Site Loader

Содержание

Взаимодействие «воды» и «масла»

Коллоидная химия

Взаимодействие «воды» и «масла».
Бытовые примеры
Силы межатомного притяжения. Ковалентная связь.
Полярные и неполярные ковалентные связи.

     Неполярные ковалентные связи

     Полярные ковалентные связи.

     Электроотрицательность

     Молекула воды

     Молекулы углеводородов

     Молекулы дифильных веществ

Межмолекулярные силы. Силы Вандер Ваальса.

     Ориентационные силы. Вода — полярный растворитель.

     Дисперсионные силы. Масла – неполярные растворители.

Расслоение воды и масла.
Гидрофобность и гидрофильность.
Дифильность.
Поверхностно-активные вещества.

     Моющие средства.

     Эмульгаторы.

Взаимодействие жидкости и твёрдых поверхностей. Смачивание.
Бытовые примеры

В обычной бытовой жизни каждый из нас мог быть свидетелем некоторой «антипатии» между водой и маслянистыми жидкостями.

Например, каждый знает, как трудно отмыть жирные руки водой. Без использования мыла это сделать почти невозможно.

Известный факт: если в одной ёмкости смешать воду и масло, то через некоторое время произойдёт их расслоение. Вода, как более тяжёлая жидкость, соберётся в нижней части сосуда, а над ней появится плёнка масла.

Покрытые жиром перья птиц так хорошо отталкивают воду, что даже если птица полностью погрузиться в неё, то вынырнув, ей достаточно будет встряхнуться, чтобы вновь оказаться сухой.

Капли росы на листьях растений – ещё один пример взаимного отталкивания воды и жирной поверхности.

Листья растений покрыты тонкой плёнкой выделяемого ими воска. А воск – жироподобное вещество. Также как и масло, воск не смачивается водой.

Все растворители в химии делят на:

  • неорганические (вода, растворы неорганических кислот и их солей) и
  • органические (имеющие жирную природу).

А растворяемые вещества делят на:

  • водорастворимые и
  • жирорастворимые.

Таким образом, мы имеем дело с системным отличием в свойствах двух больших классов соединений, как растворителей, так и растворимых веществ.

Разберёмся, с чем объясняются эти отличия.

Силы межатомного притяжения. Ковалентная связь.

Забегая вперёд, сразу скажем, что причина антипатии воды и масла кроется в принципиально разных силах, действующих между образующими их молекулами.

Но прежде, чем рассматривать межмолекулярные силы, необходимо рассмотреть силы межатомного притяжения. Именно они приводят к возникновению молекул и ответственны за различия межмолекулярных сил.

Сделаем это на примере водорода.

Водород – простейший атом. Он состоит из ядра (протона) и одного электрона, совершающего вращательное движение вокруг ядра.

Как известно, устойчивая молекула может возникнуть только при условии, что её потенциальная энергия меньше

, чем суммарная потенциальная энергия образующих её атомов.

Английскому физику Ф. Лондону и работавшему в Англии немецкому физику В. Гейтлеру удалось получить уравнение, позволяющее найти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от растояния r между ядрами этих атомов. (Позднее их расчёты были подтверждены экспериментально.)

При этом оказалось, что результаты расчёта зависят от того, одинаковы или противоположны по знаку спины взаимодействующих электронов.

Спин (от англ. spin — вертеться, вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу. Спин связан не с движением электрона вокруг ядра, а имеет отношение к.с собственному его состоянию. Для более лёгкого понимания этого понятия часто проводят аналогию с вращением планет вокруг своей оси. В этом случае знак спина будет характеризовать направление вращения.

При совпадающем направлении спинов сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически не выгодным и химическая связь между атомами не возникает.

а — при противоположно направленных спинах.

б — при одинаково направленных спинах. r0 — межъядерное расстояние в молекуле водорода. Е0 — энергия системы из двух невзаимодействующих атомов.

При противоположно направленных спинах сближение атомов до некоторого расстояния r0 сопровождается уменьшением энергии системы. При r = r0 обладает наименьшей потенциальной энергией, т.е. находится в наиболее устойчивом состоянии. Дальнейшее сближение атомов вновь приводит к увеличению энергии.

Говоря другими словами, если попытаться сблизить атомы водорода на растояние, меньшее, чем r

0, то между ними возникнет сила отталкивания, а если увеличивать расстояние между ними r > r0, то возникнет сила притяжения, пытающаяся вернуть систему в состояние r = r0.

Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула Н2 – устойчивая система из двух атомов водорода, находящихся на определённом расстоянии друг от друга.

Образование химической связи между атомами водорода является результатом взаимопроникновения («перекрывания») электронных облаков, происходящего при сближении взаимодействующих атомов.

Вследствии такого взаимопроникновения плотность отрицательного электрического заряда в межъядерном пространстве возрастает. Положительно заряженные ядра атомов притягиваются к области перекрывания электронных облаков, что приводит к образованию устойчивой молекулы.

Химическая связь в молекуле водорода осуществляется путём образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам.

Такая двухэлектронная двухцентровая связь называется ковалентной.

Полярные и неполярные ковалентные связи.
Неполярная ковалентная связь

В случае большинства химических веществ, связь между атомами внутри молекул обеспечивается именно ковалентными связями. Но характер этой связи может отличаться.

Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2, и т.д., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов.

В подобном случае ковалентная связь называется неполярной.

Полярная ковалентная связь

Если же молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что

возникает ассиметрия в распределении заряда.

В таких случаях ковалентная связь назывется полярной.

Электроотрицательность химических элементов

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности.

Чем большее количество протонов содержит ядро атома элемента и чем меньше его радиус, тем выше будет его электротрицательность.

Понятно, что чем больше расстояние между ядром атома и его внешним электронным уровнем, тем меньше будет сила притяжения между ними и меньше будет поляризующий эффект.

Причём, если рассмотреть последовательность расположения элементов в периодической системе, то выяснится, что большее влияние на величину электроотрицательности будет оказывать, как раз увеличение радиуса элемента, а не массивность его ядра.

Наиболее электроотрицательные атомы окажутся в верхнем правом углу таблицы Менделеева, а наименее электроотрицательные – в нижнем левом углу.

В направлении, заданном этой диагональю (от Фтора F к Францию Fr) электроотрицательность элементов будет закономерно убывать.

Вот значения относительной элетроотрицательности некоторых элементов:

Относительная электроотрицательность атомов

Н 2,1

Li 0,98

Be 1,5

B 2,0

C 2,5

N 3,07

O 3,5

F 4,0

Na 0,93

Mg 1,2

Al 1,6

Si 1,9

P 2,2

S 2,6

Cl 3,0

K 0,91

Ca 1,04

Ga 1,8

Ge 2,0

As 2,1

Se 2,5

Br 2,8

Rb 0,89

Sr 0,99

In 1,5

Sn 1,7

Sb 1,8

Te 2,1

I 2,6

Молекула воды

Молекула воды является типичным примером молекулы с полярной ковалентной связью. Причём эта полярность выражена достаточно явно. Ведь электроотрицательность кислорода является одной из самых высоких. Больше только у фтора.

Общее электронное облако будет значительно смещено от ядер атомов водорода к ядру кислорода.

Вследствие перераспределения электронной плотности атом кислорода приобретёт избыток отрицательного заряда, а атомы водорода, наоборот, окажутся заряженными положительно.

Похожим образом обстоят дела с молекулами неорганических кислот и их солей. Например, молекулы НCl, HF, NaCl, KCl и пр. представляют собой явно выраженные диполи с положительными и отрицательными полюсами.

Такие молекулярные диполи будут создавать вокуг местные электрические поля и притягивать к себе противоположно заряженные частицы, в том числе противоположно заряженные полюса диполей, таких же как они сами молекул.

Молекулы углеводородов

Молекулы углеводородов состоят из атомов углерода и водорода.

Простейший углеводород – метан СН4. Он открывает гомологический ряд предельных углеводородов. За метаном следуют: этан (С2Н6), пропан (С3Н8), бутан (С4Н10) и т.д.

Вот их структурные формулы:

Углеводороды от СН4 до С4Н10 – газы (при температуре 20°С).

От С5Н12 до С16Н34 – жидкости.

От С16Н34 – твёрдые вещества.

Атомы углеводородов связаны между собой всё той же ковалентной связью. Но в отличие от воды молекулы углеводородов неполярны.

По значениям электроотрицательности атомы водорода и углерода близки:

Водород – 2,1

Углерод – 2,5.

Для сравнения, электроотрицательность кислорода – 3,5.

Таким образом, в молекулах углеводородов электронная плотность крайне незначительно смещена в сторону ядра атома углерода. Такое малое смещение не создаст сколько-то заметных электрических полей, вследствии чего ковалентная связь в молекулах углеводородов будет ближе к неполярной.

Молекулы дифильных веществ

Дифильными называют такие вещества, молекулы которых в своём составе имеют группы, как с полярной, так и с неполярной связью.

Например, в молекуле масляной кислоты имеется полярная группа СООН и неполярный углеводородный хвост:

К дифильным относятся многие органические вещества, например, жирные кислоты, соли жирных кислот, спирты и пр.

Межмолекулярные силы. Силы Вандер Ваальса.

Мы уже рассмотрели действие ковалентных сил, благодаря которым атомы различных веществ образуют молекулы. Теперь рассмотрим силы, определяющие взаимодействие между молекулами.

Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей, но в различных веществах механизм возникновения диполей различен.

Мы рассмотрим два вида сил Ван-дер-Ваальса: ориентационные и дисперсионные. Различность механизмов действия этих сил приводит к отсутствию взаимодействия между водой и жироподобными веществами.

1. Ориентационное взаимодействие

Если вещество состоит из полярных молекул, например, Н2О, НCl, то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами, вследствие чего наблюдается их взаимное притяжение.

Молекулы воды связываются между собой водородными связями. Этот вид связи, строго говоря, не относят ориентационному типу взаимодействия. Водородная связь занимает промежуточное положение между силами Ван-дер-Ваальса и донорно-акцепорными химическими связями. Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными. Мы не будем углубляться в сравнение между собой ориентационных сил и сил, возникающих в случае образования водородных связей. В нашем случае важно, что и те и другие возникают в случае взаимодействия полярных молекул.

Ещё раз повторим, что для того чтобы между молекулами возникли ориентационные силы, эти молекулы должны быть полярными.

Вода и другие полярные растворители удовлетворяют этому требованию. Но неполярные молекулы жироподобных веществ в этом взаимодействии принять участие не могут.

Неполярные молекулы связываются друг с другом при помощи другого механизма, а именно – дисперсионного взаимодействия.

2. Дисперсионное взаимодействие

В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей.

Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.

Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно, причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению.

Таким образом, именно дисперсионные силы связывают между собой неполярные молекулы жироподобных веществ.

Расслоение воды и масла

Итак, как мы выяснили, молекулы жирных веществ неполярны. Они связываются друг с другом при помощи дисперсионных сил.

Молекулы воды, наоборот, полярны. Они ориентируются друг по отношению к другу своими разноимённо заряженными концами, вследствии чего наблюдается их взаимное притяжение.

В твёрдой воде (лёд) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме выше, в которой водордные связи показаны пунктиром.

В молекуле воды между атомами существует не только ориентационное взаимодействие, но также дисперсионное и индукционное (в этой главе мы не рассматривали индукционнее взаимодействие). Соотношение энергии этих взаимодействий следующее:

Ориентационные – 190 Дж м

Дисперсионные – 74,7 Дж м

Индукционные – 10 Дж м.

Таким образом, в молекуле воды ориентационные силы примерно в 2,5 раза превышают дисперсионные.

Что будет происходить, если смешать воду и масло в одной ёмкости?

Если тщательно перемешать эту смесь, то молекулы воды будут окружены, как себе подобными молекулами, так и молекулами масла.

Между молекулами воды и масла будут действовать дисперсионные силы притяжения. Как вы помните, эти силы в той или иной степени действуют между молекулами любых веществ. Но по своей интенсивности они будут решительно уступать ориентационныи силам, действующим между молекулами воды.

Молекулы масла, в этом случае, окажутся препятствием для молекул воды, желающим воссоединиться. Молекулы масла, при этом, будут вытесняться более энергично взаимодействующими молекулами воды на переферию.

А так как по своему весу масло легче воды, то рано или поздно оно всё окажется в верхней части нашей ёмкости. Произойдёт полное расслоение двух жидкостей.

Тот же самый процесс можно описать в других терминах.

В любой дисперсной системе самопроизвольно будут протекать процессы, направленные на уменьшение потенциальной энергии системы.

В данном случае потенциальную энергию, как правило, называют свободной поверхностной энергией, и она напрямую связана с площадью поверхностей раздела фаз.

Когда вода и масло были перемешаны между собой, площадь раздела фаз была максимальной. Но когда произошло полное раслоение, то площадь раздела фаз стала наименьшей.

Первому состоянию свойственно напряжение. Между разноимённо заряженными диполями воды действуют силы притяжения, обуславливающие относительно высокую потенциальную энергию системы. Но когда жаждующие друг друга разноимённые диполи соединятся – напряжение спадёт, потенциальная энергия системы уменьшится. Каждый получит то, что он хотел.

Гидрофильность и гидрофобность

Гидрофильность

Вещества, молекулы которых содержат в своём составе полярные группы, называют гидрофильными.

Слово гидрофильность происходит от греческих слов hydor — вода и philia – любовь.

Гидрофильность — характеристика интенсивности молекулярного взаимодействия вещества с водой, способность хорошо впитывать воду, а также высокая смачиваемость поверхностей водой.

Причины гидрофильности связаны с наличием в молекулах гидрофилов полярных групп. Между этими полярными группами и полярными группами растворителя возникают ориентационные силы, в результате которых происходит взаимодействие.

Такие вещества являются водорастворимыми, а также могут взаимодействовать с другими полярными растворителями.

Гидрофобность

Гидрофобность – свойство обратное гидрофильности.

Слово гидрофобность происходит от греческих слов hydor — вода и phуbos — боязнь, страх.

Гидрофобность — неспособность вещества (материала) смачиваться водой.

Гидрофобность вещества связана с отсутствием в его молекулах полярных групп. По этой причине они не могут связываться ориентационными силами с молекулами воды и будут вытесняться водой на переферию.

Липофильность и липофобность

К гидрофобным относятся все жирные вещества. Испытывая «стремление» избежать контакта с водой эти вещества в то же время имеют склонность контактировать с другими веществами жирной природы. Эта склонность получила название липофильности.

Липофильность (от греч. lípos — жир и philéo — люблю), проявление сродства к жирам, маслам.

И наоборот, вещества, обладающие гидрофильностью, как правило, избегают контактов с веществами жирной природы. Такое качество получило название липофобности.

Гидрофильность и гидрофобность являются частными случаями лиофильности и лиофобности.

Дифильность

Дифильнось — свойство молекул веществ обладающих одновременно гидрофильными и гидрофобными свойствами.

Дифильность, как уже упоминалось выше, связана с наличием в молекуле вещества, как полярных (гидрофильных) групп, так и неполярных (гидрофобных) групп.

К дифильным относятся многие органические вещества, например, жирные кислоты, соли жирных кислот, спирты и пр.

У дифильных молекул с короткой гидрофобной цепью преобладают гидрофильные свойства, поэтому такие молекулы хорошо растворяются в воде.

С удлинением углеводородной цепи усиливаются гидрофобные свойства молекул и понижается их растворимость в воде.

Поверхностно-активные вещества

Дифильные вещества обладают замечательным качеством. Они являются своего рода «мостиками», при помощи которых становится возможным взаимодействие фаз, до этого «игнорировавших» друг друга.

Действие таких веществ проявляется на поверхности соприкасающихся фаз и приводит к ативности сами вещества фаз, которые до этого момента не взаимодействовали. Возможно, что по этой причине такие вещества называются поверхностно-активными веществами (сокращённо ПАВ).

Благодаря своим качествам ПАВы могут использоваться в составах моющих средств или стабилизаторов эмульсий.

Моющие средства

Моющие средства — вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.

В моющих средствах ПАВы работают следующим образом.

Молекула ПАВ – это дифильная молекула, имеющая в своём составе, как полярные (гидрофильные) группы, так и неполярные (гидрофобные).

Таким образом, своим гидрофобным хвостом она может взаимодействовать с молекулами загрязнения, а при помощи своей полярной группы связывается с полярной молекулой воды.

Одновременно с этим молекулы ПАВ внедряются в поверхностный слой загрязнения и понижают силы взаимного притяжения между молекулами загрязнения.

Говоря по-другому, молекулы ПАВ положительно адсорбируются в поверхностном слое загрязнения и снижают силы поверхностного натяжения между его молекулами. Это, в свою очередь, облегчает возможность отрыва отдельных кусочков загрязнения от основной его массы. Оторванные части загрязнения уносятся водой.

Самые известные моющие средства – мыла. Мыла представляют собой натриевые и калиевые соли жирных кислот (натриевые – твёрдые, калиевые – жидкие).

Формула мыла СН3(СН2)nCOONa.

Стабилизаторы эмульсий.

Эму́льсия — дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы), распределенных в другой жидкости (дисперсионной среде).

Дисперсная фаза и дисперсионная среда – это две фазы жидкостей, имеющих разную природу, и по этой причине, не растворяющиеся один в другом, отторгающие друг друга.

Если уже знакомые нам воду и масло тщательно перемешать друг с другом при помощи миксера, то они образуют дисперсную систему, в которой маленькие частички воды будут соседствовать с частичками масла.

Но эта дисперсная система просуществует недолго. По уже известным нам причинам произойдёт расслоение фаз. Частички воды и масла будут укрупняться, соединяясь с себе подобными. Через некоторое время произойдёт образование двух монолитных фаз: масло вверху, вода внизу. Так что такую систему нельзя назвать дисперсной.

Чтобы дисперсная система состоялась, в её состав добавляют специальные вещества – стабилизаторы эмульсий или эмульгаторы.

Эмульгаторы представляют собой поверхностно активные вещества.

Представим себе эмульсию типа «масло в воде». В такой эмульсии микроскопические капельки масла будут распределены в объёме воды.

Эмульгатор, присутствующий в эмульсии, состоит из молекул дифильной природы. Своими гидрофобными хвостами молекулы эмульгатора будут взаимодействовать с молекулами масла. В результате этого взаимодействия вытянутые молекулы эмульгатора приобретут чёткую ориентацию: гидрофобные хвосты внутрь, полярные группы наружу.

Такое образование, напоминающее свернувшегося ежа, называется мицеллой.

Наружная поверхность мицеллы будет образована полярными (гидрофильными) группами эмульгатора. А эти группы, как мы знаем, могут взаимодействоать с молекулами воды, притягивая к себе противоположно заряженные части этих молекул.

Эта конструкция позволяет эмульсии избежать расслоения и в течение долгого времени сохраняет её стабильной.

Взаимодействие жидкости и твёрдых поверхностей. Смачивание.

Смачивание

Если опустить стеклянную палочку в ртуть и затем вынуть её, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на её конце останется капля воды.

Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стекла, а молекулы воды притягиваются друг к другу слабее, чем к молекулам стекла.

Если молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого вещества, то жидкость называется смачивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин.

Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого вещества, то жидкость называется несмачивающей это вещество.

Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

Вода в виде капли росы не смачивает лист растения, покрытый растительным воском.

Краевой угол

Если на горизонтально расположенную плоскую пластинку из какого-либо твёрдого вещества капнуть жидкость, то капля расположится либо так, как показано на рис. № 1, либо так, как показано на рис. № 2.

В первом случае жидкость не смачивает, а во втором смачивает. Отмеченный на рисунке угол Ө называется краевым углом.

Краевой угол образуется плоской поверхностью твёрдого тела и плоскостью, касательной к свободной поверхности жидкости, проходящеё через точку А, где граничит твёрдое тело, жидкость и газ. Внутри краевого угла всегда находится жидкость.

Для смачивающих жидкостей краевой угол острый, а для несмачивающих – тупой.

Поскольку краевой угол сохранится при вертикальном положении твёрдой поверхности, то смачивающая жидкость у краёв сосуда, в который она налита, приподнимается, а несмачивающаяся – опускается.

Мерой смачивания обычно служит косинус краевого угла, т.е. cos Ө, который положителен для смачивающих жидкостей и отрицателен для несмачивающих.

При полном смачивании cos Ө = 1. В этом случае жидкость растекается по всей поверхности твёрдого тела. Получить на горизонтальной поверхности каплю при полном смачивании нельзя.

Примером полного смачивания служит смачивание стекла водой.

При полном несмачивании Ө = -1. Маленькая капля жидкости на горизонтальной поверхности твёрдого тела в этом случае должна иметь форму шара.

Почему масло и вода не смешиваются ?

Вода и масло не смешиваются из-за их молекулярных свойств. С одной стороны, вода имеет небольшой положительный заряд и притягивается к атомам и молекулам с отрицательным зарядом. Масло является электрически нейтральным веществом и не имеет сродства к воде. Молекулы воды также имеют высокое поверхностное натяжение и сильно притягиваются друг к другу. Для смешивания воды и масла необходим поверхностно-активный посредник.

Так как вода и масло являются несмешивающимися, вода сама по себе не может очистить жирные поверхности. Моющие средства, которые состоят из поверхностно-активных веществ, выполняют две функции, которые помогают смешивать воду и масло. Поскольку вода является полярной молекулой, на ее атомах водорода имеется чистый положительный заряд и чистый отрицательный заряд на его атомах кислорода. Поэтому положительная сторона поверхностно-активного вещества отталкивается водой, а отрицательная сторона притягивается к воде.

Молекула поверхностно-активного вещества более либеральная, чем молекула воды, и уменьшает ее поверхностное натяжение при одновременном слиянии масла и воды. Конец молекулы поверхностно-активного вещества, который притягивает воду, присоединяется к молекуле воды, тогда как конец, который отталкивает воду, присоединяется к молекуле масла.

Полученная смесь представляет собой эмульсию, в которой крошечные капли масла суспендируют в смеси вода-моющее средство, где их можно смыть.

Жидкости меняются местами

Этот простой опыт можно провести прямо у себя на кухне. Он замечательно демонстрирует поведение так называемых «несмешивающихся жидкостей», заключенных в одном объёме.

 

Описание опыта

В один стакан мы налили обычную подкрашенную воду, в другой — подсолнечное масло. Используя пластиковую карту, мы установили один стакан поверх другого. При этом верхний стакан (с водой), мы перевернули. Таким образом у нас получилась система: снизу — масло, сверху — вода, а между ними — пластиковая карточка, которая «разделила» эти жидкости. Но что будет, если мы уберём пластиковую карточку? Может жидкости останутся на своих местах? А может начнут смешиваться?

Убираем карточку. Жидкости начали меняться местами: вода стала заполнять нижний стакан, а масло устремилось вверх, на место воды! Вот таким эффектным образом жидкости поменялись местами. При этом, наши жидкости не смешались, т.е. осталась видна чёткая граница, разделяющая масло и воду.

 

Почему это происходит?

Здесь замешаны целых 2 фактора. во-первых, плотность жидкостей. Как известно — менее плотные тела стараются подняться вверх относительно более плотных. Пример: менее плотный горячий воздух всегда поднимается вверх, относительно холодного. Менее плотный пенопласт плавает на поверхности более плотной воды и т.д. В нашем случае, масло имеет меньшую, нежели вода, плотность и стремиться занять верхнее положение. Как бы мы не поворачивали нашу систему из 2-х стаканов, масло всегда будет наверху.

Второй фактор — полярность молекул воды и масла. Молекула воды состоит из полярных молекул. Т.е. такая молекула имеет с одной стороны — положительный заряд, с другой — отрицательный. Как известно, противоположные заряды — притягиваются, а значит и молекулы воды отлично притягиваются друг к другу. Молекулы масла — неполярные, они покрыты «оболочкой» лишь отрицательных зарядов, и такая молекула наотрез отказывается притягиваться в полярной молекуле воды. Именно поэтому вода и масло — не смешиваются. 

В жизни, мы достаточно часто сталкиваемся с явлением несмешивающихся жидкостей. Например, кода пытаемся вымыть жирные руки обычной водой без мыла.

Диаметр молекулы подсолнечного масла | Социальная сеть работников образования

                                      МБОУ СОШ №3

               

  Проект:  Диаметр молекулы подсолнечного масла

 Направление проекта: Определение размера молекулы      

                              подсолнечного масла

        

Автор:

ученица 10 «А» класса

Зелепукина Виктория

Руководитель:

Ивакина Елена Васильевна

учитель  физики

                                                 Усмань, 2012 г.


Оглавление:

  1. Введение

1.1Из истории вопроса

1.2Актуальность темы исследования

1.3Цель и задачи исследования

1.4Гипотеза исследования

1.5Методы и объект исследования

  1. Основная часть

               2.1 Определение диаметра молекулы

  1. Вывод
  2. Список литературы

  1. Введение
  1. Из теории вопроса

Молекула в современном понимании – это наименьшая частица вещества, обладающая всеми его химическими свойствами. Молекула способна к самостоятельному существованию. Мысль о том, что вещество состоит из мельчайших частиц, первыми высказали еще в 5 –м веке до нашей эры древнегреческие философы Левкипп и Демокрит, которые утверждали, что в мире есть только атомы и пустота.

В качестве довода они привели, например, такой: вода, высыхая, дробится на такие мельчайшие части, которые совершенно недоступны для глаз.

Однако только через две с половиной тысячи лет после рождения атомной гипотезы – в  конце 20 –го  века – наука достигла уровня, когда ученые смогли увидеть атомы.

Самая маленькая молекула – одноатомная молекула гелия, имеет размер около 0,2 нм. Размер молекулы воды, состоящей из двух атомов водорода и одного атома кислорода, — около 0,3нм.

В одной чайной ложке воды содержится примерно столько же молекул воды, сколько чайных ложек воды содержится в мировом океане. Значит, чтобы пересчитать молекулы воды в чайной ложке, понадобилось бы столько же времени, сколько нужно для того, чтобы вычерпать чайной ложкой мировой океан!

В окружающем нас воздухе молекулы носятся со скоростями артиллерийских снарядов – сотни метров в секунду. Мы не ощущаем своей кожей отдельных ударов молекул потому, что массы молекул чрезвычайно малы, а дробь их ударов – очень частая. «Барабанная дробь» быстрых ударов крошечных молекул воспринимается как постоянное давления газа.

В начале 19 века английский ботаник Броун наблюдая в микроскоп крошечные частицы пыльцы растений, взвешенные в воде, обнаружил, что они пребывают в «вечной пляске», совершая непрестанное хаотическое движение. Ученый предположил, что наблюдаемое им движение – это движение живых существ, и повторил опыт с растолченными в мельчайшую пыль кусочками камня. Но и частички камня «плясали без умолку». Это «броуновское движение», как его называли, оставалось загадкой для ученых целых 50 лет.

Экспериментальное доказательство существования молекул первым наиболее убедительно дал французский физик Ж. Перрен в 1906 г. при изучении броуновского движения. Оно, как показал Перрен, является результатом теплового движения молекул – и ничем иным. Броуновское движение явилось первым опытным подтверждением молекулярного строение вещества: оно сыграло роль «мостика» между макро- и микромирами.

Атомы в молекулах соединены друг с другом в определенной последовательности и определённым образом распределены в пространстве. Связи между атомами имеют различную прочность; она оценивается величиной энергии, которую необходимо затратить для разрыва межатомных связей.

Молекула как система, состоящая из взаимодействующих электронов и ядер, может находиться в различных состояниях и переходить из одного состояния в другое вынужденно (под влиянием внешних воздействий) или самопроизвольно. Для всех молекул данного вида характерна некоторая совокупность состояний, которая может служить для идентификации молекул. Как самостоятельное образование молекула обладает в каждом состоянии определенным набором физических свойств, эти свойства в той или иной степени сохраняются при переходе от молекул к состоящему из них веществу и определяют свойства этого вещества.

Обычно молекулой называют электрически нейтральную частицу. В веществе положительные ионы всегда сосуществуют вместе с отрицательными.

    По числу входящих в молекулу атомных ядер различают молекулы двухатомные, трехатомные и т.д. Если число атомов в молекуле превосходит сотни и тысячи, молекула называется макромолекулой. Сумма масс всех атомов, входящих в состав молекулы, рассматривается как молекулярная масса. По величине молекулярной массы все вещества условно делят на низко- и высокомолекулярные.

  1. Актуальность темы исследования:

В этом учебном году я начала более подробно изучать молекулярную физику. Я узнала, что тела, которые нас окружают, состоят из мельчайших частиц – молекул. Меня заинтересовало, каковы размеры молекул. Из-за очень малых размеров молекулы нельзя увидеть невооруженным глазом или с помощью обыкновенного микроскопа. Мне захотелось на практике измерить диаметр молекулы подсолнечного масла.

  1. Цель и задачи исследования:

Цель проекта: измерить диаметр молекулы подсолнечного масла.

Задачи проекта:

1) изучение теории вопроса;

2) измерить объем одной капли;

3) измерить диаметр молекулы;

  1. Гипотеза исследования:

Гипотеза: Если капля масла перестала растекаться по поверхности, то толщина образовавшегося пятна равна диаметру молекулы.

  1. Методы и объект исследования:

Объект исследования: капля подсолнечного масла

Методы исследования: лабораторный метод.


  1. Основная часть

            Определение диаметра молекулы

Я нашла объем капли подсолнечного масла. Для этого я накапала 100 капель  масла в мерный цилиндр, измерила его объем, затем  поделила на количество капель масла, то есть на 100. Таким образом объем капли получился равным  2*10-8м3.

После того как объем капли стал известен, из того же капилляра капнула одну каплю на поверхность воды, которая налита в широкий сосуд.

Для ускорения процесса предварительно немного нагрела воду приблизительно до 40 градусов Цельсия. Масло растеклось по поверхности, и в результате получилось круглое пятно. После того как пятно перестало расширяться, с помощью линейки я измерила его диаметр и перевела его в метры. Диаметр пятна получился равным 12*10-3м.

После этого рассчитала площадь пятна по формуле  S=D2 π/4. Площадь пятна получилась равной 2,8*10-3м2.  Затем объем капли поделила на площадь пятна, на которое она растеклась d =V/S. Диаметр получился равным 7*10-6 м  — это и будет диаметр одной молекулы масла, поскольку считается, что оно растекается по воде до тех пор, пока толщина масляной пленки не станет равной одной молекуле.

Я предположила, что диаметр молекулы зависит от температуры. Я провела тот же опыт с нагретым до 60 градусов Цельсия маслом. Диаметр молекулы  оказался ,что соответствует диаметру первого опыта. Значит, диаметр молекулы не зависит от температуры.


  1. Вывод

      Я провела опыт, в результате которого  нашла размер молекулы подсолнечного масла, он оказался 7*10-6м, а также доказала, что диаметр молекулы не зависит от температуры.

      Я сравнила полученный результат с диаметром молекулы оливкового масла из ученика по физике Г.Я. Мякишева, где диаметр молекулы равен 1,7*10-7 см. Я пришла к выводу, что выбрала не совсем подходящий  метод, так как в нем капля масла растеклась по поверхности жидкости слоем неравномерной толщины, то есть приняла форму линзы, у которой толщина в середине больше чем по краям. Я предполагаю, это можно объяснить явлением натяжения жидкости, а оно в данном методе не учитывалось. К сожалению, данный метод не позволил мне получить точный результат.


  1. Список литературы:

1. Г.Я.Мякишев, Б.Б. Буховцев. Физика, — М., Просвещение 2005.

2. Перышкин А.В. Факультатвный курс физики, М.,1980.

3. Перышкин А.В., Гутник, Физика, 2006.

4. Генденштейн Л.Э., Физика,2005.

5. Дик Ю.И., Физика, 2003.

Вода в маслах — Справочник химика 21

    Существует определенная связь между химическим строением и свойствами поверхностно-активных веществ — эмульгаторов. Так, соли карбоновых кислот (растворимые в воде) со щелочными металлами, аммиаком или аминами обычно способствуют образованию эмульсий типа масло в воде, а их кальциевые, магниевые или алюминиевые соли — эмульсий типа вода в масле. Сложные эфиры жирных кислот с полиспиртами (гликолями) также способствуют образованию эмульсий типа вода в масле. [c.336]
    Определение воды в маслах (проба на потрескивание) — ГОСТ [c.161]

    Различают эмульсии прямые (типа масло в воде ) с каплями неполярной жидкости, распределенными в сплошной полярной среде, и обратные (типа вода в масле ) с каплями полярной жидкости в неполярной среде. Кроме того, эмульсии делят на лиофильные и лиофобные. [c.144]

    В качестве типичной системы рассмотрим какую-нибудь систему из воды и неполярной (или малополярной) органической жидкости. Эту жидкость будем для краткости условно называть маслом. Чер ез М—В будем обозначать эмульсии масла в воде и через В—М эмульсии воды в масле. [c.537]

    В табл. 9. 7 приведены рекомендуемые предельные нормы качества, в частности содержание механических примесей и воды в маслах. При превышения этих норм масла должны быть заменены свежими. [c.491]

    В емкостях на складах наличие воды определяется ежедневно при помощи водочувствительной бумаги, пасты или визуально в пробе, отобранной из емкости. Вода в маслах определяется методом потрескивания при подогреве 1—2 мл масла в пробирке на зажженной спичке или спиртовке. Механические примеси в масле определяют визуально после разбавления в стеклянном цилиндре (емкостью 250 мл) 40—50 мл масла в четырехкратном количестве чистого бензина. [c.228]

    Присутствие воды в масле ускоряет питтинг. Считается, что вода, с одной стороны, представляет среду, промотируюшую электрохимические процессы, а с другой стороны, вода является поставщиком водорода к поверхности металла и создает условия для появления водородной хрупкости , что также усиливает образование трещин. Для снижения отрицательного действия воды рекомендуется вводить в масло специальные присадки, наиболее эффективными из которых являются изо-пентанол и производные имидазолина. [c.254]

    Содержание воды в масле определяют для свежих масел качественной пробой (методом потрескивания или вспенивания), а для отработанных масел количественным методом по ГОСТ 2477—44 100 мл масла смешивают со 100 мл лигроина. Смесь нагревают в металлической колбе. Испарившиеся частицы воды, сконденсировавшись в холодильнике, собираются в стеклянном приемнике. [c.169]


    Негерметичность системы, отсутствие пеногасителей, присутствие воды в масле [c.27]

    Определение содержания воды в топливах (ГОСТ 8287—57) Определение содержания растворенной воды в маслах (ГОСТ 7822-55) [c.161]

    Примечание. При попадании топлива и воды в масло ухудшаются его свойства и нарушается нормальное смазывание пар трения дизеля. До устранения причин попадания в масло топлива или воды не разрешается заливать в дизель свежье масло. [c.69]

    Вода в масле не обнаружена Водорастворимые кислоты и щелочи в отработанном масле не обнаружены [c.317]

    В корпусах подшипников установлены разбрызгиватели 11, посаженные на вал насоса и предотвращающие утечку масла и просачивание воды в масло подшипников. Верхний корпус подшипника закрыт разъемной крышкой. В корпусах и вкладышах подшипников предусмотрены отверстия с вставными трубками для приборов, измеряющих температуру подшипников. Осевая сила и масса ротора насоса воспринимаются пятой электродвигателя. Е ал насоса присоединяют к валу электродвигателя жесткими муфтами непосредственно или с помощью трансмиссионного вала, состоящего из нескольких частей, соединенных муфтами. [c.54]

    Наиболее распространены в природе и употребимы в технике эмульсии, образованные водой и какой-либо органической жидкостью. Если вода образует сплошную фазу, то эмульсию называют прямой, или эмульсией типа масло в воде , если вода является дисперсной фазой, то эмульсию называют обратной, или эмульсией типа вода в масле . [c.7]

    Электролитический метод основан на количественном электролизе воды (после ее десорбции из масла инертным газом) в специальной ванне. Метод позволяет одновременно определять и суммарное количество воды в масле и содержание растворенной в нем воды для этого пробу масла разделяют на две части, причем из одной части до анализа удаляют эмульгированную воду. [c.38]

    Лаурилсульфат натрия СНз(СН2)11030з Ыа — синтетическое моющее средство. Как вы думаете, растворимо ли это соединение в воде В масле Объясните ответ на основе правила подобное растворяется в подобном . [c.466]

    Использование ИК-техники для определения воды в масле основано на поглощении водой ИК-лучей с длиной волны 2 мкм. Во влагомерах применяют двухлучевую схему, при которой один луч проходит через анализируемое масло, а другой — через масло, не содержащее влаги. Разница энергий обоих лучей пропорциональна концентрации воды в масле. Источником излучения является керамический стержень, нагретый примерно до 1730°С, а энергию излучения измеряют фотоэлементом [c.38]

    В трансформаторных маслах загрязнения в процессе эксплуатации накапливаются главным образом вследствие окисления углеводородов кислородом воздуха, причем этот процесс ускоряется не только под влиянием повышенной температуры и при каталитическом воздействии металлов, но и в результате действия электрического поля. При действии электрического поля наблюдается повышенное образование воды в масле и увеличение количества асфальтенов в образующемся осадке. Ниже приведены данные о составе осадка, образующегося при окислении трансформаторного масла ТКп при разной напряженности электрического поля [27]  [c.52]

    Большое влияние на эксплуатационные свойства нефтяных масел оказывает присутствующая в них вода. В нефтяных маслах влага может существовать в разных видах. Некоторое количество влаги растворено в масле, причем предельная растворимость воды в масле значительно меняется в зависимости от внешних условий например, в трансформаторном масле при 5°С растворяется 0,01% (масс.) воды, а при 75 °С в десять раз больше. Остальная влага первоначаль

О воде в масле и о том, как от нее избавиться – Основные средства

Как сделать масло «масляным»?

Мы уже не раз публиковали материалы по различным вопросам, относящимся к использованию и свойствам смазочных материалов для тяжелой специальной техники. Начиная с данного номера журнала редакция «ОС» планирует предложить вниманию читателей новую серию статей «Смазочные материалы: полезные сведения и рекомендации». Открывает серию публикация по одной из важнейших проблем – удаление воды из масла.

Вода, вода, кругом вода… Так поется в одной старой песне. Вода в природе присутствует повсюду, окружает нас со всех сторон. И если только вы не живете в мертвой, выжженной солнцем пустыне, это неоспоримый факт жизни.

Вода в смазочных, трансмиссионных и гидравлических маслах неблагоприятно влияет на их рабочие характеристики и поэтому считается загрязнением. Поговорим о проблеме очистки масел от попавшей в них воды.

Причины попадания воды в масло и меры по его предотвращению

Воду в масле часто называют подлинным бедствием для машин и механизмов. Как известно, попавшая в масло вода может находиться в различных состояниях: свободном, эмульгированном или растворенном. Даже в свежем масле всегда присутствует некоторое количество воды в растворенном состоянии. Вода может проникать в масло постепенно и незаметно в результате конденсации влаги из атмосферы либо быстро и одномоментно, например, в результате разрушения уплотнения крышки емкости с маслом или попадания в бак струи воды при мойке машины. Увеличивается вероятность попадания воды в смазочные материалы машины, если техника работает под открытым небом, например, на строительстве и в горнодобывающих карьерах, или если машины часто моются, как те, что перевозят пищевые продукты или сырье для их производства. Например, вода может проникать в картер дифференциала моста через уплотнения при въезде в глубокую лужу: разогретое масло и картер остывают, внутри картера создается разрежение, и вода всасывается внутрь через манжеты. Вообще же загрязнение смазочных масел водой имеет место практически во всех отраслях промышленности.

Так хранить масла нельзя

Если обнаружилось загрязнение масла водой, прежде всего следует постараться выяснить, как она попадает в картер двигателя или трансмиссии, и устранить причину загрязнения. Это избавит вас от повторения этой проблемы в будущем и от новых затрат на материалы, рабочую силу и запчасти, ведь простая замена загрязненного масла не устраняет причины попадания воды в масло.

Мероприятия по предотвращению попадания воды в масло следует начинать еще на складе нефтепродуктов. Бочки и цистерны для масел должны быть защищены от неблагоприятных воздействий окружающей среды, особенно в тех регионах, где высокая влажность воздуха. Даже в помещении емкости с маслом должны быть надежно укрыты от попадания струй воды при мойке помещения или, например, при проверке системы пожаротушения. Емкости с маслом не должны напрямую сообщаться с атмосферой: сапуны емкостей должны быть оснащены фильтрами – поглотителями влаги, особенно если масла хранятся в условиях повышенной влажности.

Износ зубьев шестерни дифференциала из-за попадания воды в трансмиссионное масло

Для машин специалисты рекомендуют такие меры, как использование фильтров-осушителей воздуха в сапунах картеров, чтобы задерживать любые самые незначительные количества влаги, которая могла бы конденсироваться на внутренних поверхностях картера при понижении температуры. В картерах и кожухах не должно быть никаких открытых отверстий и лючков, их следует загерметизировать. В осенний и весенний периоды, когда велика влажность и разница между рабочими температурами агрегатов машин и окружающего воздуха, а также между дневной и ночной температурами, при понижении температуры до точки росы влага из воздуха начинает конденсироваться внутри картеров агрегатов, а днем, если температура будет низкой, влага не улетучивается из картера.

Если вода попадает в масло из-за неисправности уплотнений валов, штоков и крышек, уплотнения следует заменить как можно быстрее. Следует обучать операторов и специалистов по сервису правильным приемам мойки машин: струя воды не должна быть чрезмерно мощной, необходимо следить, чтобы струи воды не попадали непосредственно на уплотнения валов, штоков, заправочные горловины и сапуны узлов машины.

Абсорбирующие фильтры для очистки масла

Рекомендуется следить за состоянием масла в мерных стеклах – указателях уровня масла в картере и периодически проверять фильтры-отстойники, не забывать сливать отстой через сливные краны. Если сливного крана нет или он неисправен, рекомендуется отремонтировать или установить новый. Можно порекомендовать сливать отстой из картеров агрегатов машины регулярно, каждый день и записывать количество слитого отстоя. Агрегаты, из которых отстоя сливается больше всего, необходимо тщательно проверить и выяснить причину, заменить в них фильтры – осушители сапунов.

В картерах больших стационарных машин (например, дизель-генераторов) иногда рекомендуют поддерживать избыточное давление, чтобы исключить поступление воздуха (и влаги в нем) извне. Однако данную рекомендацию следует использовать осторожно: во-первых, может начать выдавливать масло наружу через уплотнения, а во-вторых, централизованная система подачи воздуха обходится недешево, и если в системе возникнет хотя бы небольшая утечка воздуха, расходы на эксплуатацию этой системы возрастут еще больше.

Бочки и цистерны с маслами должны быть защищены от непогоды

«Точка насыщения масла водой»

Вода практически всегда присутствует в масле просто потому, что масло соприкасается с атмосферным воздухом. Воду, растворенную в масле на молекулярном уровне, нельзя увидеть невооруженным глазом. Масло внешне может выглядеть совершенно чистым, прозрачным и красивым. Однако если содержание воды в масле близко к «точке насыщения» (т. е. содержание растворенной воды в масле близко к максимальному количеству, которое способно удержать масло), при понижении температуры растворенная вода может переходить в эмульгированное или свободное состояние и создавать молочно-белое помутнение в масле. Поскольку эмульгированная и свободная вода наносит более существенный вред, чем растворенная, то содержание воды всегда должно быть ниже предела насыщения. Однако и растворенная вода может причинить ущерб.

Значение «точки насыщения» зависит от типа и температуры масла, его срока службы и состава пакета присадок. Для каждого типа масла существует свой предел насыщения, при котором растворенная вода переходит в эмульгированное или свободное состояние. Эмульгированная или свободная вода также может переходить в растворенное состояние при повышении температуры масла.

Фильтр-осушитель воздуха для больших резервуаров с маслом

Например, полигликолевые масла, которые составляют около одной трети всех синтетических масел и обозначаются по классификации DIN буквами PG. Полигликолевые масла используются в качестве моторных, авиационных и в других сферах. Полигликоли изготавливаются из смеси этилена и пропилена, обычно в соотношении 50:50 или 60:40. От этого соотношения зависит гигроскопичность и способность масла растворять воду. Если соотношение равно 1:1, масло может абсорбировать до 10% влаги при обычной температуре и относительной влажности 80%. Поэтому следует хорошо проанализировать все условия эксплуатации, прежде чем выбирать полигликолевое масло для использования в машине.

Чем выше температура масла, тем выше значение точки насыщения, и следовательно, больше воды может содержаться в масле в растворенном состоянии. Чем больше срок службы масла, тем большее количество воды можно в нем растворить. Это объясняется присутствием ионизированных продуктов окисления масла, которые действуют как «крючки», удерживающие молекулы воды в растворе. Масла с высоким содержанием присадок, такие, как моторные и трансмиссионные, имеют более высокую точку насыщения по сравнению с маслами, у которых содержание присадок невысокое (например, турбинные масла), поскольку присадки, многие из которых имеют ионизированные молекулы, также имеют свойство удерживать молекулы воды в растворенном состоянии в масле.

Не следует хранить бочки с маслами под открытым небом

Вредное воздействие воды

Вода оказывает вредное влияние как на само масло, так и на машину. Вода способствует окислению базового масла, изменению его вязкости и пенообразованию (аэрации), что в свою очередь приводит к уменьшению прочности масляной пленки и ускорению износа трущихся деталей. Вода также может оказывать негативное воздействие на пакет присадок: вымывать некоторые присадки, неустойчивые к действию влаги, способствовать гидролизу (расщеплению) присадок, что приводит к образованию высококоррозионных кислот и истощению присадок. Вода является источником возникновения в масле таких загрязнений, как парафины, суспензии, углеродные и окисные нерастворимые загрязнения и даже микроорганизмы.

Вода нанесет серьезный ущерб любому узлу машины, в который попадет вместе с маслом. В двигателях внутреннего сгорания, которые работают на высоких скоростях и при высоких температурах, состояние масла следует контролировать очень тщательно. Вода усиливает процессы ржавления и коррозии, в результате водородной коррозии возникает вспучивание и охрупчивание стали, а также питтинг в результате паровой кавитации. Если же в масле содержатся кислоты, то при совместном воздействии воды с кислотами коррозионное воздействие на черные и цветные металлы усиливается.

Лабораторные анализы масла

Определение содержания воды в масле

Специалисты рекомендуют сокращать содержание воды в масле до самого низкого уровня, какого только можно достигнуть при разумных затратах, предпочтительно, чтобы содержание воды было ниже точки насыщения при рабочей температуре масла. Существует много способов и приборов для определения содержания воды в масле, а также рабочих характеристик масла. Характеристики понадобятся вам при определении пригодности масла для дальнейшего использования. Выбор метода зависит от того, содержание какой формы воды в масле нужно определить – только растворенной или воды во всех формах, т. е. кроме измерения содержания растворенной воды будет учтено и содержание несвязной воды.

Распространен метод инфракрасной спектроскопии с преобразованием Фурье (FTIR). Довольно точное определение содержания воды в масле обеспечивает титрование по методу Карла Фишера (ГОСТ Р 54284–2010; ASTM D6304). В практике используются еще простые методы, позволяющие предварительно оценить наличие воды в масле. Из наиболее широко используемых подобных методов можно назвать визуальный осмотр, «испытание на потрескивание» (ГОСТ 2477–2014) и метод виброцентрифуги (ГОСТ Р ИСО 3734–2009).

Лабораторные анализы масла

Проба на потрескивание заключается в нагревании испытуемого масла в стеклянной пробирке до заданной температуры. Имеющиеся в масле следы влаги переходят в парообразное состояние. При дальнейшем нагревании пузырьки пара, поднимаясь к поверхности масла, разрываются и потрескивают.

При использовании метода центрифугирования равные объемы масла и насыщенного водой толуола помещают в конусообразную пробирку для центрифугирования. После центрифугирования записывают объем высоковязкой воды и уровень осадка в нижней части пробирки.

Отметим, что применение метода центрифугирования для определения воды и осадка часто приводит к неправильным результатам, особенно когда для получения представительной пробы используют высокоскоростную мешалку. Настоящий метод не всегда дает удовлетворительные результаты, и количество определенной воды, как правило, ниже ее фактического содержания.

Более точными лабораторными методами определения содержания воды в масле являются метод дистилляции (ИСО 3733) и метод экстракции (ИСО 3735).

Емкости для  отстаивания масел

Технологии очистки масел от воды

Итак, как поступить, если в масло все же попала вода и просто утилизировать его нежелательно, чтобы не терять значительные средства. Перечислим ряд методов очистки масла от воды, их преимущества и недостатки.

Какая из технологий окажется наиболее эффективной в каждом данном конкретном случае, будет зависеть от того, какой процент содержания влаги в масле необходимо в итоге обеспечить, какой объем воды нужно удалить из масла и каков объем масла, каков тип базового масла (минеральное, синтетическое и т. д.) и какая производительность процесса очистки требуется. Как правило, чем больше воды попало в масло, тем сложнее будет ее удалить.

Отстаивание. Поскольку у воды удельный вес больше, чем у масла (за некоторыми исключениями), вода, присутствующая в масле в свободном состоянии («несвязная»), под действием силы тяжести стремится оседать на дно емкости, если ей дать достаточно времени и не взбалтывать. Увеличение температуры масла и использование резервуара-отстойника конусной формы помогают повысить эффективность метода разделения отстаиванием. Чтобы увеличить эффективность отстаивания загрязнений, необходимо понизить вязкость масла, поэтому иногда резервуары для отстаивания масел оборудуют подогревательными устройствами. Обычно применяют трубчатые, секционные или змеевиковые подогреватели, в которых теплоносителем служит водяной пар или горячая вода.

Фильтр-осушитель воздуха HG Group

Будет ли оптимальным способ кратковременного подогрева масла, чтобы удалить из него воду и поддержать работоспособное состояние, остается пока вопросом, открытым для обсуждения. Но большинство специалистов сходятся во мнении, что позволить воде оставаться в масле намного более вредно для масла, чем его кратковременный нагрев. Поэтому выпускаются портативные системы удаления воды из масла с нагревательными элементами. В статичных системах, например в больших резервуарах, важно обеспечить плотность энергии таких нагревательных элементов ниже 0,775 Вт/cм2, чтобы свести к минимуму негативное тепловое воздействие на масло.

В некоторых случаях масло освобождается от примеси воды самостоятельно, потому что работает при повышенных температурах и вода из него испаряется. Масло в двигателе внутреннего сгорания демонстрирует наглядный пример такого самоочищения.

Установки для вакуумной дистилляции

Недостаток метода с нагревом масла заключается в том, что нагрев необходимо тщательно контролировать, особенно это относится к минеральным маслам, чтобы избежать разрушения масла. Однако относительные затраты на очистку масла этим методом меньше, чем при использовании технологий центробежной и вакуумной сепарации (о них будет сказано ниже), поэтому данный метод может быть эффективным способом удаления воды из масла при определенных условиях.

Время, необходимое для отделения воды от масла, также зависит от состава пакета присадок, срока службы масла и типа базового масла. Например, для турбинного масла с небольшим содержанием присадок разделение способом отстаивания может быть оптимальным и позволит избавиться от большей части воды. Присутствие побочных продуктов окисления и арктических присадок, а также загрязнений уменьшает эффективность разделения масла и воды методом отстаивания. Некоторые масла обладают свойством удерживать воду в виде эмульсии и не давать ей отделяться – для таких масел способ отстаивания будет малоэффективным.

Иногда достаточно просто открыть сливной кран и слить отстоявшуюся воду и грязь из картера агрегата машины. Эффективность этой операции, однако, будет зависеть от того, на какой срок можно оставить машину в нерабочем состоянии, чтобы дать воде отстояться, и будет ли температура масла достаточно низкой, чтобы как можно большее количество воды в масле перешло в несвязное состояние. При больших объемах масла можно порекомендовать использовать специальные емкости, в которых масло может остывать, вода будет переходить из состояния эмульсии в свободное и оседать вместе с грязью.

Главным недостатком метода отстаивания является то, что он позволяет отделить лишь несвязную воду и отчасти в форме эмульсии, а вода в растворенном состоянии вся остается в масле. Преимуществом же является низкая стоимость этого процесса.

Центробежный сепаратор

Разделение с помощью центрифуги. Принцип очистки методом центрифугирования основан на отделении от масла более тяжелых составляющих в процессе вращения, когда возникают высокие ускорения силы тяжести и вода, имеющая больший удельный вес, перемещается к периферии центрифуги. Чем больше разница значений удельного веса загрязняющего вещества и масла, тем более эффективно протекает процесс. Поэтому центрифуга лучше работает с маслами, у которых малый удельный вес и низкая вязкость, такими, как турбинные масла, а не с более тяжелыми трансмиссионными маслами.

С помощью центробежного сепаратора несвязная вода отделяется быстрее, чем методом отстаивания. Центробежный сепаратор – отличное средство для полнопоточной очистки технических жидкостей от загрязнений, и в том числе от воды. Эффективность отделения в какой-то степени зависит от состава пакета приставок, поскольку определенное количество воды содержится в масле в форме эмульсии.

Недостатками центрифугирования является то, что этот метод сравнительно дорог и от масла отделяется только вода в свободном состоянии. Частично можно отделять воду в эмульсированном состоянии в зависимости от соотношения устойчивости эмульсии и величины центробежной силы, которую развивает сепаратор, если обрабатывать масло при низкой температуре. Как и при отстаивании, чем ниже температура масла, тем большая часть воды будет находиться в эмульгированном и свободном состояниях, и следовательно, тем эффективнее будет процесс разделения воды и масла. Центробежные сепараторы не способны удалить из масла растворенную воду. В итоге, учитывая, что метод центрифугирования позволяет удалять из масла также иные тяжелые загрязнения и обеспечивает довольно высокую производительность по сравнению с другими технологиями, он считается экономически эффективным для применения в определенных ситуациях.

Коллоидный сепаратор

Вакуумная дегидратация (обезвоживание). Еще один способ – пропустить масло через вакуумный дегидратор (который иначе называется вакуумным дистиллятором). При вакуумной дегидратации в специальной установке снижают парциальное давление паров воды, что способствует отделению и удалению воды из масла. Снижение давления дает возможность воде (и другим летучим веществам) закипать при значительно более низких температурах.

Установки для перегонки под вакуумом работают таким образом: масло нагревается примерно до +65–70 °С, создается разрежение примерно 635–711 мм. рт. ст. При таком разрежении вода закипает при температурах 50–55 °С и начинает эффективно выпариваться из масла. Базовое масло и присадки в нем при таком нагреве практически не подвергаются ни тепловому разрушению, ни окислению. В большинстве дегидраторов над маслом пропускают нагретый и осушенный воздух. Водяной пар, выходящий из масла, поступает в сухой воздух. Чтобы увеличить производительность процесса и площадь воздействия, масло разливают тонким слоем по большой поверхности: масло последовательно протекает по целому ряду поверхностей внутри вакуумной камеры либо стекает в камере в виде «дождя с зонтика», и через него проходит осушенный воздух.

Серьезным преимуществом этого процесса является возможность удалять из масла до очень низкого уровня несвязную, эмульгированную и растворенную воду и другие загрязняющие жидкости с низкой температурой кипения: топливо, хладагенты и растворители. Из масел с низким содержанием присадок, таких как турбинные масла, вакуумный дегидратор способен удалить до 80–90% растворенной воды и обеспечить уровень содержания воды в масле всего в несколько миллионных долей (ppm). Особенно полезен этот метод в ситуациях, когда используются большие объемы масла и велик риск попадания в него влаги. Чем больше объем масла и воды и чем ниже требующийся уровень содержания воды в масле, тем более рентабельной будет вакуумная дегидратация.

Вакуумный дегидратор

Основным недостатком вакуумных дегидраторов являются их высокая стоимость и сравнительно низкая производительность. Именно из-за высокой стоимости многие компании предпочитают не приобретать в собственность, а брать эти установки в аренду по мере необходимости или просто заменить масло, в которое попала вода. При использовании этой технологии существует определенный риск испарения из масла отдельных присадок.

Воздушная осушка масла. Технология, альтернативная вакуумной дегидратации, – удаление воды путем воздушной осушки масла. При воздушной осушке воздух или азот вводится в поток подогретого масла, перемешивается с маслом и абсорбирует воду и газы, содержащиеся в масле. Затем смесь масла с воздухом расширяется, чтобы из нее вышел воздух/ азот вместе с впитанными, загрязняющими масло веществами. Обычно вода, выделенная таким способом из масла, имеет нормальное качество, ее можно сливать в общую канализацию, не подвергая дополнительной очистке и обработке. Отработавший воздух/ азот фильтруется, чтобы свести к минимуму выбросы паров масла в окружающую среду.

Недостатком способа воздушной осушки, как и у вакуумных дегидраторов, является высокая стоимость. Однако преимуществом этого метода является то, что затраты на эксплуатацию установки все же меньше, чем при использовании обычного вакуумного дегидратора, потому что у воздушного осушителя меньше движущихся деталей. То, что этим методом можно удалять из масла не только несвязную и эмульгированную, но и растворенную воду до уровня менее 100 миллионных долей (ppm) и другие газовые примеси и загрязнения, делает технологию воздушной осушки эффективной альтернативой вакуумной дегидратации.

Сепаратор-отстойник

Осушка пространства над жидкостью в резервуаре. Установка для продувки масел воздухом состоит из нескольких резервуаров, насосов для перекачки масла и компрессора для подачи воздуха. Резервуары оборудованы подогревателями и покрыты теплоизоляцией для поддержания необходимой температуры масла. Эти установки работают, откачивая воздух из пространства над жидкостью в резервуаре, осушая его и затем закачивая равный (или увеличенный в некоторых случаях) объем воздуха назад в резервуар, чтобы сохранить в нем прежнее давление. Процесс протекает за счет влагообмена между маслом и воздухом и за счет усиления испарения влаги из масла в газовое пространство резервуара. Воздух затем перекачивается в осушитель для обработки.

Продувку масел воздухом ведут при 80 °С. С понижением температуры способность воздуха поглощать влагу резко падает, и продолжительность процесса обезвоживания значительно увеличивается, а при повышении температуры существенно возрастает вероятность вспенивания масла, что может привести к его выбросу из резервуара.

Продувка воздухом позволяет обезвоживать масла в более короткие сроки, чем при других способах осушки. Большое преимущество этой технологии в том, что установка не взаимодействует с маслом. При использовании этого способа потери масла с удаляемой водой исключаются. С помощью этой технологии можно удалять из масла несвязную, эмульгированную и растворенную воду.

Введение коагулятора в моторное масло для  очистки от воды

Абсорбция. В конструкцию некоторых масляных фильтрующих элементов включают дополнительный слой, состоящий из влагопоглощающего полимера-суперабсорбента на основе целлюлозы. Этот слой предназначен для того, чтобы поглощать из масла путем абсорбции как эмульгированную, так и несвязную воду. Такие фильтры выглядят как обычные навинчиваемые или патронные (со сменным элементом) фильтры.

Главным недостатком отделения воды от масла методом абсорбции является ограниченная емкость гигроскопичных фильтрующих элементов. Полимеры сильно разбухают, впитывая воду. После заполнения фильтрующего элемента открывается перепускной клапан фильтра, и неочищенное масло идет через байпас. Поэтому прежде чем выбрать данный способ очистки масла от воды, следует рассчитать возможное количество воды, содержащейся в масле, – емкость гигроскопичных фильтрующих элементов должна быть достаточной для удержания подсчитанного объема воды. Такие фильтрующие элементы удобны и лучше всего работают в составе компактных фильтров для систем, где проблемы с попаданием воды в масло минимальны. Например, небольшой картер трансмиссии может оборудоваться системой охлаждения масла с таким фильтром. Кроме того, фильтры с полимерами-суперабсорбентами не способны отфильтровывать и задерживать растворенную воду.

Абсорбирующий фильтр для очистки масла

Положительный аспект заключается не только в способности подобных фильтров задерживать еще и твердые частицы, но и в том, что фильтры с влагопоглощающим слоем являются довольно рентабельным средством очистки для масляных систем малого объема, которые требуют удаления даже самого малого количества влаги.

Коагуляция. Слипание и укрупнение коллоидных частиц называется коагуляцией. Добиться протекания данного процесса можно с помощью добавления в масло специальных агентов (электролитов и неэлектролитов), механического воздействия (перемешивание и встряхивание), нагревания или сильного охлаждения, пропускания электрического тока или воздействия лучевой энергии. В каждом из случаев коагуляция возникает за счет ослабления связи загрязняющих частиц с окружающей их дисперсной средой.

Коагуляционные сепараторы помогают микроскопическим каплям воды соединяться вместе, образуя большие и тяжелые скопления, которые легче опускаются на дно и отделяются от масла. Это происходит потому, что при одинаковом объеме воды у крупных капель меньшая поверхность контактирует с маслом, чем в случае, когда капли мелкие и их очень много. Коагуляцию проводят следующим образом. Сначала масло нагревается до температуры 75–90 °С и обрабатывается при перемешивании 10%-ным водным раствором коагулятора на протяжении 20–30 минут. Затем его отстаивают около двух суток и удаляют отстой. Коагуляционные сепараторы более эффективны, когда вязкость масла низка.

Масляный фильтр с гигроскопичным слоем из целлюлозы

Следует отметить, что коагуляторы позволяют отделять от масла эмульсированную воду только отчасти и не могут отделять растворенную воду.

 

Здесь приводится сводная таблица, отражающая возможности упомянутых методов очистки масла от воды.

Характеристики способов удаления воды из масла
Метод отделения воды от масла Тип удаляемой воды Примечания
Несвязная Эмульгированная Растворенная
Отстаивание + +/– Низкая стоимость процесса
Центрифугирование + +/– Высокая стоимость
Высокая производительность
Коагулирование + +/– Отстаивание длится двое суток
Полимеры-суперабсорбенты + + Ограниченная емкость
Высокая рентабельность
Вакуум-дистилляция + + + Высокая стоимость
Низкая производительность
Высокое качество очистки
Воздушная осушка + + + Высокая стоимость
Высокое качество очистки
Осушка воздуха над жидкостью в резервуаре + + + Высокая скорость процесса

Присадки

Иногда высказывается мнение, что проблему повышенного содержания воды в масле можно устранить путем добавления в масло специальных присадок. Скажем сразу: это заблуждение.

Во-первых, добавлять в масло присадки самостоятельно не стоит никогда. Рецептуру, содержание присадок в масле подбирают специалисты компании-производителя. Соотношение количества базового масла и присадок в составе продукта должно точно соответствовать рецептуре, чтобы масло имело необходимые рабочие и защитные характеристики.

Если вы не устраните причину попадания воды в масло, от добавки присадок будет мало пользы. Введение присадки может дать кратковременный положительный эффект, но полностью проблему не устранит. Добавляя антиокислительные и антикоррозионные присадки и не решая при этом проблему проникновения воды в масло, вы получите то, что новые присадки будут расходоваться и в конечном счете не принесут пользы.

Итак, необходимо прежде всего устранить причину проникновения воды в масло, а затем, если объем системы смазки невелик, часто оказывается более экономически выгодно просто слить масло и заправить свежее. Если масла в системе много и просто утилизировать его дорого, можно сначала очистить масло от воды одним из описанных выше способов, а затем сделать анализ масла и рассмотреть вопрос о пополнении состава пакета присадок.

Масляный фильтр с гигроскопичным слоем из целлюлозы

 

Контроль содержания воды в масле машины – это как контроль содержания холестерина в крови человека: если не контролировать регулярно, нельзя ожидать хороших результатов. Правильная организация этого процесса может потребовать изменения всего сложившегося порядка работы на объекте – от внесения больших изменений в регламент действий работников и до внесения небольших изменений в конструкции машин. Но если учесть, какие неприятности и потери может принести вода в масле, станет ясно, что усилия по изменению порядков на производстве того стоят.

Почему я против «молекул масла»

Почему я против «молекул масла»

PR-кризис

Если пресс-релизы моторных масел положить рядом, можно подумать, что они написаны под копирку.

Все там вроде хорошо: и экономия топлива, и чистота деталей двигателя, и защита от износа… Но замени бренд «М…» на «С…», бренд «S…» на «Т…» et cetĕra, и ничего не изменится. Ни за что не догадаешься, где какой производитель. Будто вся продукция из одной бочки.

Понятно, что мировые масляные компании идут на рыночном ипподроме «ноздря в ноздрю». Но если жокеи управляют лошадьми синхронно, вперед не вырваться.

Алло, PR-щики, готовящие и рассылающие релизы! Вы бы хоть изюминки какие придумали для своего продукта. Ибо нет ничего тоскливее серых будней и однообразных пресс-релизов.

Молекулы чего?

Почему я против «молекул масла»

Ну ладно однообразие. Есть в пресс-релизах вещи и пострашнее – это «молекулы моторного масла». Они и «новейшие», и «умные» и крестиком вышивают. И потому масло такое замечательное.

Наши PR-щики когда-то учились в школе и краем уха слышали, что все вещества состоят из молекул. Значит, и масло состоит из молекул, заключают они.

Но забывают рыцари Public Relations, что в природе все делится на чистые вещества и смеси, в частности – растворы. И если о молекулах чистого вещества можно говорить громко и откровенно, то о молекулах смеси – только с уточнениями и оговорками.

Ибо, как таковых молекул смеси не бывает, и быть не может. Всем понятный пример – в следующем разделе.

Ну, за трезвость!..

Что такое водка? Правильно, смесь этилового спирта с водой. Иными словами, раствор. Теперь перейдем к молекулам.

Возьмем бутылку водки и наполним стакан. Что у нас в стакане? Молекулы спирта есть? Есть. Молекулы воды есть? Тоже есть. А молекулы водки? А вот их нет. Ибо это полнейшая бессмыслица. Молекулы спирта и воды равномерно распределяются в объеме стакана и никаких третьих молекул не образуют.

И снова о масле

Водка – штука простая. Моторное масло несравненно сложнее. Сколько туда входит разнообразных ингредиентов, сразу и не скажешь – тем более, что рецептуры масел хранятся под семью замками.

Но ясно одно: моторное масло – это дисперсная система, куда входят не только углеводородные компоненты или полиальфаолефины, но и композиции присадок. Так о каких именно «молекулах масла» пишут в пресс-релизах?

О конструктивной критике

Здесь должно быть негодование: «Критиковать все горазды! А что лично ты сделал для блага Родины?».

Отвечаю. Во-первых, на пресс-конференциях по смазочным материалам задаю вопросы о корректности пресс-релизов.

Во-вторых, вношу конкретное предложение: говорить и писать не «молекулы масла», а «молекулы компонентов масла». Разница, надеюсь, понятна. А если не понятна, перечитайте раздел о водке. Спасибо за внимание.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.