Site Loader

Обнаружено новое фазовое состояние нанолокализованной воды

 

 

Сотрудники лаборатории терагерцовой спектроскопии МФТИ совместно с российскими и зарубежными коллегами открыли новое фазовое состояние нанолокализованной воды — воды, отдельные молекулы которой расположены в полостях кристаллической решетки кордиерита. При фундаментальной важности фактически первого надежного экспериментального наблюдения фазового перехода в коллективе молекул воды обнаруженное явление может найти и практическое применение — в области технологий сегнетоэлектриков, искусственных квантовых систем, а также в биосовместимой наноэлектронике.

Наряду с учеными МФТИ, в работе приняли участие сотрудники Института кристаллографии РАН, Института общей физики РАН, Сколтеха, Института геологии и минералогии СО РАН и Новосибирского государственного университета, а также коллеги из Германии, Чехии и Японии. Результаты исследования опубликованы в престижном научном журнале Nature Communications.

«Мы ищем новые фазы упорядочения электродипольных решеток, то есть набора «точечных» электрических диполей, — рассказал один из инициаторов работы, младший научный сотрудник лаборатории терагерцовой спектроскопии МФТИ Михаил Белянчиков. — Потому что различных фаз вещества с магнитными диполями найдено великое множество, а вот исследования фазовых состояний вещества, обусловленных упорядочением не магнитных, а электрических «точечных» диполей, еще только начинаются.

Кроме того, электродипольные решетки являются одним из типов сегнетоэлектриков, свойства которых могут оказаться крайне полезными при разработке новых приборов микроэлектроники». Однако создание решетки взаимодействующих между собой электрических диполей с целью ее экспериментального исследования — непростая задача.

Чаще всего физики применяют для этого так называемые оптические интерференционные ловушки. Они представляют собой периодическую структуру полей, возникающих в результате интерференции лазерного излучения. В узлы такой решетки помещают ультрахолодные атомы изучаемых веществ.

Но исследователи из лаборатории терагерцовой спектроскопии МФТИ нашли другой, более рациональный путь. Они поместили отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Ее роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределенные поры нанометрового размера.

В результате получается твердотельный образец (кристалл) с находящимися в этих порах практически свободными молекулами воды (так называемой нанолокализованной воды). Его очень удобно исследовать при различных (не только очень низких) температурах, включая комнатные, а также при различных внешних воздействиях (под влиянием электрических полей, давления и другого).

Впрочем, основной результат работы был получен как раз при низкой температуре 3 K (–270°C). Электродипольная решетка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита. При температуре 3 K в трехмерной решетке нанолокализованных молекул воды ученые обнаружили все характерные признаки сегнетоэлектрического фазового перехода типа «порядок — беспорядок».

Кристалл кордиерита / ©depositphotos

«Ранее мы исследовали аналогичную нанолокализованную воду в матрице берилла, кристалла, очень близкого по структуре к кристаллу кордиерита. Нам не удалось обнаружить упорядочения молекулярных диполей в данной системе вплоть до самой низкой достигнутой нами температуры 0,3 К. Причиной тому — высокая симметрия (гексагональная) решетки этого кристалла и квантово-механические явления, определяющие свойства молекул воды при столь низких температурах, — подчеркнул Михаил Белянчиков. — Ключевую же роль в возникновении фазового перехода в кристалле кордиерита сыграла его несколько менее высокая (орторомбическая) симметрия».

Для анализа и интерпретации экспериментальных результатов ученые взялись за компьютерное моделирование. Последнее заключалось в применении метода Монте-Карло и других математических инструментов для численного решения очень сложного многочастичного уравнения Шредингера, описывающего электродипольную систему нанолокализованных молекул воды.

Компьютерная модель дала возможность понять, как выглядит упорядоченная фаза на микроскопических, точнее, на наноразмерных масштабах. И вновь ученых ждал сюрприз: оказалось, эта фаза крайне необычна. Она представляет собой сосуществование сразу двух видов упорядочений дипольных моментов молекул воды — сегнетоэлектрического и антисегнетоэлектрического.

Это можно представить себе как стопку чередующихся листов сонаправленных диполей, где диполи в каждой паре соседних листов имеют разнонаправленную ориентацию (см. рисунок). Расчеты также показали, что картина упорядоченных водяных диполей (стрелки на рисунке) может быть еще более богатой. Это происходит, например, если молекулы воды заполняют не все поры кристалла, а только часть из них. В таком случае диполи-стрелки в плоскостях-листах группируются в отдельные области — домены.

Схематическое представление упорядоченного состояния электродипольной решетки полярных (дипольные моменты обозначены стрелками) молекул воды в кристалле кордиерита. Упорядоченное состояние представляет собой сосуществование сегнетоэлектрического (красные ab-плоскости) и антисегнетоэлектрического (синяя bc-плоскость) порядков. Сегнетоэлектрические листы чередуются антисегнетоэлектрическим образом вдоль оси с кристалла. Рисунок предоставлен авторами статьи / ©Пресс-служба МФТИ

«Наряду с важностью в фундаментальном отношении, исследование свойств нанолоколизованных молекул воды способствует пониманию явлений в окружающей нас среде и даже, возможно, поможет в конструировании приборов и устройств биосовместимой наноэлектроники. Эта бурно развивающаяся область обещает создание чрезвычайно эффективных электронных устройств на основе биологических материалов», — считает руководитель работы, заведующий лабораторией терагерцовой спектроскопии МФТИ Борис Горшунов.

Источник: www.sib-science.info

 

 

 

Глава 1

Все вещества состоят из отдельных частиц, между которыми есть промежутки, — это предположение было доказано современной наукой. Частицы были названы молекулами (в переводе с латинского — «маленькая масса»).

Молекула вещества — это мельчайшая частица данного вещества.

Например, самая маленькая частица воды — молекула воды. Наименьшей частицей сахара является молекула сахара.

Попытаемся представить себе, каковы размеры молекул.

Электронный микроскоп позволяет получать изображения с увеличением
до 106 раз

Если бы можно было уложить в один ряд вплотную друг к другу 10 000 000 (или 107) молекул воды, то получилась бы ниточка длиной всего в 2 мм. Малый размер молекул позволяет получить тонкие плёнки различных веществ. Капля масла, например, может растекаться по воде слоем толщиной всего в 0,000002 м (или 2•10

–6 м).

Даже небольшие тела состоят из огромного числа молекул. Так, в крупинке сахара содержится очень большое число молекул. Подсчитано, что в 1 см3 воздуха находится около 27•1018 молекул. Чтобы понять, насколько велико это число, представим следующее. Через маленькое отверстие пропускают по миллиону молекул в секунду, тогда указанное количество молекул пройдёт через отверстие за 840 тыс. лет.

Из-за очень малых размеров молекулы невидимы невооружённым глазом или в обычные микроскопы. Но при помощи специального прибора — электронного микроскопа — удаётся сфотографировать наиболее крупные из них. На рисунке 21 показано расположение молекул белка, являющегося важной частью питания организма человека и животных.

Окружающие нас тела, даже похожие на первый взгляд, будут различны. В природе вы не встретите двух совершенно одинаковых снежинок или песчинок, людей, животных и пр.

Рис. 21. Молекула белка под микроскопом

Учёные с помощью опытов доказали, что молекулы разных веществ отличаются друг от друга, а молекулы одного и того же вещества одинаковы. Например, воду, полученную из сока или молока, нельзя отличить от воды, полученной путём перегонки из морской воды.

Молекулы воды одинаковы. Из таких молекул не может состоять никакое другое вещество.

Молекулы, в свою очередь, состоят из ещё более мелких частиц — атомов (в переводе с греческого — «неделимый»).

Рис. 22. Схематическое изображение:
а — молекул воды;
б — молекул водорода и кислорода

Например, наименьшая частица воды — это молекула воды. Она состоит из трёх атомов: двух атомов водорода и одного атома кислорода. У некоторых веществ мельчайшей частицей вещества является атом. Из атомов состоят некоторые газы (аргон, гелий, неон и др.), а также отдельные твёрдые тела, например мышьяк, сера, кремний. А есть вещества, которые состоят из таких частиц, как ионы (в переводе с греческого — «странствующий»). Это поваренная соль, исландский шпат и др. Из курса химии вы узнаете, что любое вещество имеет своё обозначение, так, воду обозначают H

2O, где H — атом водорода, O — атом кислорода.

Молекулы принято изображать схематически, т. е. с помощью моделей молекул. Две молекулы воды показаны на рисунке 22, а. Если разделить две молекулы воды, то образуется два атома кислорода и четыре атома водорода. На рисунке 22, б показано, что каждые два атома водорода могут соединиться в молекулу водорода, а атомы кислорода — в молекулу кислорода.

1. Что такое молекула? 2. Что вы знаете о размерах молекул? 3. Из каких частиц состоит молекула воды? 4. Как изображается схематически молекула воды?

Британика

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Britannica Beyond
    Мы создали новое место, где вопросы находятся в центре обучения. Вперед, продолжать. Спросить. Мы не будем возражать.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полёта на Луну до управления космосом — мы исследуем широкий спектр тем, которые подпитывают наше любопытство к космосу!

Страница не найдена

Приносим свои извинения! Этот контент недоступен. Посетите домашнюю страницу Britannica или воспользуйтесь полем поиска ниже.

Зеленая викторина

На морском языке: мореходные термины в первом издании Britannica

Возвращение «трех сестер» — кукурузы, бобов и тыквы — на фермы коренных американцев питает людей, землю и культуру

ч30, места, куда вы отправитесь!

Вода — это огромная часть Земли, покрывающая около 70 процентов поверхности планеты. Вода является неотъемлемой частью каждого живого существа на земле и существует в трех основных состояниях материи. Твердая вода (лед) находится в полярных ледяных шапках, ледниках и снегах. Жидкая вода находится в океанах, озерах, реках и под землей. Вода в виде газа, также называемого водяным паром, присутствует в воздухе и облаках.

Солнечное тепло превращает твердую воду в жидкую (этот процесс называется плавлением). Тепло также превращает жидкую воду в водяной пар (испарение). При охлаждении водяной пар снова становится жидким (конденсация). При еще большем охлаждении жидкая вода становится льдом (замерзает). Молекулы воды испаряются, конденсируются, замерзают и тают — снова и снова. На протяжении всех этих циклов они остаются водой

молекул .

Молекулы воды путешествуют по планете. Снова и снова они испаряются, конденсируются, замерзают и тают в так называемом круговороте воды. Мы можем представить себе некоторые путешествия, которые могли совершить молекулы воды.

Возьмем, к примеру, воду из питьевого фонтанчика возле одного из первых празднований Дня Земли. Вода течет в фонтан и большая часть уходит в канализацию, откуда по трубам поступает на очистные сооружения. После обработки его выпускали в ручей или реку. Река могла унести его в океан, где он мог бы провести годы. В конце концов, он может испариться под палящим солнцем.

Когда вода испаряется, она оставляет все соли и минералы в океане позади. Наша вода теперь представляет собой газ, поэтому она может перемещаться на большие расстояния. Если она остывает, то конденсируется в виде дождя или снега, так что, возможно, наша вода выпадает в виде снега в каком-нибудь горном массиве, где она может замерзнуть и оставаться в течение месяцев или лет. Когда он растает, он стечет в ручьи или реки и может вернуться в стакан с водой, чтобы кто-то мог насладиться им 50 лет спустя!

Это модель молекулы воды. Красный цвет представляет один атом элемента кислорода, а белый цвет представляет два атома элемента водорода.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *