (скажем, мегаватты), вы можете просто разделить эти числа, чтобы определить, на сколько хватит резервного питания.Например, хранилище мощностью 20 мегаватт-часов, выдающее мощность на уровне 2 мегаватт, будет работать в течение 20 ÷ 2, или 10 часов при полной зарядке.

Заключение

Люди часто используют слова «сила» и «энергия» как синонимы. Но теперь вы знаете разницу: энергия — это общий объем проделанной работы, а мощность — это то, насколько быстро вы можете ее сделать. Другими словами, мощность — это энергия в единицу времени. Мощность ватт. Энергия — ватт-часы.

Изображение: электричество через Shutterstock


Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником, техническим специалистом или представителем CleanTechnica — или покровителем Patreon.


У вас есть совет для CleanTechnica, вы хотите разместить рекламу или предложить гостя для нашего подкаста CleanTech Talk? Свяжитесь с нами здесь.

Что такое коэффициент мощности? | Как рассчитать формулу коэффициента мощности

Как понять коэффициент мощности

Пиво — это активная мощность (кВт) — полезная мощность или жидкое пиво — это энергия, которая выполняет работу. Это то, что вам нужно.

Пена — это реактивная мощность (кВАр) — пена — это потраченная впустую или потерянная мощность.Это производимая энергия, которая не выполняет никакой работы, например, производство тепла или вибрации.

Кружка — кажущаяся мощность (кВА) — кружка — это потребляемая мощность или мощность, поставляемая коммунальным предприятием.

Если бы схема была эффективна на 100%, потребность была бы равна доступной мощности. Когда спрос превышает имеющуюся мощность, на энергосистему оказывается нагрузка. Многие коммунальные предприятия добавляют плату за спрос к счетам крупных потребителей, чтобы компенсировать разницу между спросом и предложением (когда предложение ниже спроса).Для большинства коммунальных предприятий потребность рассчитывается на основе средней нагрузки, размещенной в течение 15–30 минут. Если требования к нагрузке нерегулярны, коммунальное предприятие должно иметь больше резервной мощности, чем если бы требования к нагрузке оставались постоянными.

Пик спроса — это период наибольшего спроса. Перед коммунальными предприятиями стоит задача предоставить мощность, чтобы справиться с пиковыми потребностями каждого клиента. Использование электроэнергии в тот момент, когда она пользуется наибольшим спросом, может нарушить общее предложение, если не будет достаточно резервов. Таким образом, коммунальные услуги выставляют счет за пиковый спрос.Для некоторых крупных клиентов коммунальные предприятия могут даже взять самый большой пик и применить его в течение всего расчетного периода.

Коммунальные предприятия применяют надбавки к компаниям с более низким коэффициентом мощности. Издержки более низкой эффективности могут быть огромными — сродни вождению автомобиля, потребляющего много бензина. Чем ниже коэффициент мощности, тем менее эффективна схема и тем выше общие эксплуатационные расходы. Чем выше эксплуатационные расходы, тем выше вероятность того, что коммунальные предприятия накажут клиента за чрезмерную загрузку. В большинстве цепей переменного тока коэффициент мощности никогда не бывает равным единице, потому что на линиях электропередачи всегда присутствует некоторое сопротивление (помехи).

Как рассчитать коэффициент мощности

Для расчета коэффициента мощности вам понадобится анализатор качества электроэнергии или анализатор мощности, который измеряет как рабочую мощность (кВт), так и полную мощность (кВА), а также рассчитывает соотношение кВт / кВА.

Формула коэффициента мощности может быть выражена другими способами:

PF = (Истинная мощность) / (Полная мощность)

OR

PF = W / VA

Где ватты измеряют полезную мощность, а VA измеряют потребляемую мощность. Отношение этих двух значений по существу представляет собой полезную мощность к подаваемой мощности, или:

Как показывает эта диаграмма, коэффициент мощности сравнивает реальную потребляемую мощность с полной мощностью или потребляемой нагрузкой.Мощность, доступная для выполнения работы, называется реальной мощностью. Вы можете избежать штрафов за коэффициент мощности, корректируя коэффициент мощности.

Низкий коэффициент мощности означает, что вы используете электроэнергию неэффективно. Это важно для компаний, поскольку может привести к:

  • Тепловому повреждению изоляции и других компонентов схемы
  • Уменьшению доступной полезной мощности
  • Требуемое увеличение размеров проводов и оборудования

Наконец, коэффициент мощности увеличивает общая стоимость системы распределения энергии, потому что более низкий коэффициент мощности требует более высокого тока для питания нагрузок.

Связанные ресурсы

Почему невозможно измерить мощность

Истину всегда можно найти в простоте, а не во множестве и беспорядке вещей. — Исаак Ньютон

Почему мы не можем измерить МОЩНОСТЬ Я впервые познакомился с этой концепцией от коллеги, Лорен Чиу, доктора философии, когда мы оба были докторантами в Университете Южной Калифорнии. Лорен сейчас профессор биомеханики в Университете Калгари. Он объяснил, что способ, которым термин «сила» используется для описания качества движения спортсмена (краткосрочная, высокоинтенсивная мускульная производительность), с научной точки зрения неточен, и что измерение РЕАЛЬНОЙ мощности путем выполнения вертикального прыжка на силовой пластине представляет собой много проблем.

К сожалению, слово «сила» стало модным, потому что его легче объяснить тренерам и спортсменам, но при этом термин используется без понимания истинного значения. Мощность просто определяется как скорость выполнения работы , и ее следует ограничивать этим механическим определением, а не пытаться изолировать ее во время различных техник движения, которые имеют большое количество переменных.

Почему бы не измерить мощность?

Сила НЕ является основной причиной движения В более позднем обзоре Кнудсона автор напоминает нам, что при измерении вертикального прыжка на силовой пластине чистый вертикальный импульс определяет высоту вертикального прыжка (с почти идеальной корреляцией). из 1.0). Это пример второго закона движения Ньютона, который гласит, что ускорение объекта зависит от двух переменных — чистой силы , действующей на объект, и массы объекта . По мере увеличения силы, действующей на объект, ускорение объекта увеличивается. По мере увеличения массы объекта ускорение объекта уменьшается. Этот закон иначе известен как F = ma. Кнудсон продолжает более остро объяснить, что , «в то время как поток мощности на землю является более изменчивой кривой, которая просто коррелирует с чистым вертикальным импульсом.Другими словами, зачем сосредотачиваться на мощности, если соотношение импульса и количества движения (второй закон Ньютона) полностью связывает кинетику с кинематикой движения (r = 1,0)? »

Сила игнорирует временные различия в движении. Опять же, мощность — это скорость, с которой выполняется работа. Мы находим, что это уравнение часто не удается, особенно при попытке измерить атлетизм, потому что взрывным движениям обычно не хватает постоянной скорости работы . Очень короткая продолжительность многих динамических событий (т.е. бег, прыжки на одной ноге или поднятие тяжестей) и временная (временная) разница между пиковой силой , и пиковой скоростью , означает, что пиковая и средняя мощность , измеренная , может не иметь такого значения, как другие биомеханические переменные.

Сложные навыки и техника Большая часть спортивных исследований измеряет механическую мощность на велотренажере, исследуя скорость работы спортсмена СТАБИЛЬНОЕ СОСТОЯНИЕ с течением времени (также известный как тест Вингейта).Помимо измерения работы в установившемся режиме, другим преимуществом велотренажера (и почему он точно измеряет мощность) является изоляция, которая по сути исключает верхнюю часть тела из уравнения. Когда мы начинаем измерять мощность во время спринта, тяжелой атлетики и прыжков (на силовой пластине), большая степень свободы движений всего тела спортсмена делает расчеты более непостоянными и неопределенными. Измерение силы в спринтерских и тяжелоатлетических движениях намного сложнее, потому что техника является решающим компонентом успешного выполнения этих навыков

Что делать вместо питания? В «Спарте» мы каждый день используем вертикальные прыжки на силовой доске, чтобы оценивать наших спортсменов.Валидность — это критерий номер один для переменных, которые мы собираем в результате этой оценки. Мы неоднократно отказывались от оценки силы и уделяли больше внимания трем измеряемым нами силовым переменным, поскольку они действительны и надежны. Мы всегда стремимся упростить наш процесс, высвобождая время для реального взаимодействия с нашими спортсменами и не погребая под грудой данных.

Мощность теста — обзор

2 Статистический размер и мощность

Размер теста — это вероятность ошибочного отклонения нулевой гипотезы, если она верна.Степень теста — это вероятность правильного отклонения нулевой гипотезы, если она ложна. Для данной гипотезы и статистики теста один ограничивает размер теста, чтобы он был маленьким, и пытается сделать мощность теста как можно большей.

При заданном размере, статистике теста, нулевой гипотезе и альтернативе статистическая мощность может быть оценена с использованием общего (но иногда неуместного) предположения о том, что данные являются гауссовскими. Однако по мере сбора данных улучшенные оценки могут быть получены с помощью современных статистических методов, требующих большого объема вычислительных ресурсов.Например, мощность и размер могут быть вычислены для каждой тестовой статистики, описанной ранее, чтобы проверить гипотезу о том, что цифровая маммография с заданной скоростью передачи данных равна или превосходит маммографию на пленочном экране с заданной статистикой и альтернативной гипотезой, которая должна быть предложена на основе данных. В отсутствие данных мы можем только предполагать поведение собранных данных, чтобы приблизительно оценить мощность и размер. Мы рассматриваем односторонний тест с «нулевой гипотезой» о том, что независимо от критерия [управление или чувствительность к обнаружению, специфичность или положительная прогностическая ценность (PVP)], маммограммы, полученные цифровым способом или сжатые с потерями, с определенной частотой хуже, чем аналог.«Альтернатива» — они лучше. В соответствии со стандартной практикой мы берем наши тесты на размер 0,05. Здесь мы сосредоточены на чувствительности и специфичности управленческих решений, но общий подход можно распространить на другие тесты и задачи.

Приблизительные расчеты мощности производятся из таблиц согласования 2 на 2 формы Таблицы 1. В этой таблице строки соответствуют одной технологии (например, аналоговой), а столбцы — другой (например, цифровой). «R» и «W» соответствуют «правильному» (согласие с золотым стандартом) и «неправильному» (несогласие с золотым стандартом).Так, например, количество N (1, 1) — это количество случаев, когда рентгенолог был прав при чтении как аналоговых, так и цифровых изображений. Ключевая идея двояка. При отсутствии данных предположение о мощности может быть вычислено с использованием стандартных приближений. Однако после получения предварительных данных можно получить более точные оценки с помощью методов моделирования, использующих оценки, присущие данным. В таблице 2 показаны возможности и соответствующие им вероятности.Правый столбец и нижняя строка представляют собой суммы того, что находится, соответственно, слева и над ними. Таким образом, ψ — это значение для одной технологии, а ψ + h — значение для другой; h = 0 означает отсутствие разницы. Это нулевая гипотеза. Четыре записи в середине таблицы — это параметры, которые определяют вероятности для одного исследования. Предполагается, что это средние значения по радиологам, как и приведенные суммы. Наши симуляции учитывают то, что мы знаем об этом: радиологи очень разные в том, как они справляются и как они обнаруживают.

ТАБЛИЦА 1. Соглашение 2 × 2 таблица

II \ I R W
R N (1, 1) N (1, 2 )
W N (2, 1) N (2, 2)

ТАБЛИЦА 2. Вероятности результатов управления

Неправильно
II \ I справа
Право 2ψ + h — 1 + γ 1 — ψ — h — γ ψ
Неправильно 1 – ψ27 – γ 1 – ψ
ψ + h 1– ψ – h 1

Два основных параметра: γ и R .Первый — это вероятность (в среднем) того, что радиолог «не прав» для обеих технологий; R — это количество врачей-радиологов. Эти ключевые параметры могут быть оценены по счетам таблицы согласования 2 на 2, полученной в результате пилотного эксперимента, а затем улучшены по мере сбора дополнительных данных.

В нашем небольшом пилотном исследовании лечения мы обнаружили чувствительность около 0,60 и специфичность около 0,55. Соответствующие оценочные значения h варьировались от более чем 0.02 примерно до 0,07; γ был около 0,05. Все эти числа искажены значительным шумом. В самом деле, вариативность, связанная с нашей оценкой их, затмевается очевидной вариабельностью среди радиологов. Для теста размером 0,05, варьируя параметры в количествах, подобных тому, что мы видели, мощность может быть от 0,17 для 18 радиологов или до 1,00 для только 9 радиологов. Мощность очень чувствительна к трем параметрам. Независимо от того, сколько исследований или сколько у нас было бы радиологов, всегда можно было изменить параметры, чтобы нам потребовалось больше одного или обоих.

Если мы подумаем, что чувствительность обнаружения составляет, скажем, 0,85, то, по крайней мере, для этого количества 400 исследований и 9 радиологов кажутся вполне достаточными. В настоящее время одна хорошая рекомендация — начать с 400 исследований, 12 радиологов, по три в каждом из четырех центров, и найти достигнутый уровень значимости для проверки нулевой гипотезы об отсутствии разницы между технологиями. И, что, возможно, не менее важно, оцените параметры таблицы 2. На этом этапе можно оценить возможное количество требуемых дополнительных радиологов или исследований, если таковые имеются, для конкретных значений размера и мощности, которые могут потребоваться рецензентам.Дизайн может быть изменен таким образом, чтобы в пул исследований входило более 400 исследований, но ни один радиолог не прочитал бы более 400. Таким образом, мы могли довольно легко оценить влияние переменной распространенности неблагоприятных результатов в золотом стандарте, хотя мы может подойти к этому вопросу даже в ситуации, которую мы изучаем здесь.

Вычисления мощности в нашей формулировке одинаково хорошо применимы к чувствительности и специфичности. Они основаны на выборке из 400 исследований, для которых разумная медицинская практика потребовала бы, чтобы вернулись к скринингу, для 200, а еще что-то ( 6-месячное наблюдение, требуется дополнительная оценка или биопсия ) для остальных 200.Таким образом, существует 200 исследований, которые используются для расчета чувствительности, и столько же исследований для определения специфичности. Все сравнения проводятся в контексте «клинического ведения», которое может быть «правильным» или «неправильным». Само собой разумеется, что существует согласованный золотой стандарт и , независимый или отдельный. Для данного радиолога, который оценил две технологии — здесь называемые I и II и предназначенные для использования в цифровом и аналоговом или аналоговом и сжатом с потерями цифровом виде — конкретное исследование приводит к записи в таблице согласования 2 на 2 в виде таблицы 1.

Если нулевая гипотеза «нет разницы в технологиях» верна, то независимо от значения ψ и γ, h = 0. Альтернативная гипотеза могла бы указать h ≠ 0 и без потерь (поскольку мы можем позвонить какую бы технологию мы ни хотели, I или II) мы можем принять h > 0 в соответствии с альтернативной гипотезой о том, что существует истинное различие в технологиях. Под нулевым значением с заданным b + c, b имеет биномиальное распределение с параметрами b + c и 1/2.Согласно альтернативе, заданной b + c, b является биномиальным с параметрами b + c и (1 — ψ — h — γ) / (2 — 2ψ — 2γ — h ). Обычный условный тест МакНемара для нулевой гипотезы основан на ( b c ) 2 / ( b + c ), имеющем приблизительно распределение хи-квадрат с одной степенью свободы.

На практике мы намерены использовать радиологов R для R = 9, 12, 15 или 18, чтобы предположить, что их результаты независимы, и объединить их данные, добавив соответствующие значения их статистики Макнемара.Мы всегда предполагаем, что размер = вероятность ошибки типа I составляет 0,05. Поскольку сумма независимых случайных величин хи-квадрат распределена как хи-квадрат со степенями свободы, суммой соответствующих степеней свободы, в качестве критического значения для нашего теста целесообразно принять число C , где Pr ( χR2> C) = 0,05. Таким образом, четыре соответствующих значения C равны 16,92, 21,03, 25,00 и 28,87.

Вычислить мощность сложно, потому что она равна безусловным , поскольку до эксперимента b + c для каждого радиолога случайны.Таким образом, мощность — это вероятность того, что нецентральная случайная величина хи-квадрат с R степенями свободы и параметром нецентральности [(p1−0.5) 2 / p1q1] ∑i = 1R (bi + ci) превышает C /4 p 1 q 1 , где b i + c i имеет биномиальное распределение с параметрами N и 2 — 2ψ — 2γ — h ; и случайные целые числа R независимы; p 1 = (1 — ψ — h — γ) / (2 — 2ψ — 2γ — h ) = 1 — q 1 .Это влечет за собой, что параметры нецентральности случайной величины хи-квадрат, которая фигурирует при вычислении мощности, сами по себе являются случайными.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *