Плотность воды и льда. Что больше и почему?
Ещё со школьной скамьи все знают о том, что лёд не тонет в воде. Но в чём же причина, ведь, по логике, он должен быть тяжелее, чем вода. Всё дело в том, что на самом деле плотность льда меньше, чем плотность воды. Как такое возможно? Попробуем разобраться.
Почему плотность льда меньше плотности воды?
Почему вода в своём твёрдом состоянии (лёд) легче, чем вода в жидком состоянии? Ведь должно быть наоборот: при переходе из жидкого состояния в твёрдое плотность вещества должна увеличиться, а объём при этом уменьшиться. Это известно всем из школьного курса физики. Исключение составляет обычная вода. Когда она замерзает и переходит в состояние льда, то плотность её при этом уменьшается. А причина – в так называемых водородных связях. Кристаллическая решётка льда похожа на соты, в каждом из шести углов расположены молекулы воды, соединённые водородными связями. Расстояние между молекулами воды в твёрдом состоянии больше, чем в жидком, где они перемещались свободно и могли сближаться.
Что больше, плотность льда или воды: исключение из правил
Итак, мы выяснили, почему плотность льда меньше плотности воды. Но существует ещё одна интересная закономерность. Если воду охлаждать не сразу, а постепенно, то вплоть до температуры +4оС вещество действительно становится плотнее. То есть, на этом этапе никаких отклонений от нормы мы не наблюдаем. А пройдя эту отметку, вода становится легче и, в конце концов, образуется лёд, плотность которого меньше, чем плотность воды. Впервые на это необычное свойство обратил внимание ещё Галилео Галилей.
Причём после того, как температура воды становится ниже отметки +4оС, плотность падает скачкообразно – сразу на 8%. Насколько же различаются плотность воды и льда? Если принять плотность воды за единицу, то плотность льда будет составлять 0,91.
Что нужно знать?
После замерзания объём воды увеличивается на 9%. Именно это становится причиной того, что замёрзшая в трубах вода «рвёт» их.
Но если на коммунальном хозяйстве такие свойства воды сказываются крайне негативно, то обитателям водоёмов они спасают жизнь. Даже в самые холодные зимы озёра и пруды не промерзают до дна. Нижние слои воды охлаждаются до 4о, а верхние слои превращаются в лёд. Плотность льда меньше плотности воды, поэтому он не опускается на дно, позволяя водяным жителям перезимовать. Кроме того, в толще льда ещё и остаются воздушные пузырьки, они делают плотность льда ещё меньше, как и сам вес ледяной пластины.
Наглядно продемонстрировать, например, ребёнку, что вода расширяется при замерзании можно при помощи простого опыта. Достаточно налить воды в пластиковый стаканчик и оставить его на морозе. Через несколько часов можно наблюдать результат: стаканчик будет разорван или деформирован.
Ещё один интересный опыт, который понравится детям: возьмите пластиковую трубочку для коктейля, плотно залепите пластилином, и залейте туда воду, отметив маркером уровень. Поставьте трубочку в морозилку. Когда вода замёрзнет, будет видно, что уровень находится выше, чем первоначальный.
Плотность морской воды
Как ведёт себя пресная вода при замерзании, мы разобрались. А вот с морской водой всё немного по-другому. Дело в том, что она представляет собой фактически раствор солей (35 г слой содержится в 1 литре морской воды). Максимума своей плотности она достигает при температуре -3,5оС, но замерзает уже при -1,9 °C.
Самая чистая вода
Уникальные свойства льда не ограничиваются его молекулярной структурой. Достаточно распространено мнение о пользе для здоровья именно талой воды. Однако учёные с сомнением относятся к «чудодейственным» свойствам такой воды. Ведь во время таяния льда его кристаллическая структура практически сразу разрушается, а значит, межмолекулярные связи становятся таким же, как и у обычной воды.
Если вы заботитесь о своём здоровье, то лучше установить качественную систему очистки водопроводной воды. А перед этим сдать воду на анализ. Лаборатория «УкрХимАнализ» проведёт анализ водопроводной воды по ключевым показателям (выбирайте пакет «Базовый», «Расширенный» или «Максимальный») и даст необходимые рекомендации, как улучшить её качество.
У Вас есть вопросы или Вам нужна консультация?
Заполните форму и получите бесплатную консультацию!
Читайте похожие статьи:
3 класс. Окружающий мир. Свойства воды в жидком, твёрдом и газообразном состоянии — Свойства воды в жидком, твёрдом и газообразном состоянии
Комментарии преподавателяВ чистом виде вода не имеет вкуса, запаха и цвета, но она почти никогда не бывает такой, потому что активно растворяет в себе большинство веществ и соединяется с их частицами. Так же вода может проникать в различные тела (ученые нашли воду даже в камнях).
Рис. 1. Вода (Источник)
Если в стакан набрать воды из-под крана, она будет казаться чистой. Но на самом деле, это – раствор многих веществ, среди которых есть газы (кислород, аргон, азот, углекислый газ), различные примеси, содержащиеся в воздухе, растворенные соли из почвы, железо из водопроводных труб, мельчайшие нерастворенные частицы пыли и др.
Рис. 2. Вода в стакане (Источник)
Если нанести пипеткой капельки водопроводной воды на чистое стекло и дать ей испариться, останутся едва заметные пятнышки.
Рис. 3. Капли воды на стекле (Источник)
В воде рек и ручьев, большинства озер содержатся различные примеси, например, растворенные соли. Но их немного, потому что эта вода – пресная.
Рис. 4. Река (Источник)
Вода течет на земле и под землей, наполняет ручьи, озера, реки, моря и океаны, создает подземные дворцы.
Рис. 5. Подземная пещера (Источник)
Прокладывая себе путь сквозь легкорастворимые вещества, вода проникает глубоко под землю, унося их с собой, и через щелочки и трещинки в скальных породах, образуя подземные пещеры, капает с их свода, создавая причудливые скульптуры. Миллиарды капелек воды за сотни лет испаряются, а растворенные в воде вещества (соли, известняки) оседают на сводах пещеры, образуя каменные сосульки, которые называют сталактитами.
Рис. 6. Сталактиты (Источник)
Сходные образования на полу пещеры называются сталагмитами.
Рис. 7. Сталагмиты (Источник)
А когда сталактит и сталагмит срастается, образуя каменную колонну, это называют сталагнатом.
Рис. 8. Сталагнат (Источник)
Наблюдая ледоход на реке, мы видим воду в твердом (лед и снег), жидком (текущая под ним) и газообразном состоянии (мельчайшие частицы воды, поднимающиеся в воздух, которые ещё называют водяным паром).
Рис. 9. Ледоход на реке (Источник)
Вода может одновременно находится во всех трех состояниях: в воздухе всегда есть водяной пар и облака, которые состоят из капелек воды и кристалликов льда.
Рис. 10. Облако (Источник)
Водяной пар невидим, но его можно легко обнаружить, если оставить в теплой комнате охлаждавшийся в холодильнике в течение часа стакан с водой, на стенках которого сразу появятся капельки воды. При соприкосновении с холодными стенками стакана, водяной пар, содержащийся в воздухе, преобразуется в капельки воды и оседает на поверхности стакана.
Рис. 11. Конденсат на стенках холодного стакана (Источник)
По этой же причине в холодное время года запотевает внутренняя сторона оконного стекла. Холодный воздух не может содержать столько же водяного пара, сколько и теплый, поэтому какое-то его количество конденсируется – превращается в капельки воды.
Рис. 12. Запотевшее окно (Источник)
Белый след за летящим в небе самолетом – тоже результат конденсации воды.
Рис. 13. След за самолетом (Источник)
Если поднести к губам зеркальце и выдохнуть, на его поверхности останутся мельчайшие капельки воды, это доказывает то, что при дыхании человек вдыхает с воздухом водяной пар.
При нагревании вода «расширяется». Это может доказать простой опыт: в колбу с водой опустили стеклянную трубку и замерили уровень воды в ней; затем колбу опустили в сосуд с теплой водой и после нагревания воды повторно замерили уровень в трубке, который заметно поднялся, поскольку вода при нагревании увеличивается в объеме.
Рис. 14. Колба с трубкой, цифрой 1 и чертой обозначен первоначальный уровень воды
Рис. 15. Колба с трубкой, цифрой 2 и чертой обозначен уровень воды при нагревании
При охлаждении вода «сжимается». Это может доказать сходный опыт: в этом случае колбу с трубкой опустили в сосуд со льдом, после охлаждения уровень воды в трубке понизился относительно первоначальной отметки, потому что вода уменьшилась в объеме.
Рис. 16. Колба с трубкой, цифрой 3 и чертой обозначен уровень воды при охлаждении
Так происходит, потому что частицы воды, молекулы, при нагревании движутся быстрее, сталкиваются между собой, отталкиваются от стенок сосуда, расстояние между молекулами увеличивается, и поэтому жидкость занимает больший объем. При охлаждении воды движение её частиц замедляется, расстояние между молекулами уменьшается, и жидкости требуется меньший объем.
Рис. 17. Молекулы воды обычной температуры
Рис. 18. Молекулы воды при нагревании
Рис. 19. Молекулы воды при охлаждении
Такими свойствами обладает не только вода, но и другие жидкости (спирт, ртуть, бензин, керосин).
Знание этого свойства жидкостей привело к изобретению термометра (градусника), где используется спирт или ртуть.
Рис. 20. Термометр (Источник)
При замерзании вода расширяется. Это можно доказать, если емкость, наполненную до краев водой, неплотно накрыть крышкой и поставить в морозильную камеру, через время мы увидим, что образовавшийся лед приподнимет крышку, выйдя за пределы емкости.
Это свойство учитывается при прокладывании водопроводных труб, которые обязательно утепляются, чтобы при замерзании образовавшийся из воды лед не разорвал трубы.
В природе замерзающая вода может разрушать горы: если осенью в трещинах скал скапливается вода, зимой она замерзает, и под напором льда, который занимает больший объем, чем вода, из которой он образовался, горные породы трескаются и разрушаются.
Вода, замерзающая в трещинах дорог, приводит к разрушению асфальтового покрытия.
Длинные гребни, напоминающие складки, на стволах деревьев – раны от разрывов древесины под напором замерзающего в ней древесного сока. Поэтому в холодные зимы можно услышать треск деревьев в парке или в лесу.
В Антарктиде, покрытой четырехкилометровым слоем льда, находятся основные запасы этого вещества на Земле.
Рис. 1. Антарктида (Источник)
Лед встречает под землей, покрывает поверхности водоемов.
Рис. 2. Лед в подземной пещере (Источник)
Рис. 3. Лед на поверхности реки (Источник)
Айсберги – плавающие в море глыбы льда.
Рис. 4. Айсберг (Источник)
Снежинки состоят из мелких кристалликов льда.
Рис. 5. Снежинка (Источник)
Узоры на стекле в зимнее время – это кристаллы льда, образованные замерзшим водяным паром.
Рис. 6. Иней на стекле (Источник)
В современном мире получение льда – процесс доступный даже ребенку. Достаточно взять какую-нибудь емкость, наполнить водой, поставить на время в морозильную камеру, и получится лед.
Рис. 7. Получение льда из форм (Источник)
Иней в холодильнике – это замерзший водяной пар. Иней и лед – это вода в твердом состоянии.
Лед имеет свойство таять в теплом помещении (выше 0°), превращаясь в воду.
Лед холодный и скользкий на ощупь.
Рис. 8. Лед на руке (Источник)
Люди знали о том, что лед скользкий, и защищали крепости на возвышениях рвами с водой. В холодное время года защитники поливали стены водой, и по скользкой ледяной стене захватчики не могли пробраться внутрь.
Рис. 9. Крепость зимой
При температуре ниже 0° вода на поверхности почвы замерзает, превращаясь в гололед – опасное явление природы (в спешке можно поскользнуться, упасть и получить травму). Чтобы избежать травм, нужно не торопиться, выходить из дому заранее, при ходьбе наступать на всю подошву. Особенно осторожно нужно переходить дорогу – на скользком пути водителю сложнее быстро затормозить.
Рис. 10. Осторожно! Гололед! (Источник)
Лед – хрупкий. Если стукнуть по кубику льда молоточком, он расколется на множество льдинок.
Рис. 11. Колотый лед (Источник)
Лед сохраняет свою форму. Если переложить льдинку из блюдечка в стакан, её форма не измениться, потому что лед – твердое вещество и не меняет свою форму.
Рис. 12. Кубик льда (Источник)
Замерзшую поверхность водоема можно использовать для перемещений на транспорте или пешком, потому что лед, в отличие от воды, способен выдерживать на своей поверхности достаточно большой вес.
Рис. 13. Мотокросс по льду (Источник)
Для занятий спортом и развлечений заливают катки – большие ровные пространства льда.
Рис. 14. Каток на Красной площади (Источник)
Во время катания на коньках лед, соприкасающийся с лезвиями, тает, превращаясь в воду. Если бы не было этого тонкого слоя воды, кататься по льду было бы так же трудно, как по полу. Вода, как масло в машине, уменьшает трение между льдом и коньком и облегчает скольжение.
Рис. 15. Скольжение коньков по льду (Источник)
По той же причине происходит движение ледников с гор. Под давлением огромной массы льда его нижние слои начинают таять и ледяная река скользит по горному склону вниз, как коньки по поверхности катка.
Рис. 16. Схождение ледника с горы (Источник)
Лед не тонет в воде. Если бросить кусочек льда в емкость с водой, он не утонет, а будет плавать на поверхности.
Рис. 17. Лед плавает на поверхности воды (Источник)
Обычно твердые вещества тяжелее, чем те же вещества в жидком состоянии. Например, кусочек железа тонет в расплавленном железе, а свинцовый кубик тонет в расплавленном свинце. При замерзании вода занимает больший объем, чем прежде, она расширяется, поэтому лед легче воды. Уже одного этого свойства достаточно, чтобы выделить лед из ряда твердых веществ как исключение.
Если бы лед тонул, на поверхности водоемов в течение холодного времени года образовывались бы новые и новые слои льда на месте затонувших и водоем промерзал бы до самого дна. В результате водные животные и растения оказались бы скованы льдом, им грозила бы неминуемая гибель. К счастью, в природе этого не происходит, потому что лед не тонет в воде.
Рис. 18. Слой льда на поверхности водоема (Источник)
Лед плохо проводит тепло. В водоеме он защищает воду под ним от дальнейшего охлаждения. Вода тоже плохо передает тепло. Это доказывает такой опыт: на дно пробирки с водой опускают кубик льда с тяжелым грузом (поскольку лед не тонет в воде, в него заранее вмораживают грузик), край пробирки нагревают, верхний слой воды кипит, а лед не плавится. Из опыта можно сделать вывод, что не только лед, но и вода плохо проводит тепло. Верхние слои воды нагреваются, в то время как нижние остаются холодными. Это объясняет, почему испарения происходят только с поверхности водоемов.
Рис. 19. Опыт по нагреванию края пробирки с водой и утопленным льдом (Источник)
Если же нагревать воду в емкости снизу, то вскоре весь объем воды закипит (например, если мы поставим на плиту кастрюлю с супом). Так происходит потому, что нижний слой воды нагревается, расширяется и поднимается вверх, на его место опускается еще не прогретая вода, и процесс повторяется до тех пор, пока вся вода не прогреется до 100°. При такой температуре вода закипает и превращается в водяной пар.
Рис. 20. Опыт по нагреванию емкости с водой снизу (Источник)
Лед, как и стекло, бесцветен и прозрачен.
Рис. 21. Лед (Источник)
Рис. 22. Стекло (Источник)
Снег – одно из твердых состояний воды. Он белый, рыхлый, непрозрачный, тает в тепле и плавает в воде.
Рис. 23. Снег (Источник)
Вода состоит из молекул, которые находятся в непрерывном движении.
Рис. 1. Молекулы воды обычной температуры
Те из них, что оказываются близко к поверхности, оказываются в воздухе и перемешиваются с его частицами, превращаясь в водяной пар. Частицы воздуха и водяного пара так малы, что их невозможно увидеть невооруженным глазом. Водяной пар – это прозрачный бесцветный газ, невидимый, как и воздух.
Рис. 2. Образование водяного пара при кипении (Источник)
Испарение – переход воды из жидкого состояния в газообразное.
Рис. 3. Испарение воды с поверхности водоема (Источник)
Лед тоже испаряется, но значительно медленнее, чем вода в жидком состоянии. Например, если зимой вывесить мокрое белье на улицу, сначала оно покроется ледяной коркой, а потом высохнет.
Рис. 4. Сушка мокрого белья зимой (Источник)
В каком бы состоянии вода не была, она постоянно испаряется с поверхности Земли.
Человек использует знания об испарении воды. Просушивают собранное зерно, заготовленные дрова, оштукатуренные стены, вымытую посуду, выстиранное белье.
Рис. 5. Сушка зерна (Источник)
Рис. 6. Сушка дров (Источник)
Рис. 7. Сушка оштукатуренных стен (Источник)
Рис. 8. Сушка посуды (Источник)
Рис. 9. Сушка белья (Источник)
Мокрые волосы сушат электрическим феном.
Рис. 10. Сушка волос феном (Источник)
Интенсивность испарения зависит от температуры воды: чем выше температура, тем выше скорость движения молекул воды, а значит и испарения. Это доказывает простой опыт: если в 2 емкости налить одинаковое количество воды, а затем одну поставить в холодное место, а другую – в теплое, через некоторое время станет ясно, что вода в холодном месте испаряется медленнее, чем в теплом.
Мокрая дорога летом высохнет намного быстрее, чем осенью.
Рис. 11. Мокрая дорога (Источник)
Скошенная трава в солнечный день высохнет быстрее, чем в пасмурный.
Рис. 12. Скошенная трава (Источник)
Знание этого свойства помогает людям. Например, если подмокла старинная книга, её оставляют в специальной морозильной камере, чтобы высыхание шло медленно и страницы книги не повредились.
Испарение происходит в месте соприкосновения поверхности воды с воздухом, соответственно, чем больше площадь соприкосновения, тем быстрее происходит испарение. Доказать это можно с помощью несложного опыта: нужно налить одинаковое количество воды в 3 емкости с разной площадью соприкосновения налитой воды с воздухом (например, бутылка с узким горлышком, стеклянная банка и широкая тарелка). Через некоторое время мы увидим, что вода из тарелки испаряется быстрее всего, потому что площадь соприкосновения воды с воздухом наибольшая. Из банки немного медленнее, потому что площадь соприкосновения меньше. А из бутылки медленнее всего, потому что площадь соприкосновения воды с воздухом наименьшая.
Рис. 13. Опыт по испарению воды из емкостей с различной площадью соприкосновения воды с воздухом (Источник)
Поэтому фрукты, предназначенные для сушки, разрезают на тонкие ломтики – чтобы увеличить поверхность соприкосновения с воздухом и увеличить скорость испарения.
Рис. 14. Сушка яблок (Источник)
Под воздействием ветра испарение идет быстрее, потому что молекулы воды активнее соединяются с молекулами воздуха. В ветреную погоду влажные поверхности высыхают быстрее, если держать руки под сушилкой, они высохнут быстрее.
Рис. 15. Сушка рук под воздействием потока теплого воздуха (Источник)
Наиболее активно испарение идет при нагревании. При 100г вода кипит и превращается в водяной пар. Молекулы водяного пара под воздействием высокой температуры двигаются очень быстро, ему необходим большой объем, поэтому у кипящего чайника «подпрыгивает» крышка.
Рис. 16. Кипящий чайник (Источник)
Знание этого свойства водяного пара позволило людям сконструировать паровые двигатели.
Рис. 17. Машина с паровым двигателем (Источник)
Часто, когда печется яблоко, его кожура лопается – это яблочный сок, превращаясь в пар, разрывает кожуру.
Рис. 18. Печеное яблоко (Источник)
Или можно услышать треск дров в печи – под воздействием высокой температуры вода в дровах превращается в водяной пар и разрывает древесину.
Рис. 19. Дровяная печь (Источник)
Как было сказано, водяной пар – невидим. Так почему же мы видим пар, когда кипит чайник? В холодном воздухе разогретый водяной пар конденсируется – превращается в мельчайшие капельки воды, которые мы видим как белый пар. А невидимый водяной пар находится возле носика чайника на границе белого облачка пара.
Рис. 20. Кипящий чайник (Источник)
Если поместить у носика кипящего чайника холодный металлический предмет, то очень скоро на нем появятся капельки осевшей воды. Этот опыт доказывает наличие водяного пара у носика чайника.
Рис. 21. Опыт по конденсации водяного пара у носика чайника (Источник)
источник конспекта:
http://interneturok.ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-zhidkom-sostoyanii?seconds=0&chapter_id=826
http://interneturok.ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-tverdom-sostoyanii
http://interneturok.ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-gazoobraznom-sostoyanii
исчтоник презентации — http://prezentacii.com/biologiya/6000-tri-sostoyaniya-vody.html
источник видео:
http://www.youtube.com/watch?v=nGsOh3iCC70
http://www. youtube.com/watch?v=WL_GTjYByG8
http://www.youtube.com/watch?v=BsjlZh2kKbo
2.4.1: Состояние воды: газ, жидкость и твердое тело
- Последнее обновление
- Сохранить как PDF
- Идентификатор страницы
- 8794
- Безграничный
- Безграничный
Ориентация водородных связей при изменении состояния воды определяет свойства воды в ее газообразной, жидкой и твердой формах.
Цели обучения
- Объяснить биологическое значение способности льда плавать на воде
Ключевые моменты
- При кипячении воды кинетическая энергия приводит к полному разрыву водородных связей и позволяет молекулам воды выходить в воздух в виде газа (пара или водяного пара).
- Когда вода замерзает, молекулы воды образуют кристаллическую структуру, поддерживаемую водородными связями.
- Твердая вода или лед менее плотны, чем жидкая вода.
- Лед менее плотный, чем вода, потому что ориентация водородных связей заставляет молекулы отталкиваться дальше друг от друга, что снижает плотность.
- Для других жидкостей затвердевание при понижении температуры включает снижение кинетической энергии, что позволяет молекулам более плотно упаковываться и делает твердое тело более плотным, чем его жидкая форма.
- Поскольку лед менее плотный, чем вода, он может плавать на поверхности воды.
Основные термины
- плотность : Мера количества вещества, содержащегося в данном объеме.
Состояния воды: газ, жидкость и твердое тело
Образование водородных связей является важным качеством жидкой воды, которое имеет решающее значение для жизни, какой мы ее знаем. Поскольку молекулы воды образуют водородные связи друг с другом, вода приобретает некоторые уникальные химические характеристики по сравнению с другими жидкостями, а поскольку живые существа имеют высокое содержание воды, понимание этих химических свойств является ключом к пониманию жизни. В жидкой воде водородные связи постоянно образуются и разрываются, когда молекулы воды скользят друг относительно друга. Разрыв этих связей вызывается движением (кинетической энергией) молекул воды за счет тепла, содержащегося в системе. Когда тепло повышается при кипении воды, более высокая кинетическая энергия молекул воды приводит к полному разрыву водородных связей и позволяет молекулам воды выходить в воздух в виде газа (пара или водяного пара). С другой стороны, когда температура воды снижается и вода замерзает, молекулы воды образуют кристаллическую структуру, поддерживаемую водородными связями (энергии для разрыва водородных связей недостаточно). Это делает лед менее плотным, чем жидкая вода, явление, не наблюдаемое при затвердевании других жидкостей.
Фазы вещества : Посмотрите, что происходит с межмолекулярными связями во время фазовых переходов в этом интерактивном режиме.
Более низкая плотность воды в ее твердом состоянии обусловлена тем, как ориентируются водородные связи при замерзании: молекулы воды отталкиваются дальше друг от друга по сравнению с жидкой водой. Для большинства других жидкостей затвердевание при понижении температуры включает снижение кинетической энергии между молекулами, что позволяет им упаковываться даже более плотно, чем в жидкой форме, и придает твердому телу большую плотность, чем жидкость.
Низкая плотность льда, аномалия, заставляет его плавать на поверхности жидкой воды, такой как айсберг или кубики льда в стакане воды. В озерах и прудах лед образуется на поверхности воды, создавая изолирующий барьер, который защищает животных и растения в пруду от замерзания. Без этого слоя изолирующего льда растения и животные, живущие в пруду, замерзли бы в сплошной глыбе льда и не смогли бы выжить. Губительное действие замерзания на живые организмы обусловлено расширением льда относительно жидкой воды. Кристаллы льда, образующиеся при замораживании, разрывают тонкие мембраны, необходимые для функционирования живых клеток, необратимо повреждая их. Клетки могут пережить замораживание только в том случае, если вода в них временно заменена другой жидкостью, такой как глицерин.
- Наверх
- Была ли эта статья полезной?
- Тип изделия
- Раздел или Страница
- Автор
- Безграничный
- Лицензия
- CC BY-SA
- Версия лицензии
- 4,0
- Показать оглавление
- нет
- Теги
лед | Определение, структура, свойства, точка замерзания и факты
айсберг
Посмотреть все СМИ
- Ключевые люди:
- Сэр Джон Лесли
- Похожие темы:
- ледник айсберг кристалл льда ось с столбчатый лед
Просмотреть весь связанный контент →
Резюме
Прочтите краткий обзор этой темы
лед , твердое вещество, полученное замораживанием водяного пара или жидкой воды. При температуре ниже 0 ° C (32 ° F) водяной пар превращается в иней на уровне земли и снежинки (каждая из которых состоит из одного кристалла льда) в облаках. Ниже одной и той же температуры жидкая вода образует твердое тело, как, например, речной лед, морской лед, град и лед, произведенный в промышленных масштабах или в бытовых холодильниках.
Лед встречается на континентах Земли и в поверхностных водах в различных формах. Наиболее примечательны континентальные ледники (ледяные щиты), покрывающие большую часть Антарктиды и Гренландии. Меньшие массы многолетнего льда, называемые ледяными шапками, занимают части Арктической Канады и другие высокоширотные регионы, а горные ледники встречаются в более ограниченных районах, таких как горные долины и равнины внизу. Другие случаи появления льда на суше включают различные типы подземного льда, связанные с вечной мерзлотой, то есть постоянно мерзлой почвой, характерной для очень холодных регионов. В океанических водах полярных областей айсберги возникают, когда большие массы льда отрываются от ледников или шельфовых ледников и дрейфуют. Замерзание морской воды в этих регионах приводит к образованию пластов морского льда, известных как паковые льды. В зимние месяцы подобные ледяные тела образуются на озерах и реках во многих частях мира. В этой статье рассматриваются структура и свойства льда в целом. Лед в озерах и реках, ледники, айсберги, паковые льды и вечная мерзлота рассматриваются отдельно в статьях под соответствующими названиями.
Структура
Молекула воды
Станьте свидетелем эксперимента, объясняющего, почему пресная и морская вода имеют разные точки замерзания температуре 0 ° C (32 ° F) или ниже и расширяется до газообразного состояния при температуре 100 ° C (212 ° F) или выше. Вода — необычное вещество, аномальное почти по всем своим физическим и химическим свойствам и, пожалуй, самое сложное из всех известных веществ, представляющих собой монохимические соединения. Состоящая из двух атомов водорода (Н) и одного атома кислорода (О), молекула воды имеет химическую формулу Н
Трехмерную структуру молекулы воды можно представить в виде тетраэдра с центром кислорода и четырьмя ветвями с высокой электронной вероятностью. Две ветви, в которых присутствуют ядра водорода, называются связывающими орбиталями. Напротив связывающих орбиталей и направленных к противоположным углам тетраэдра расположены две ветви отрицательного электрического заряда. Эти орбитали, известные как неподеленные пары, являются ключом к своеобразному поведению воды, поскольку они притягивают ядра водорода соседних молекул воды, образуя так называемые водородные связи. Эти связи не особенно прочны, но поскольку они ориентируют молекулы воды в определенную конфигурацию, они существенно влияют на свойства воды в ее твердом, жидком и газообразном состояниях.
Викторина «Британника»
Викторина «Зимняя погода»
Зима — время экстремальной погоды и необычных слов для описания этой погоды. Эти вопросы викторины, любезно предоставленные Merriam-Webster, заставят вас тосковать по лету.
В жидком состоянии большинство молекул воды связано в полимерную структуру, то есть в цепочки молекул, соединенных слабыми водородными связями. Под влиянием термического перемешивания происходит постоянный разрыв и восстановление этих связей. В газообразном состоянии, будь то пар или водяной пар, молекулы воды в значительной степени независимы друг от друга, и, если не считать столкновений, взаимодействия между ними незначительны. Таким образом, газообразная вода в основном мономерна, т. е. состоит из отдельных молекул, хотя иногда встречаются димеры (союз двух молекул) и даже несколько тримеров (сочетание трех молекул). В твердом состоянии, с другой стороны, молекулы воды взаимодействуют друг с другом достаточно сильно, чтобы сформировать упорядоченную кристаллическую структуру, в которой каждый атом кислорода собирает четыре ближайших своих соседа и упорядочивает их вокруг себя в жесткой решетке. Эта структура приводит к более открытой сборке и, следовательно, к меньшей плотности, чем плотно упакованная сборка молекул в жидкой фазе. По этой причине вода является одним из немногих веществ, плотность которых в твердом состоянии на самом деле меньше, чем в жидком: ее плотность падает с 1000 до 917 кг на кубический метр. Это причина того, что лед скорее плавает, чем тонет, так что зимой он образует щит на поверхности озер и рек, а не тонет под поверхностью и накапливается со дна.
Когда вода нагревается от точки замерзания от 0 до 4 °C (от 32 до 39 °F), она сжимается и становится более плотной. Это начальное увеличение плотности происходит потому, что при 0 °C часть воды состоит из молекулярных структур с открытой структурой, подобных кристаллам льда. При повышении температуры эти структуры разрушаются и уменьшают свой объем до объема более плотно упакованных полимерных структур в жидком состоянии. При дальнейшем нагревании выше 4 °C вода начинает расширяться в объеме, наряду с обычным усилением межмолекулярных колебаний, вызванных тепловой энергией.