Site Loader

Магнитное поле

Материал из Википедии — свободной энциклопедии

   Классическая электродинамика

Электричество · Магнетизм

[показать]Электростатика

[показать]Магнитостатика

[показать]Электродинамика

[показать]Электрическая цепь

[показать]Ковариантная формулировка

[показать]Известные учёные

См. также: Портал:Физика

Картина силовых линий магнитного поля, создаваемого постоянным магнитом в форме стержня.

Железные опилки на листе бумаги.

См. также: Электромагнитное поле

См. также: Магнетизм

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1]; магнитная составляющая электромагнитного поля[2].

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является

векторный потенциал.

  • Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают[5]; однако в магнитной среде вектор не несет уже того же физического смысла[6], являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности,

свет и все другие электромагнитные волны.

Электрический ток(I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

  • С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным.

Содержание

  • 1 Источники магнитного поля

  • 2 Вычисление

  • 3 Проявление магнитного поля

  • 4 Математическое представление

  • 5 Энергия магнитного поля

  • 6 Магнитные свойства веществ

  • 7 Токи Фуко

  • 8 История развития представлений о магнитном поле

  • 9 См. также

  • 10 Примечания

  • 11 Ссылки

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными

магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био — Савара — Лапласа или теоремы о циркуляции (она же — закон Ампера). В принципе, этот способ ограничивается случаем (приближением) магнитостатики — то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла.

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B[3]. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля

B, и величине индукции магнитного поля B. В Международной системе единиц (СИ) сила Лоренца выражается так:

в системе единиц СГС:

где квадратными скобками обозначено векторное произведение.

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

1.Магнитное поле создается… 1)неподвижными электрическими зарядами; 2)движущимися электрическими зарядами; 3)телами, обладающими массой; 4)движущимися…

обладающими массой; 4)движущимися частицами. 2.Постоянное магнитное поле можно обнаружить по действию на… 1) движущуюся заряженную частицу; 2) неподвижную заряженную частицу; 3) любое металлическое тело; 4) заряженный диэлектрик. 3. Что наблюдалось в опыте Эрстеда? 1) взаимодействие двух параллельных проводников с током. 2) поворот магнитной стрелки вблизи проводника при пропускании через него тока. 3)взаимодействие двух магнитных стрелок 4)возникновение электрического тока в катушке при вдвигании в нее магнита. 4. Как взаимодействуют два параллельных проводника при протекании в них тока в противоположных направлениях? 1)сила взаимодействия равна нулю; 2)проводники притягиваются; 3)проводники отталкиваются; 4)проводники поворачиваются. 5. Как называется единица магнитной индукции? 1)Тесла 2)Генри 3)Вебер 4)Ватт 6. Как называется сила, действующая на движущуюся заряженную частицу со стороны магнитного поля? 1) Сила Ампера; 2)Центробежная сила; 3)Сила Лоренца; 4)Центростремительная сила 7. Какова траектория протона, влетевшего в однородное магнитное поле параллельно линиям индукции магнитного поля? 1)Прямая 2)Парабола 3)Окружность 4)Винтовая линия 8. Изменится ли, а если изменится, то, как частота обращения заряженной частицы в циклотроне при увеличении ее скорости в 2 раза. Скорость частицы считать намного меньше скорости света 1)Увеличится в 2 раза 2)Увеличится в 4 раза 3)Увеличится в 16 раз. 4)Не изменится 9. Электрон и протон влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции с одинаковыми скоростями. Отношение модулей сил, действующих на них в этот момент времени со стороны магнитного поля, равно 1) 1 2) 0 3) 1/2000 4) 2000 10. Участок проводника длиной 10 см находится в однородном магнитном поле с индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила Ампера при перемещении проводника на 8 см в направлении действия силы. Проводник расположен перпендикулярно линиям магнитного поля 1) 0,004 Дж. 2) 0,4 Дж. 3) 0,5 Дж. 4) 0,625 Дж 11.Рамку площадью 0,5 м2 пронизывают линии магнитной индукции магнитного поля с индукцией 4 Тл под углом 300 к плоскости рамки. Чему равен магнитный поток, пронизывающий рамку? 1) 1 Вб 2) 2,3 Вб 3) 1,73 Вб 4) 4 Вб 12.В магнитном поле с индукцией 4 Тл движется электрон со скоростью 107 м/с, направленной перпендикулярно линиям индукции магнитного поля. Чему равен модуль силы, действующий на электрон со стороны магнитного поля? 1) 0,4 пН; 2) 6,4 пН; 3) 0,4 мкН; 4) 6,4 мкН 13.Если величину заряда увеличить в 3 раза, а скорость заряда уменьшить в 3 раза, то сила, действующая на заряд в магнитном поле, 1) не изменится; 2)увеличится в 9 раз; 3)уменьшится в 3раза; 4) увеличится в 3 раза. 14. Заряд движется в магнитном поле. Индукция магнитного поля и скорость заряда увеличиваются в 3 раза. Сила, действующая на заряд 1) увеличится в 3 раза; 2) уменьшится в 3раза; 3) увеличится в 9 раз; 4) уменьшится в 9 раз. 15. Определить индукцию магнитного поля проводника, по которому протекает ток 4 А, если поле действует с силой 0,4 Н на каждые 10 см проводника. 1) 0,5 Тл; 2) 2Тл; 3) 1 Тл; 4) 0,1 Тл. 16. Линии магнитного поля в пространстве вне постоянного магнита 1) начинаются на северном полюсе магнита, заканчиваются на южном; 2) начинаются на южном полюсе магнита, заканчиваются на бесконечности; 3) начинаются на северном полюсе магнита, заканчиваются на бесконечности; 4) начинаются на южном полюсе магнита, заканчиваются на северном. 17. С помощью правила Буравчика можно определить 1) направление силы магнитного поля; 2) направление движения заряженной частицы; 3) направление линий магнитного поля; 4)направление силы электрического поля. 18. Линии однородного магнитного поля 1) искривлены, их густота меняется от точки к точке; 2) параллельны друг другу и расположены с одинаковой густотой; 3) расположены параллельно с разной густотой; 4) расположены хаотично. 19.Разноименные полюсы магнита…, а одноименные полюсы — 1) …отталкиваются, …притягиваются; 2)…притягиваются, …отталкиваются; 3)…отталкиваются; 4)…притягиваются. 20. Частица с электрическим зарядом 8·10-19 Кл движется со скоростью 220 км/ч в магнитном поле с индукцией 5 Тл, под углом 300. Определить значение силы Лоренца. 1) 10-15 Н 2) 2·10-14 Н 3) 2·10-12 Н 4) 1,2·10-16 Н 21. Какая физическая величина измеряется в «генри»? 1) индукция поля 2) магнитный поток 3) ЭДС индукции 4) Индуктивность. 22. Какой из перечисленных процессов объясняется явлением электромагнитной индукции 1) отклонение магнитной стрелки при прохождении по проводу электрического тока; 2) взаимодействие проводников с током; 3) появление тока в замкнутой катушке при опускании в нее постоянного магнита; 4) возникновение силы, действующей на проводник с током. 23. Определить индуктивность катушки, через которую проходит поток величиной 5 Вб при силе тока 100 мА. 1) 0,5 Гн 2) 50 Гн 3) 100 Гн 4) 0,005 Гн Д. 0,1 Гн 24. Какова энергия магнитного поля катушки индуктивностью, равной 2 Гн, при силе тока в ней, равной 200 мА? 1) 400 Дж; 2) 4·104 Дж; 3) 0,4 Дж; 4) 4·10-2 Дж 25. Какова ЭДС индукции, возбуждаемая в проводнике, помещенном в магнитном поле с индукцией 100 мТл, если оно полностью исчезает за 0,1 с? Площадь, ограниченная контуром, равна 1 м2. 1) 100 В; 2) 10 В; 3) 1 В 4) 0,01 В 26. Чем определяется величина ЭДС индукции в контуре? 1) Магнитной индукцией в контуре; 2) Магнитным потоком через контур ; 3) Электрическим сопротивлением контура; 4) Скоростью изменения магнитного потока 27. Определить сопротивление проводника длиной 40 м, помещенного в магнитное поле, если скорость движения 10м/с. Индукция магнитного поля равна 0,01Тл, сила тока 1А. 1) 400 Ом; 2) 0,04Ом; 3) 4Ом 4) 40 Ом 28. Какова ЭДС индукции, возбуждаемая в проводнике, помещенном в магнитное поле с индукцией 200мТл, если оно полностью исчезает за 0,05с? Площадь, ограниченная контуром, равна 1м2. 1) 400В; 2) 40В; 3) 4В; 4) 0,04В 29. Определить индуктивность катушки, если при силе тока в 2А, она имеет энергию 0,2Дж. 1) 200Гн; 2) 2мГн 3) 200мГн 4) 100мГн 30. Определить сопротивление проводника длиной 20 м, помещенного в магнитное поле, если скорость движения 10м/с, индукция поля равна 0,01Тл, сила тока 2А. 1) 100 Ом; 2) 0,01Ом; 3) 0,1Ом; Г. 1 Ом;

Знаешь ответ?

Как написать хороший ответ?Как написать хороший ответ?

Будьте внимательны!

  • Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. 🙂
  • Публикуются только развернутые объяснения. Ответ не может быть меньше 50 символов!

0 /10000

Электроэнергия магнитного поля Земли

Физика 9, 91

Лазейка в результате классического электромагнетизма может позволить простому устройству на поверхности Земли генерировать крошечный электрический ток из магнитного поля планеты.

П. Рейд/Унив. of Edinburgh

Подключение к вращению Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, существует составляющая поля, симметричная относительно этой оси. Предлагаемое устройство, взаимодействующее с этим компонентом, будет извлекать энергию из вращения Земли для производства электроэнергии. Подключение к вращению Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, существует составляющая поля, симметричная относительно этой оси. Предлагаемое устройство, взаимодействующее с этим компонентом, может… Показать больше

P. Reid/Univ. Эдинбурга

Использование вращения Земли. Хотя магнитное поле Земли не выровнено точно с осью вращения планеты, существует составляющая поля, симметричная относительно этой оси. Предлагаемое устройство, взаимодействующее с этим компонентом, будет извлекать энергию из вращения Земли для производства электроэнергии.

×

Может показаться, что классическая электромагнитная теория преподнесет мало сюрпризов, но два исследователя утверждают, что один аспект общепринятой мудрости неверен. Они теоретически показывают, что устройство, пассивно находящееся на поверхности Земли, может генерировать электрический ток посредством взаимодействия с магнитным полем Земли. Мощность предлагаемого устройства будет измеряться в нановаттах, но, в принципе, ее можно увеличить.

Эксперимент вековой давности показал, что если любой электромагнит с цилиндрической симметрией (симметрия стержневого магнита) вращается вокруг своей длинной оси, его магнитное поле не вращается [1]. Существует составляющая магнитного поля Земли, симметричная относительно оси вращения (которая не совмещена с магнитными полюсами), поэтому согласно этому старому принципу осесимметричная составляющая не вращается. Любой неподвижный объект на поверхности Земли проносится через эту составляющую поля, постоянную на любой заданной широте.

Другой основной результат электромагнетизма гласит, что внутри проводящего объекта, движущегося через однородное магнитное поле, не возникает электрического тока. На заряды в материале действует боковая сила, которая в принципе может создавать ток. Но смещения электронов и атомных ядер быстро создают статическое электрическое поле, противодействующее магнитной силе. Равновесие между электрическими и магнитными силами устанавливается быстро, поэтому чистого движения заряда после небольшой начальной перестройки не происходит.

Этот принцип, кажется, опровергает любую идею о том, что стационарное устройство на поверхности Земли, движущееся с постоянной скоростью через невращающуюся часть земного поля, может генерировать любую электроэнергию. Но Крис Чайба из Принстонского университета и Кевин Хэнд из Лаборатории реактивного движения в Пасадене, Калифорния, увидели путь вперед.

Чтобы произвести ток в проводнике, им нужно было создать магнитную силу на электронах, которая не могла быть полностью нейтрализована электрической силой. В том, что они называют лазейкой в ​​традиционном аргументе о невозможности, теоретики показывают, что существуют конфигурации магнитных полей, которые не могут быть электрически аннулированы; однако эти конфигурации требуют особых условий.

Исследователи показывают, что такая конфигурация магнитного поля возможна в проводящей цилиндрической оболочке из материала с необычными магнитными свойствами. Во-первых, они указывают, что (как показали другие) магнитное поле внутри такой оболочки, расположенной на поверхности Земли — скажем, ориентированной вертикально по экватору — значительно меньше, чем поле снаружи. Проносясь через поле планеты, этот объект постоянно сталкивается с однородным полем Земли и искажает его в некую неоднородную конфигурацию, где поле подавлено во внутреннем пространстве. Если магнитные свойства материала оболочки препятствуют быстрому искажению входящего поля, то поле никогда не достигнет конфигурации, которое оно имело бы в состоянии покоя. Чиба и Хэнд утверждают, что результирующая магнитная сила не может быть нейтрализована возникающим электрическим полем. Команда показывает, что в этой ситуации электрический ток может течь по определенным замкнутым путям внутри цилиндрической оболочки. Электроды могут подключить этот источник энергии, который, как доказывают Чайба и Хэнд, в конечном итоге исходит из энергии вращения Земли.

Для разработки своего нового устройства Чайба и Хэнд нуждались в проводящем материале с таким необычным магнитным откликом — сложная комбинация. В качестве примера такого материала они нашли марганцево-цинковый феррит под названием MN60, обладающий нужными свойствами, но являющийся, по словам Чибы, «паршивым проводником с проводимостью примерно в 10 раз меньшей, чем у морской воды».

Во многом из-за плохой проводимости сила, которую предсказывает команда, невелика. Цилиндр длиной 20 см и диаметром 2 см будет генерировать десятки нановатт при напряжении в десятки микровольт. Чиба считает, что можно было бы увеличить эти цифры, но подчеркивает, что в первую очередь нужно провести экспериментальную проверку, чтобы показать, что механизм действительно работает.

Филип Хьюз, радиоастроном из Мичиганского университета в Анн-Арборе, изучающий магнитогидродинамику астрофизических объектов, говорит, что механизм Чайбы и Хэнда «основан на физике звука», но менее оптимистичен в отношении возможности масштабирования. Чиба говорит, что если механизм окажется правильным — а он непреклонен в том, что только эксперименты могут сказать наверняка — он надеется, что инженеры приступят к работе над улучшением выходных данных. Он предполагает, что одной из возможностей, которую стоит изучить, будет двухслойный цилиндр, в котором медленный магнитный материал индуцирует геометрию поля, генерирующего ток, в соседнем материале с более высокой проводимостью.

Это исследование опубликовано в Physical Review Applied .

– Дэвид Линдли

Дэвид Линдли — независимый научный писатель из Александрии, штат Вирджиния.

Ссылки

  1. С. Дж. Барнетт, «Об электромагнитной индукции и относительном движении», Phys. Ред. (серия I) 35 , 323 (1912).

Предметные области

Исследования в области энергетикиMagnetism

Статьи по теме

Исследования в области энергетики

Магнитное поле нагревает термоядерный синтез

Магнитное поле может значительно повысить производительность крупномасштабного термоядерного эксперимента, который может привести к созданию в будущем источника чистой энергии. Подробнее »

Energy Research

«Зеленый» квантовый датчик

Исследователи продемонстрировали квантовый датчик, который может питаться от солнечного света и окружающего магнитного поля. энергозатраты на эту энергоемкую технологию. Подробнее »

Магнетизм

Ферромагнетик, который легко теряет спины

Исследователи демонстрируют передачу спина при комнатной температуре через границу между ферромагнетиком на основе железа и полупроводником, открывая путь к созданию новых устройств спинтроники. Подробнее »

Другие статьи

«Магнитная иллюзия» может создавать магнитные поля на расстоянии – Physics World

Магнитная иллюзия: длинный провод, окруженный магнитным репликатором, создает копию провода снаружи. (любезно предоставлено:
Физ. Преподобный Летт.
10.1103/PhysRevLett.125.177204)

Физики из Великобритании и Испании заявляют, что они нашли способ генерировать и управлять магнитными полями на расстоянии. Исследователи говорят, что это открывает возможность проецировать магнитные поля в недоступные места и позволяет дистанционно подавлять магнитные источники. Одним из применений этого метода может быть улучшение контроля магнитных микроботов и наночастиц в организме человека для медицинских приложений, таких как доставка лекарств и терапия магнитной гипертермией.

В последние годы метаматериалы позволили ученым манипулировать магнитными полями неожиданными способами, такими как создание магнитного плаща, который может сделать объект необнаружимым с точки зрения магнитного поля, и магнитных червоточин, которые переносят магнитное поле из одной точки пространства в другую.

В этой последней работе, опубликованной в Physical Review Letters , Роза Мах-Батлле из Автономного университета Барселоны и ее коллеги хотели проверить, могут ли они генерировать магнитное поле, которое появляется в свободном пространстве на расстоянии от его источника.

.

Мах-Батль сообщает Миру Физики , что теория показала, что для достижения этого им потребуется магнитный материал с отрицательной магнитной проницаемостью. Магнитная проницаемость — это способность материала приобретать намагниченность в магнитных полях. Но не существует природных материалов с отрицательными значениями проницаемости.

Ранее исследователи показали, что метаматериал с отрицательной проницаемостью можно создать, применяя к материалу точное расположение токов. На этот раз их теория показала, что длинная цилиндрическая трубка с магнитной проницаемостью -1 будет действовать как линза для электромагнитных волн. Если бы этот цилиндр затем поместить вокруг магнитного источника, то распределение магнитного поля вне этой оболочки выглядело бы так, как будто оно было создано другим магнитным источником — своего рода магнитной иллюзией — на расстоянии от цилиндра.

Для создания метаматериала физики использовали цилиндр длиной 400 мм и радиусом 40 мм. При расположении 20 проводов контролировали поверхностные плотности тока на его внутренней и внешней поверхностях. Провод, проходящий через центр трубки, создавал магнитное поле.

Расчетное распределение магнитного поля, создаваемого 20 проводами с током, окружающими центральный провод (желтые точки), образующими репликатор. Магнитный источник, созданный на расстоянии, виден в заштрихованном прямоугольнике. (любезно предоставлено: Физ. Преподобный Летт. 10.1103/PhysRevLett.125.177204)

Исследователи показали, что с помощью этой установки они могут создавать магнитные источники на расстоянии от цилиндра. Они также продемонстрировали, что метаматериал можно использовать для удаленного подавления другого магнитного поля, установив провод с текущим по нему током в точке, где они ожидали появления проецируемого магнитного поля. Магнитные поля, создаваемые проводом и метаматериалом, компенсировали друг друга. Команда говорит, что этот метод можно использовать для удаленного подавления магнитных источников в недоступных местах, например, внутри стены или внутри человеческого тела.

Мах-Батль сообщает Миру Физики , что стоит отметить, что магнитное поле не аннулируется во всем пространстве. «Между нашим метаматериалом и источником есть цилиндрическая область, которую мы исключаем», — объясняет она. «В этой небольшой области поле не аннулируется, но в остальном пространстве мы бы аннулировали поле источника, который мы решили отменить».

Основное практическое применение этой техники, по мнению Мах-Батля, заключается не в устранении магнитных источников, а в возможности создавать иллюзию магнитного поля на расстоянии внутри недоступных пространств. Это может иметь важные последствия в медицине, поскольку можно было бы проецировать источник магнитного поля внутрь тела.

Если вы создадите иллюзию источника магнитного поля внутри тела, объясняет Мах-Батле, вы получите гораздо более сильное поле по сравнению с источниками вне тела. Это может быть полезно для контроля и манипулирования наночастицами для доставки лекарств и нанороботов, которые можно использовать для различных видов хирургии.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *