Site Loader

Проводимость — медь — Большая Энциклопедия Нефти и Газа, статья, страница 1

Cтраница 1

Проводимость меди 57 — 10 См / см. По кабелю течет постоянный ток 50 А при напряжении в начале кабеля 100 В.  [1]

Добротность 2мед вычисляют из геометрических размеров резонансной полости и из данных проводимости меди.  [2]

Электрическая проводимость отожженного алюминия чистотой 99 6 % составляет 62 % проводимости отжженной меди, а предел прочности проволоки из алюминия равняется 0 84 — 2 04 МН / м2 в зависимости от степени отжига. Для высоковольтных линий электропередачи используют алюминиевые провода, упрочненные стальной проволокой или со стальным сердечником.  [3]

Проводимость твердотянутых медных проводов, используемых на воздушных линиях связи, составляет примерно 96 % проводимости образцовой меди; проводимость же мягкой ото-женной меди, используемой при изготовлении кабелей, достигает 98 и более процентов.  [4]

Гц; рг — относительная магнитная проницаемость; стотн — удельная электрическая проводимость материала, отнесенная к проводимости меди.  [5]

Классификация гидро — и пнев. мостатическнх машин.  [6]

В настоящее время считают целесообразным штамповать на магнитно-импульсных установках металлы и материалы, проводимость которых не ниже / 10 проводимости меди. Для штамповки стали и других материалов с низкой проводимостью используют гальваническое покрытие медью или фольгу из алюминия и меди, которой покрывают поверхность заготовки.  [7]

В, отличие от нейтрального газа, плазма является хорошим проводником тока; например, начиная с температур 10 К, проводимость ионизованного водорода больше

проводимости меди и серебра; проводимость плазмы космического пространства сравнима с проводимостью металлических проводников при комнатной температуре.  [8]

Например, если какой-нибудь двухвалентный атом, скажем, атом цинка, находится в меди, то можно ожидать, что оба его валентных электрона объединятся с электронами проводимости меди, в результате чего образуется отдельный двухвалентный ион цинка с избыточным положительным зарядом, внедренный в решетку одновалентных ионов меди.  [9]

В большей части ядра эта смесь, по-видимому, является жидкой, ее проводимость в общем порядка а 10 с 1 ( [141], см. также [132]), что близко к проводимости меди или серебра при комнатной температуре. Следовательно, 1 Ю3 см2 / с и характерное время затухания поля равно R j / Aq 1016 с 3 108 лет. Существование сильного дипольного поля требует действия динамо в недрах планеты и, следовательно, конвективных движений. Поэтому более существенной может быть турбулентная ijp а не омическая ij вязкость. Однако на нынешнем низком уровне наших познаний численные оценки этого эффекта практически невозможны.

 [10]

La — и Lfi-излучение металлической меди, Си2О и СиО.  [11]

Гкрая поглощения закиси меди по форме похожи на соответствующие края в спектре металла и смещены на 0 4 эв, отсюда следует, что их можно объяснить переходами в свободные 45-состояния зоны проводимости меди, а положения точки перегиба соответствуют нижней границе зоны.  [12]

Сравнение занятых электронных энергетических уровней в кластерах Си с электронно.. плотностью состояний в массивной меди.  [13]

Вместе с тем энергия электронных переходов из тесно расположенных уровней у вершины d — полосы кластера Си13 на незанятые s — и / ьуровни, лежащие несколько выше энергии Ферми, близка к значению энергии ( — 2 эВ) переходов из d — зоны в зону проводимости массивной меди, определяющих ее цвет.  [14]

В табл. 4 для сравнения приведена электрическая проводимость меди при комнатной температуре. Оказывается, что проводимость плазмы много меньше проводимости меди. Поэтому стенки канала и приходится набирать из изолированных друг от друга медных шайб.  [15]

Страницы:      1    2    3

Алюминий в электротехнике

Алюминий для электротехнической промышленности

Так сложилось много лет назад, что большинство инженеров, конструкторов и проектировщиков в электротехнической промышленности считают медь и сталь практически единственными материалами, с которыми можно работать. Это связывают, в частности, с тем, что в конце 19-го века, когда зарождалась электрическая промышленность, доступного алюминия практически еще не было.

В настоящее время ситуация совершено другая: алюминия в мире производят где-то в два раза больше чем меди и объемы производства алюминия уступают только объемам производства стали.

В последние годы цены на сталь и медь растут значительно быстрее, чем цены на алюминий. В результате некоторые потребители, которые традиционно  применяли медь, переходят на алюминий. Однако сравнение физических и экономических  характеристик этих металлов «кричит» о том, что замен стали и меди на алюминий должно быть намного больше. Поэтому не удивительно, что применение алюминия в электротехнической отрасли неуклонно возрастает.

Свойства материала как электрического проводника

Для инженера-электрика наиболее важными свойствами и характеристиками материалов являются:

  • плотность,
  • электрическая проводимость,
  • прочность,
  • термическое расширение и
  • коррозионная стойкость.

Алюминий, сталь и медь

Сравнение свойств алюминия, стали и меди [1]:

  • Плотность (г/см3):
    Алюминий 1350: 2,70
    Сталь: 7,86
    Медь (отожженная): 8,93
  • Объемная проводимость (% IACS):
    Алюминий 1350: 61
    Сталь: 8
    Медь (отожженная): 100
  • Удельная проводимость (на единицу массы):
    Алюминий 1350: 100 %
    Сталь: 4 %
    Медь (отожженная): 50 %
  • Предел прочности (МПа):
    Алюминий 1350: 125
    Сталь: 300
    Медь (отожженная): 235
  • Предел текучести (МПа):
    Алюминий 1350: 110
    Сталь: 170
    Медь (отожженная): 104
  • Линейное термическое расширение (10-6 м/м·°С):
    Алюминий 1350: 22
    Сталь: 13
    Медь (отожженная): 17

Электрические свойства

Отожженная медь имеет проводимость 100 % IACS. Сокращение IACS – обозначает «Международный стандарт по отожженной меди» –  сравнительная единица измерения электрической проводимости.Электропроводность алюминия чистотой 99,99 % при 200 °C составляет 63,8 % Международного стандарта на отожженную медь (IACS). Из-за низкого удельного веса массовая электропроводность чистого алюминия более чем в два раза выше, чем у отожженной меди, и выше, чем у любого другого металла (Fig. 1). Удельное сопротивление при 200 °C составляет 2,69 мкОм·см [2].

Электропроводность, обратная удельному сопротивлению, является одним из наиболее чувствительных свойств алюминия, на которое влияют как изменения состава, так и термическая обработка. Добавление других металлов в алюминиевые сплавы снижает электропроводность алюминия, поэтому это должно компенсироваться любыми дополнительными преимуществами, которые могут быть получены, такими как увеличение прочности. Термическая обработка также влияет на проводимость, поскольку легирующие элементы в твердом растворе производят большее сопротвление электрическому току, чем они же в нерастворенном состоянии.

Алюминий 1350-Н116 имеет проводимость 61 % IACS, то есть эквивалентная меди проводимость будет достигаться при большем поперечном сечении алюминия. Однако поскольку алюминий намного легче меди этот увеличенный алюминиевый проводник будет весить в два раза меньше чем медный (8,93/2,70×0,61=2,02). В результате один килограмм алюминия будет обеспечивать ту же проводимость что и два килограмма меди. Поэтому, когда нет жестких ограничений по размерам проводника, для токопроводящих шин, кабелей и проводов вместо меди все чаще применяют алюминий [2].

Прочность

При одинаковых сечениях и медь, и сталь, конечно, прочнее алюминия. Однако прочность алюминия можно увеличить легированием и термомеханической обработкой, а также увеличить его толщину. Кроме того, поскольку технология прессования алюминия позволяет получать в отличие, например, от стали, поперечные сечения очень сложной формы. Поэтому алюминиевый элемент может быть сконструирован таким образом, чтобы конструкционно быть более эффективным, чем стальные элементы.

Сопротивление коррозии

В отличие от стали поверхность алюминия не нужно красить или покрывать, например, цинком, а потом следить, чтобы она не заржавела. Естественный слой оксида алюминия изолирует металл от дальнейшего контакта с воздухом и предотвращает дальнейшее окисление. При малейшем повреждении этого слоя он мгновенно сам восстанавливается.

Заблуждения и мифы

Алюминиевые проводники являются достаточно надежными. Все провода воздушных линий электропередач – алюминиевые. Они имеют многолетнюю репутацию надежной службы.

Однако еще в 60-70-е годы прошлого века сложилось мнение о проблемах  с алюминиевой проводкой в жилых домах и квартирах, в частности, возможном перегреве их соединений. Тщательные исследования этого вопроса, например, в Канаде, показали, что алюминиевые провода не являются в этом смысле какими-то особенными: при неправильном обращении перегреваться могут любые провода. Более того, в сотнях тысяч домов и квартир по всему миру алюминиевые провода продолжают работать. Другое дело, в 60-70-е годы никто не предполагал, что дома и квартиры будут так «напичканы» электрическим приборами: сечения алюминиевых проводов можно было заложить и потолще.

Aluminum Electrical Conductors

Очень хорошие электрические свойства алюминия сделали его очевидным выбором для применения в электротехнической промышленности, особенно в распределении электроэнергии, где он используется почти исключительно для воздушных линий электропередач и сборных шин. Первая крупная алюминиевая линия электропередачи была завершена в 1898 году в США: трехфазная линия протяженностью 46 миль для Standard Electric Company of California от Блю-Лейкс до Стоктона.

Позже его использование стало гораздо более распространенным, когда была обнаружена возможность армировать трос (обычно из сплава 1350) оцинкованной стальной проволокой, которая увеличивала пролеты без слишком большого провисания. Хотя этот продукт все еще используется, высокопрочные (сплав 6061) полностью алюминиевые многожильные кабели в настоящее время предпочтительны для некоторых линий, поскольку можно достичь более высокого натяжения линии, что может быть применено для увеличения расстояния между опорами или, альтернативно, для уменьшения их высоты [2] (Fig. 2).


Fig. 2 – Применение алюминиевых проводов в США и Канаде [3]

Electrical uses of aluminium extrusion

  

Уличные и шоссейные осветительные столбы

Алюминиевые прессованные столбы имеют преимущества перед, например, стальными столбами, за счет их меньшего веса, меньшего соотношения прочность-вес, хорошего внешнего вида, долговременной коррозионной стойкости, низкой стоимости обслуживания, а также большей безопасности, особенно при применении специальных безопасных оснований. Когда на такой столб наезжает на большой скорости автомобиль, это основание разрушается и позволяет столбу двигаться вместе с автомобилем. Это снижает мощность удара по автомобилю и степень повреждений водителя и пассажиров. Это основание так «хитро» спроектировано, что оно разрушается от удара об столб, но выдерживает воздействующие на столб ветровые нагрузки.

Токопроводящие шины

Для всех типов шин применяют прессованный алюминий там, где это позволяет место для их размещения, так как они, в первую очередь, намного дешевле, а также их намного легче гнуть (Fig. 3).


Fig. 3 – Aluminium bus bars

Electrical connector bodies

Кабельные наконечники и гильзы из прессованных алюминиевых труб имеют преимущества над аналогами из стали или меди  по прочности, проводимости, стоимости, коррозионной стойкости и легкости механической обработки (Fig. 4).


Fig, 4 – Electrical connector bodies

Каналы для прокладки кабелей

Каналы для прокладки кабелей все чаще применяют из прессованного алюминия, а не из стали или пластика, так как они обеспечивают достаточную прочность, имеют малый вес, обладают высокой коррозионной стойкостью, являются немагнитными и огнестойкими (Fig. 5).


Fig. 5 – An electrical chanel

Шкафы электрических подстанций

Алюминиевые профили предпочтительнее, например, оцинкованной стали, за счет минимального технического обслуживания, прочности, коррозионной стойкости, малого веса (особенно при монтаже в полевых условиях и на высоте). Алюминиевые профили и листы легко подрезать и сверлить прямо «по месту», а главное, их не надо красить для защиты от коррозии.

Распределительные траверсы электрических столбов

Распределительные траверсы электрических столбов (те, которые горизонтальные) из прессованного алюминия обеспечивают необходимую прочность, но при этом мало весят и не требуют никакого технического обслуживания.

Радиаторы-гребенки

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») весьма эффективны за счет высокой теплопроводности, малого веса, низкой стоимости. Главное преимущество алюминия – способность прессоваться во много  очень тонких ребер (Fig. 6).


Fig. 6 – An aluminium heat sink

Outer conductor of CATV cable

 

Наружный проводник коаксильного телевизионного кабеля чаще всего выполняют не из медной трубы, а из более дешевой алюминиевой. Технология изготовления такого кабеля представлена на рисунке 5.

Fig. 7 – The manufacturing steps of outer conductor of CATV cable

 

 

Источники:

  1. P. Pollak / ET 2008.
  2. TALAT 1501
  3. Stabiloy, Aluminum or copper? /Alex Mak – Alcan – 2008

Какова электропроводность меди?

Какова электропроводность меди? — Лэнгли Сплавы

Пожалуйста, введите адрес электронной почты, на который вы хотите, чтобы мы отправили вашу загрузку:

Пожалуйста, выберите странуАфганистанАлбанияАлжирАмериканское СамоаАндорраАнголаАнгильяАнтарктидаАнтигуа и БарбудаАргентинаАрменияАрубаАвстралияАвстрияАзербайджанБагамыБахрейнБангладешБарбадосБеларусьБельгияБелизБенинБермудыБутанБоливияБосния и ГерцеговинаБотсванаОстров БувеБразилияБританская территория в Индийском океанеБруней Дар УссаламБолгарияБуркина-ФасоБурундиКамбоджаКамерунКанадаКанадаКабо-ВердеКаймановы островаЦентральноафриканская РеспубликаЧадЧилиКитайОстров РождестваКокосовые острова (острова Килинг)КолумбияКоморские островаКонгоКонго, Демократическая Республика Острова КукаКоста-РикаКот-д’ИвуарХорватская КубаКипрЧехияДанияДжибутиДоминикаДоминиканская Республика Восточный ТиморЭквадорЕгипетСальвадорЭкваториальная ГвинеяЭритреяЭстонияЭфиопияФолклендские (Мальвинские) островаФарерские островаФиджиФинляндияФранцияFrance MetropolitanФранцузский ГвианаФранцузская ПолинезияФранцузские южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаГвинеяГвинея-БиссауГайанаГаитиОстрова Херд и МакдональдсСвятой Престол (город-государство Ватикан)ГондурасГонконгВенгрияИсландияИндияИндонезияИран (Исламская Республика)ИракИрландияИзраиль ИталияЯмайкаЯпонияИорданияКазахстанКенияКирибатиКорея, Народно-Демократическая Республика Корея, Республика КувейтКыргызстанЛаос, Народно-Демократическая РеспубликаЛатвияЛиванЛесотоЛиберияЛивийская Арабская ДжамахирияЛихтенштейнЛитваЛюксембургМакаоМакедония, Бывшая Югославская РеспубликаМадагаскарМалавиМалайзияМальдивыМалиМальта Маршалловы островаМартиникаМавританияМаврикийМайоттаМексикаМикронезия, Федеративные Штаты Молдовы, Республика МонакоМонголияМонтсерратМароккоМозамбикМьянмаНамибияНауруНепалНидерландыНидерландские Антильские островаНовая КаледонияНовая ЗеландияНикарагуаНигерНигерияНиуэ Остров НорфолкСеверные Марианские островаНорвегияОманПакистанПалауПанамаПапуа-Новая ГвинеяПарагвайПеруФилиппиныПиткэрнПольшаПортугалияПуэрто-РикоQat arРеюньонРумынияРоссийская ФедерацияРуандаСент-Китс и НевисСент-ЛюсияСент-Винсент и ГренадиныСамоаСан-МариноСан-Томе и ПринсипиСаудовская АравияСенегалСейшельские островаСьерра-ЛеонеСингапурСловакия (Словакия)СловенияСоломоновы островаСомалиЮжная АфрикаЮжная Джорджия и Южные Сандвичевы островаИспанияШри-ЛанкаСан-МариноСан-Марино ЕленаСв.
Пьер и МикелонСуданСуринамШпицберген и острова Ян-МайенСвазилендШвецияШвейцарияСирийская Арабская РеспубликаТайвань, провинция КитаяТаджикистанТанзания, Объединенная Республика ТаиландТогоТокелауТонгаТринидад и ТобагоТунисТурцияТуркменистанОстрова Теркс и КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыОтдаленные малые острова США УругвайУзбекистанВануатуВенесуэлаВьетнамВиргинские острова (Британские)Виргинские острова (США)Острова Уоллис и ФутунаЗападная СахараЙеменЮгославияЗамбияЗимбабве
  • Медные сплавы

Медь является отличным электрическим проводником, уступающим только серебру, что объясняет, почему он уже много лет используется в бытовой электропроводке. Следующими по электропроводности металлами являются золото и алюминий, при этом золото используется в цепях и разъемах, а алюминий используется в промышленной проводке из-за его значительно более низкой стоимости.

Присутствие любых примесей или преднамеренных легирующих добавок значительно снижает электропроводность по сравнению с чистым металлом. Hiduron 130 (DTS 900/4805, 2.1504) имеет электрическую проводимость 1,71 (мОм/мм2), что составляет около 10% проводимости чистой меди.

Среди недрагоценных металлов медь имеет самую высокую проводимость, что означает, что она может проводить больший электрический ток, чем другие недрагоценные металлы.

При добавлении олова, магния, хрома, железа или циркония для изготовления сплавов с медью прочность металла увеличивается, но его проводимость падает.

Производство медных сплавов с высокой электропроводностью требует изготовления сплавов, устойчивых к перегреву, когда они пропускают электрический ток, что имеет решающее значение для передачи энергии, поскольку более высокая температура влияет на сопротивление.

 

Есть еще вопросы? Свяжитесь с нами

Если у вас есть дополнительные вопросы об электропроводности меди, пожалуйста, свяжитесь с Langley Alloys сегодня. Наша команда готова ответить на любые вопросы, которые могут у вас возникнуть относительно технических характеристик и приложений.

Доступна доставка по всему миру

Мы можем предложить варианты доставки воздушным, морским и автомобильным транспортом с выбором упаковки для доставки клиентам по всему миру.

Управление запасами

Позвольте нам управлять вашими общими потребностями в материалах с договоренностями о вызовах и отгрузке.

Доступно до 40 размеров для каждого сплава

Больше размеров означает меньшую механическую обработку и более экономичную цепочку поставок.

Может ли графен конкурировать с медью по электропроводности?

Эта статья является частью исследовательского блога Bosch

Откройте для себя всю серию

Соавтор: Лео Рицци Графен, атомарно тонкий углеродный слой с гексагональным расположением атомов углерода, известен своими выдающимися электрическими свойствами на наноуровне. . Электропроводность чистого однослойного графена может быть на 70% выше, чем у меди. В течение многих лет я задавался вопросом, что возможно в макромасштабе для графеновых пленок и волокон. Поэтому мой аспирант Лео Рицци тщательно исследовал эту тему за последние 3 года с помощью моделирования и экспериментальной проверки. Результат его работы открывает новые пути увеличения электропроводности графена в макроскопическом масштабе до 70-80% его электропроводности в наномасштабе.

В 1962 г. Böhm et al. опубликовали снимки углеродной фольги, полученные с помощью электронной сканирующей микроскопии, и назвали однослойную углеродную фольгу «Графен». В 2004 г. Гейм и соавт. опубликовали о синтезе однослойного графена с помощью скотча для удаления слоя графена с графитовой чешуйки до тех пор, пока не останется только один слой графена. С тех пор графен стал одной из самых горячих научных тем, привлекающих значительный интерес и финансирование во всем мире.

Уже проведено множество исследований наноразмерных применений графена. В последние годы также растет интерес к исследованиям для макроскопических приложений. Отправной точкой для синтеза макроскопического графена обычно является порошок графена, диспергированный в жидкости. Волокна или пленки получают из такой дисперсии путем специальной обработки, такой как мокрое прядение или фильтрация. Соответствующее легирование увеличивает электропроводность от прибл. 1 МС/м до прибл. 15 мс/м. Это все еще значительно ниже 100 MS/м для одного слоя графена. Эта разница является источником моей мотивации понять, что может быть возможно в лучшем случае.

Мы смоделировали небольшие фрагменты графеновой пленки как слоистый материал, состоящий из случайно распределенных, но параллельных в плоскости слоев графена. Наша модель позволяет нам манипулировать средним размером и распределением по размерам, а также использовать произвольную плотность упаковки. Важным параметром является пространственное распределение внутри слоя, которое варьируется от полностью однородного до сильно сгруппированного графена. Каждая чешуйка приобрела индивидуальную, но равномерную электрическую проводимость в плоскости.

Затем мы рассмотрели перекрытие между чешуйками, введя электрическую проводимость вне плоскости и настроив электрическую сеть с узлами и ребрами, как показано на рисунке ниже. В исследованиях систематических параметров мы определили, что минимально необходимый размер системы составляет 30 слоев и 40 000 графеновых чешуек всего.

Мартин и Лео проводят исследования по вопросу, сколько остается от высокой электропроводности графена в макроскопических пленках или филаментах. Схематическая диаграмма электрической сети с узлами и ребрами для моделирования ситуации в графеновом проводнике.

Наши результаты показывают, что есть два основных параметра для получения высокой электропроводности макроскопического графена. Крайне важно иметь высокую электрическую проводимость в плоскости большинства чешуек графена. Значение электропроводности в плоскости определяет максимально возможную проводимость. Конечно, также необходимо достичь приемлемой внеплоскостной электропроводности. Тем не менее, латеральный размер чешуек графена в определенной степени компенсирует меньшую внеплоскостную проводимость из-за большей площади перекрытия и меньшего контактного сопротивления, как показано на диаграмме ниже. Предполагаемая проводимость в плоскости, используемая в расчетах диаграммы, составляет 100 МС/м.

На диаграмме показаны зависимости между размером латеральных чешуек, внеплоскостной проводимостью и общей электропроводностью.

Соответствующая настройка этих трех основных параметров позволит превзойти все проводники на металлической основе.

Экспериментальная проверка в диапазоне низкой электропроводности показывает хорошее соответствие результатам моделирования, как показано на диаграмме ниже. Линии представляют результаты моделирования, а кружки — экспериментальные результаты.

На диаграмме показана экспериментальная проверка в диапазоне низкой электропроводности. Линии представляют результаты моделирования, а кружки — экспериментальные результаты. (Риззи Л., Виджая А.Ф., Паланисами Л.В., Шустер Дж., Кёне М. и Шульц С.Е. (2020). Количественная оценка влияния наноструктуры графеновой пленки на макроскопическую электропроводность. Nano Express, 1( 2), 020035, DOI:10.1088/2632-959x/abb37a)

При соответствующем легировании обеспечивается проводимость в плоскости 100 МС/м для чешуек графена с размером чешуек в десятки микрометров, макроскопический графен может достигать электропроводность до 80 мСм/м.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *