Site Loader

Содержание

Правило Ленца | СПАДИЛО

теория по физике 🧲 магнетизм

Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.

Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.

Взаимодействие индукционного тока с магнитом

Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.

Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.

Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.

Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.

Правило Ленца

Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки.

Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.

Правило направления индукционного тока носит название правила Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца для нахождения направления индукционного тока Ii в контуре надо так:

  1. Установить направление линий магнитной индукции →B внешнего магнитного поля.
  2. Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром (ΔΦ>0), или уменьшается (ΔΦ<0).
  3. Установить направление линий магнитной индукции →B‘ магнитного поля индукционного тока Ii. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям →B при ΔΦ>0 и иметь одинаковое с ними направление при ΔΦ<0.
  4. Зная направление линий магнитной индукции →B‘, найти направление индукционного тока Ii, пользуясь правилом правой руки.

Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).

Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.

Задание EF17577

Медное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

К каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТ ПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ
А) движется по направлению к кольцу, северный полюс обращён к кольцу 1) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
Б) движется к кольцу, к кольцу обращён южный полюс 2) коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
3) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
4) коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

Алгоритм решения

  1. Записать правило Ленца.
  2. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит северным полюсом.
  3. В соответствии с правилом Ленца установить, что произойдет, если к кольцу поднести магнит южным полюсом.

Решение

Запишем правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.

Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.

Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.

Ответ: 12

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18621

На рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом.

Это движение кольца – результат действия

Ответ:

а) силы гравитационного взаимодействия между кольцом и магнитом

б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток

в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца

г) воздушных потоков, вызванных движением руки и магнита


Алгоритм решения

  1. Проанализировать предложенные варианты ответа.
  2. Установить природу взаимодействия магнита и кольца.
  3. Выбрать верный ответ.

Решение

Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.

Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.

Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.

Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF19032

Катушка №1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № 2 помещена внутрь катушки № 1 и замкнута (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.

Ответ:

А) Сила тока в катушке № 1 увеличивается.

Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.

В) Магнитный поток, пронизывающий катушку № 2, увеличивается.

Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.

Д) В катушке № 2 индукционный ток направлен по часовой стрелке.


Алгоритм решения

  1. Проверить истинность каждого утверждения.
  2. Выбрать только истинные утверждения.

Решение

Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.

Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.

Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.

Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.

Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке  2 направлен по часовой стрелке. Утверждение Д — верно.

Ответ: ГД

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | Просмотров: 6.4k | Оценить:

Эксперимент по извлечению энергии из поля постоянного магнита

Идею, заложенную в ниже описываемом устройстве, пытаются реализовать многие. Суть ее такова: есть постоянный магнит (ПМ) — гипотетический источник энергии, выходная катушка (коллектор) и некий модулятор, изменяющий распределение магнитного поля ПМ, создавая тем самым переменный магнитный поток в катушке.
Реализация (18.08.2004)
Для реализации этого проекта (назовем его TEG, как производная от двух конструкций: VTA Флойда Свита и MEG Тома Бердена 🙂 ) я взял два ферритовых кольцевых сердечника марки М2000НМ размерами O40хO25х11 мм, сложил их вместе, скрепив изолентой, и намотал коллекторную (выходную) обмотку по периметру сердечника — 105 витков проводом ПЭВ-1 в 6 слоев, также закрепив каждый слой изолентой.



Коллекторная обмотка на ферритовом сердечнике.

Далее оборачиваем это еще раз изолентой и поверх наматываем катушку модулятора (входную). Ее мотаем как обычно — тороидальную. Я намотал 400 витков в два провода ПЭВ-0.3, т.е. получилось две обмотки по 400 витков. Это было сделано с целью расширения вариантов эксперимента.


Обмотка модулятора.

Теперь помещаем всю эту систему между двумя магнитами. В моем случае это были оксидно-бариевые магниты, материал марки М22РА220-1, намагничен в магнитном поле напряженностью не менее 640000 А/м,
размеры 80х60х16 мм. Магниты взяты из магниторазрядного диодного насоса НМД 0,16-1 или ему подобных. Магниты ориентированы «на притяжение» и их магнитные линии пронизывают ферритовые кольца по оси.


TEG в сборе (схема).

Работа ТЭГа заключается в следующем. Изначально напряженность магнитного поля внутри коллекторной катушки выше, чем снаружи из-за присутствия внутри феррита. Если же насытить сердечник, то его
магнитная проницаемость резко снизится, что приведет к уменьшению напряженности внутри катушки коллектора. Т.е. нам необходимо создать такой ток в модулирующей катушке, чтобы насытить сердечник. К моменту насыщения сердечника, напряжение на коллекторной катушке будет повышаться. При снятии напряжения с управляющей катушки, напряженность поля вновь возрастет, что приведет к выбросу обратной полярности на выходе. Идея в изложенном виде рождена где-то в середине февраля 2004 г.


Схема управления модулятором.

В принципе, достаточно одной модуляторной катушки. Блок управления
собран по классической схеме на TL494. Верхний по схеме переменный
резистор меняет скважность импульсов от 0 примерно до 45% на каждом
канале, нижний — задает частоту в диапазоне примерно от 150 Гц до 20
кГц. При использовании одного канала, частота, соответственно,
снижается вдвое. В схеме также предусмотрена защита по току через
модулятор примерно в 5А.


ТЭГ в сборе (внешний вид).

Параметры ТЭГа (измерено мультиметром MY-81):
сопротивления обмоток:
коллектора — 0,5 Ом
модуляторов — 11,3 Ом и 11,4 Ом
индуктивности обмоток без магнитов:
коллектора — 1,16 мГн
модуляторов — 628 мГн и 627 мГн
индуктивности обмоток с установленными магнитами:
коллектора — 1,15 мГн
модуляторов — 375 мГн и 374 мГн
Эксперимент №1 (19. 08.2004)
Модуляторные катушки соединены последовательно, получилась как бы бифилярка. Использовался один канал генератора. Индуктивность модулятора 1,52 Гн, сопротивление — 22,7 Ом. Питание блока управления
здесь и далее 15 В, осциллограммы снимались двухлучевым осциллографом С1-55. Первый канал (нижний луч) подключен через делитель 1:20 (Cвх 17 пФ, Rвх 1 Мом), второй канал (верхний луч) — напрямую (Cвх 40 пФ, Rвх 1 Мом). Нагрузка в цепи коллектора отсутствует.
Первое на что было обращено внимание: после снятия импульса с управляющей катушки, в ней возникают резонансные колебания, и если следующий импульс подать в момент противофазы резонансному всплеску,
то в этот момент возникает импульс на выходе коллектора. Также это явление было замечено и без магнитов, но в гораздо меньшей степени. Т.е., скажем так, в данном случае важна крутизна смены потенциала на обмотке. Амплитуда импульсов на выходе могла достигать 20 В. Однако ток таких выбросов очень мал, и с трудом удается заряжать емкость на 100 мкФ, подключенную к выходу через выпрямительный мост. Никакую другую нагрузку выход не тянет. На высокой частоте генератора, когда ток модулятора предельно мал, и форма импульсов напряжения на нем сохраняет прямоугольную форму, выбросы на выходе также присутствуют, хотя магнитопровод еще очень далек от насыщения.


Напряжение на модуляторе (верхний) и коллекторе (нижний). Амплитуду выхода следует умножить на 20.

Выводы:
Пока ничего существенного не произошло. Просто отметим для себя некоторые эффекты. 🙂
Здесь же, думаю, будет справедливым отметить, что есть, по крайней мере, еще один человек — некий Сергей А, экспериментирующий с такой же системой.  Клянусь, до этой идеи мы дошли совершенно независимо :). На сколько далеко прошли его исследования, мне не известно, я с ним не связывался. Но он также отмечал подобные эффекты.
Эксперимент №2 (19.08.2004)
Модуляторные катушки разъединены и подключены к двум каналам генератора, причем подключены встречно, т. е. поочередно создается магнитный поток в кольце в разных направлениях. Индуктивности катушек даны выше в параметрах ТЭГа. Замеры велись как и в предыдущем эксперименте. Нагрузка на коллекторе отсутствует.
Ниже на осциллограммах представлены напряжение на одной из обмоток модулятора и ток через модулятор (слева) и также напряжение на модуляторной обмотке и напряжение на выходе коллектора (справа) при
разной длительности импульсов. Я пока не стану указывать амплитуды и временные характеристики, во-первых, я их не все сохранил, а во-вторых, это пока не важно, пока попытаемся качественно отследить поведение системы.


Скважность заполнения импульсов на канале около 11%, т.е. общая — 22%.

Скважность заполнения импульсов на канале 17,5%, общая — 35%.

Поясню картинку напряжения на модуляторе (верхний луч). Напряжение измерялось относительно плюса питания. Начальная полочка — это есть включение модулятора, далее обратный всплеск при снятии напряжения и возбуждение осцилляций из-за паразитных емкостей ключа. Снова всплеск, но спадающий — это работает второй модулятор. Еще раз обращу внимание, что второй модулятор включен «встречно». Следующая полочка — отключение второго модулятора и снова осцилляции. Второй луч на левых
рисунках — это ток через модуляторы. Ток измерялся путем снятия напряжения с низкоомного резистора, включенного последовательно с ключами, т.е. потенциал на выводе 16 TL494 (см. схему генератора). На
рисунках справа второй луч — напряжение на выходе коллектора в тех же режимах.
На первой серии осциллограмм видно, что при определенном токе модулятора напряжение на выходе коллектора достигает максимума — это промежуточный момент перед переходом сердечника в насыщение, его магнитная проницаемость начинает падать. В этот момент происходит отключение модулятора и магнитное поле восстанавливается в коллекторной катушке, что сопровождается отрицательным броском на
выходе. На следующей серии осциллограмм длительность импульса увеличена, и сердечник доходит до полного насыщения — изменение магнитного потока прекращается и напряжение на выходе равно нулю (спад
в положительной области). Далее снова следует обратный выброс при отключении обмотки модулятора.
Теперь попытаемся исключить из системы магниты, сохранив режим работы.


Удален один магнит.

Удалены оба магнита.

При удалении одного магнита, амплитуда выхода снизилась почти в 2 раза. Заметим так же, что снизилась частота осцилляций, поскольку увеличилась индуктивность модуляторов. При удалении второго магнита,
сигнала на выходе нет.
Выводы:
Похоже, идея, в том виде как она была заложена, работает.
Эксперимент №3 (19. 08.2004)
Модуляторные катушки вновь соединены последовательно, как в 1-ом эксперименте. Встречное последовательное соединение абсолютно никакого эффекта не дает. Ничего другого я и не ожидал :). Соединены как положено. Проверяется работа, как в холостом режиме, так и с нагрузкой. Ниже на осциллограммах показаны ток модулятора (верхний луч) и напряжение выхода (нижний луч) при различных длительностях импульса на модуляторе. Здесь и далее я решил привязываться к току модуляторов,
как к наиболее подходящему в роли опорного сигнала. Осциллограммы снимались относительно общего провода. Первые 3 рисунка — в холостом режиме, последний — с нагрузкой.



Рисунки слева направо и сверху вниз: 1) малая длительность импульса, 2) увеличение длительности с подходом к области насыщения, 3) оптимальная длительность, полное насыщение и максимальное выходное
напряжение (при холостом ходе), 4) последний режим работы, но с подключенной нагрузкой.
Нагрузкой служила лампа накаливания 6,3 В, 0,22 А. Свечением этоконечно назвать нельзя… 🙂


Замеры мощности в нагрузке не проводились, интересно другое:


Потребление с отключенной нагрузкой 127,2 мА.

Потребление с подключенной нагрузкой 126,8 мА.

Выводы:
Не знаю, что и думать… Потребление снизилось на 0,3%. Сам генератор без ТЭГа потребляет 18,5 мА. Возможно, нагрузка косвенно через изменение распределения магнитного поля повлияла на индуктивность
модуляторов. Хотя, если сравнить осциллограммы тока через модулятор в холостом режиме и с нагрузкой (например, при листании туда-сюда в ACDSee), то можно заметить слабый завал верхушки пика при работе с
нагрузкой. Увеличение же индуктивности привело бы к уменьшению ширины пика. Хотя все это очень призрачно…
Эксперимент №4 (20.08.2004)
Поставлена цель: получить максимальный выход на том что есть. В прошлом эксперименте уперся в предел частоты, на которой обеспечивалась оптимальная длительность импульса при максимально возможном уровне заполнения импульса ~45% (скважность минимальна). Так что необходимо было уменьшить индуктивность модуляторной обмотки (ранее были соединены две последовательно), однако в этом случае
придется увеличить ток. Так что теперь модуляторные катушки подключены раздельно к обоим выходам генератора, как во 2-м эксперименте, однако в этот раз они включены в одном направлении (как указано на
принципиальной схеме генератора). Осциллограммы при этом изменились (снимались относительно общего провода). Выглядят гораздо приятнее :). Кроме того, мы теперь имеем две обмотки, которые работают поочередно. Значит при той же максимальной длительности импульса мы можем удвоить частоту (для данной схемы).
Выбран определенный режим работы генератора по максимальной яркости лампы на выходе. Итак, как обычно, сразу перейдем к рисункам…


Верхний луч — ток модулятора. Нижний слева — напряжение на одном из модуляторов, справа — управляющий импульс этого же канала с выхода TL494.

Здесь слева явно видим повышение напряжения на обмотке модулятора в период работы второго (второй полупериод, логический «0» на правой осциллограмме). Выбросы при отключении модулятора в 60 вольт ограничиваются диодами, входящими в состав полевых ключей.


Верхний луч — ток модулятора. Нижний слева — напряжение выхода с нагрузкой, справа — напряжение выхода на холостом ходу.

Нагрузка — все та же лампа 6,3 В, 0,22 А. И снова повторяется картина с потреблением…


Потребление с отключенной нагрузкой 0,62 А.

Потребление с подключенной нагрузкой 0,61 А.

Снова имеем снижение потребления при подключенной к коллектору нагрузке. Измерения конечно на пороге точности прибора, но, тем не менее, повторяемость 100%. Мощность в нагрузке составила около 156
мВт. На входе — 9,15 Вт. А про «вечный двигатель» пока никто и не говорил 🙂
Здесь можно полюбоваться на горящую лампочку:

Выводы:
Эффект налицо. Что мы сможем от этого получить — время покажет. На что следует обратить внимание? Первое, увеличить количество витков коллектора, возможно, добавив еще пару колец, а лучше бы подобрать
оптимальные размеры магнитопровода. Кто бы занялся расчетами? 😉 Возможно, имеет смысл увеличить магнитную проницаемость магнитопровода. Это должно увеличить разность напряженностей магнитного поля внутри и снаружи катушки. Одновременно снизить бы индуктивность модулятора. Думалось также, что нужны зазоры между кольцом и магнитом, чтобы, скажем так, было место для изгибания магнитных линий при смене свойств среды — магнитной проницаемости. Однако на практике это приводит только к спаду напряжения на выходе. В настоящий момент зазоры определяются 3 слоями изоленты и толщиной модуляторной обмотки, на глаз это максимум по 1,5 мм с каждой стороны.
Эксперимент №4.1 (21.08.2004)
Предыдущие эксперименты проводились на работе. Принес блок управления и «трансформатор» домой. Такой же набор магнитов у меня давно валялся и дома. Собрал. С удивлением обнаружил, что могу поднять еще частоту. Видимо мои «домашние» магниты были чуть посильнее, вследствие чего индуктивность модуляторов снизилась. Радиаторы уже грелись сильнее, однако ток потребления схемы составил 0,56 А и 0,55 А без нагрузки и с нагрузкой соответственно, при том же питании 15 В. Возможно, имел место сквозной ток через ключи. В данной схеме на высокой частоте такое не исключено. На выход подключил галогенную лампочку на 2,5 В, 0,3А. В нагрузке получил 1,3 В, 200 мА. Итого вход 8,25 Вт, выход 0,26 Вт — КПД 3,15%. Но заметьте, опять же без ожидаемого традиционного влияния на источник !
Эксперимент №5 (26.08.2004)
Собран новый преобразователь (версия 1.2) на кольце с большей проницаемостью — М10000НМ, размеры те же: O40хO25х11 мм. К сожалению, кольцо было только одно. Чтобы уместить больше витков на коллекторной обмотке, провод взят потоньше. Итого: коллектор 160 витков проводом O 0,3 и так же два модулятора по 235 витков, так же проводом O 0,3. А так же найден новый блок питания аж до 100 В и током до 1,2 А. Напряжение питания тоже может сыграть роль, поскольку оно обеспечивает скорость нарастания тока через модулятор, а тот, в свою очередь, скорость изменения магнитного потока, что напрямую связано с амплитудой выходного напряжения.
Пока нечем измерить индуктивности и запечатлеть картинки. Поэтому без излишеств изложу голые цифры. Было проведено несколько измерений при разных напряжениях питания и режимах работы генератора. Ниже приведены некоторые из них.
без выхода в полное насыщение\

Вход: 20 В x 0,3 А = 6 Вт
Выход: 9 В x 24 мА = 0,216 Вт
КПД: 3,6 %

Вход: 10 В x 0,6 А = 6 Вт
Выход: 9 В x 24 мА = 0,216 Вт
КПД: 3,6 %Вход: 15 В x 0,5 А = 7,5 Вт
Выход: 11 В x 29 мА = 0,32 Вт
КПД: 4,2 %
с полным насыщением

Вход: 15 В x 1,2 А = 18 Вт
Выход: 16 В x 35 мА = 0,56 Вт
КПД: 3,1 %
Выводы:
Оказалось, что в режиме полного насыщения, идет спад КПД, поскольку резко возрастает ток модулятора. Оптимального режима работы (по КПД) удалось достичь при напряжении питания 15 В. Влияния нагрузки на источник питания не обнаружено. Для приведенного 3-го примера с КПД 4,2, ток схемы с подключенной с нагрузкой должен увеличиваться примерно на 20 мА, но повышения так же не зафиксировано.
Эксперимент №6 (2.09.2004)
Убрана часть витков модулятора с целью повышения частоты и уменьшения зазоров между кольцом и магнитом. Теперь имеем две обмотки модулятора по 118 витков, намотанных в один слой. Коллектор  оставлен без изменений — 160 витков. Кроме того, измерены электрические характеристики нового преобразователя.


Модулятор ТЭГа (версия 1.21)

Параметры ТЭГа (версия 1.21), измерено мультиметром MY-81:
сопротивления обмоток:
коллектора — 8,9 Ом
модуляторов — по 1,5 Ом
индуктивности обмоток без магнитов:
коллектора — 3,37 мГн
модуляторов — по 133,4 мГн
последовательно соединенных модуляторов — 514 мГн
индуктивности обмоток с установленными магнитами:
коллектора — 3,36 мГн
модуляторов — по 89,3 мГн
последовательно соединенных модуляторов — 357 мГн
Ниже представляю результаты двух измерений работы ТЭГа в разных режимах. При более высоком напряжении питания частота модуляции выше. В обоих случаях модуляторы соединены последовательно.

Вход: 15 В x 0,55 А = 8,25 Вт
Выход: 1,88 В x 123 мА = 0,231 Вт
КПД: 2,8 %

Вход: 19,4 В x 0,81 А = 15,714 Вт
Выход: 3,35 В x 176 мА = 0,59 Вт
КПД: 3,75 %
Выводы:
Первое и самое печальное. После внесения изменений в модулятор, зафиксировано увеличение потребления при работе с новым преобразователем. Во втором случае потребление возросло примерно на 30 мА. Т.е. без нагрузки потребление составляло 0,78 А, с нагрузкой — 0,81 А. Помножаем на питающие 19,4 В и получим 0,582 Вт — ту самую мощность, что сняли с выхода. Однако я повторюсь со всей ответственностью, что раньше такого не наблюдалось. При подключении нагрузки в данном случае явно прослеживается более крутое нарастание тока через модулятор, что является следствием уменьшения индуктивности модулятора. С чем это связано, пока не известно.
И еще ложка дегтя. Боюсь, в данной конфигурации не удастся получить КПД более 5% из-за слабого перекрытия магнитного поля. Другими словами, насыщая сердечник, мы ослабляем поле внутри коллекторной катушки лишь в области прохождения этого самого сердечника. Но магнитные линии идущие из центра магнита через центр катушки ничем не перекрываются. Более того, часть магнитных линий «вытесненных» из сердечника при его насыщении также обходит последний с внутренней стороны кольца. Т.е. таким образом модулируется лишь малая часть магнитного потока ПМ. Необходимо изменить геометрию всей системы. Возможно, следует ожидать некоторого прироста КПД, используя кольцевые магниты от динамиков. Так же не отпускает мысль о работе модуляторов в режиме резонанса. Однако в условиях насыщения сердечника и, соответственно, постоянно меняющейся индуктивности модуляторов это сделать весьма не просто.
Исследования продолжаются…
Если хотите обсудить, заходите на «увлеченный форум», — мой ник Armer.
Или пишите на [email protected], но думаю, лучше в форум.

х х х

Dragons’ Lord : Во первых, огромное спасибо Armer’у за то, что предоставил отчёт о проведённых экспериментах с великолепными иллюстрациями. Думаю, скоро нас ожидают новые работы Владислава. А пока я выскажу свои мысли на счёт этого проекта и его возможного пути усовершенствования. Предлагаю изменить схему генератора следующим образом:


Схемотехника нового TEG’а (предложение).

Вместо плоских внешних магнитов (плит) предлагается использовать кольцевые магниты. Причём, внутренний диаметр магнита должен быть приблизительно равным аналогичному диаметру кольца магнитопровода, а внешний диаметр магнита больше, чем внешний диаметр кольца магнитопровода.
В чём проблема низкого КПД ? Проблема в том, что магнитные линии, вытесняемые из магнитопровода по-прежнему пересекают площадь витков вторичной обмотки (отжимаются и концентрируются в центральной области). Указанное соотношение колец создаёт асимметричность и принуждает большую часть магнитных линий, при насыщенном до предела центральном магнитопроводе, огибать его по ВНЕШНЕМУ пространству. Во внутренней области магнитных линий будет меньше, чем в базовом варианте. Вообще-то, эту «болезнь» полностью излечить нельзя, по прежнему используя кольца. Как поднять общий КПД сказано ниже.
Также предлагается использовать дополнительный внешний магнитопровод, который концентрирует силовые
линии в рабочей области устройства, делая его мощнее (здесь важно не переборщить, т.к. используем идею с полным насыщением центрального сердечника). Конструктивно, внешний магнитопровод представляет собой точённые ферромагнитные детали осесимметричной геометрии (что-то наподобие трубы с фланцами). Горизонтальную линию разъёма верхней и нижней «чашек» вы видите на картинке. Либо, это могут быть дискретные независимые магнитопроводы (скобы).
Далее стоит подумать над усовершенствованием процесса с «электрической» точки зрения. Понятно, — первое, что нужно сделать, это раскачать первичную цепь в резонанс. Ведь у нас отсутствует вредное обратное влияние со вторичной цепи. Предлагается использовать резонанс ТОКА по понятным причинам (ведь цель, — насытить сердечник). Второе замечание, быть может, не такое очевидное на первый взгляд. Предлагается в качестве вторичной обмотки использовать не стандартную соленоидную намотку катушки, а сделать несколько плоских бифилярных катушек Тесла и поместить их на внешнем диаметре магнитопровода «слоённым пирожком», соединив последовательно. Чтобы вообще убрать существующее минимальное взаимодействие друг с другом в осевом направлении соседних бифилярных катушек, — нужно соединить их так же ЧЕРЕЗ ОДНУ, вернувшись с последней на вторую (повторное использование смысла бифилярки).
Таким образом, за счёт максимальной разницы потенциала в двух соседних витках запасённая энергия вторичной цепи будет максимально возможная, что на порядок превосходит вариант с обычным соленоидом.
Как видно из схемы, в виду того, что «пирожок» из бифилярок имеет довольно приличную протяжённость в
горизонтальном направлении, — предлагается мотать первичку не поверху вторички, а под ней. Непосредственно на магнитопровод.
Как я уже сказал, используя кольца, невозможно превозмочь определённый предел КПД. И уверяю, что сверхеденичностью там и не пахнет. Вытесненные из центрального магнитопровода магнитные линии будут
огибать его вдоль самой поверхности (по кратчайшему пути), тем самым, по прежнему пересекая площадь,
ограниченную витками вторички. Анализ конструкции принуждает отказаться от текущей схемотехники. Нужен центральный магнитопровод БЕЗ отверстия. Взглянем на следующую схему:


Более совершенная схемотехника нового TEG’а.

Основной магнитопровод набирается из отдельных пластин или стержней прямоугольного сечения, и
представляет из себя параллелепипед. Первичка кладётся непосредственно на него. Её ось горизонтальна
и по схеме смотрит на нас. Вторичка, по-прежнему «слоённый пирожок» из бифилярок Тесла. Теперь
заметим, что мы ввели дополнительный (вторичный) магнитопровод, представляющий из себя «чашки» с
отверстиями в их донцах. Зазор между краем отверстия и основным центральным магнитопроводом (первичной катушкой) должен быть минимален, для того, чтобы эффективно перехватывать вытесненные магнитные линии и оттягивать их на себя, не давая им проходить сквозь бифиляры. Конечно, следует заметить, что магнитная проницаемость центрального магнитопровода должна быть на порядок выше, чем
вспомогательного. Например: центрального параллелепипеда — 10000, «чашек» — 1000. В нормальном (не насыщенном) состоянии центральный сердечник, за счёт своей большей магнитной проницаемости, будет втягивать магнитные линии в себя.
А теперь самое интересное 😉 . Внимательно приглядимся, — что же мы получили ?… А получили мы самый обычный MEG, только в «недоделанном» варианте. Другими словами, я хочу сказать, что классическое
исполнение генератора MEG v.4.0 в пару раз обгоняет нашу лучшую схему, в виду его возможности перераспределяя магнитные линии (качая «качели») снимать полезную энергию на всём цикле своей работы.
Причём, с обоих плеч магнитопровода. В нашем же случае имеем одноплечую конструкцию. Половину возможного КПД просто не используем.
Выражаю надежду, что Владислав в самое ближайшее время проведёт эксперименты над MEG v.4.0, тем
более, что таковая машинка (в исполнении v.3.0) у него уже имеется ;). И конечно, нужно обязательно
использовать резонанс тока на первичных управляющих катушках, установленных не непосредственно на плечах магнитопровода, а на ферритовых вставках-пластинах, перпендикулярно таковому (в разрыв магнитопровода). Отчёт, по поступлению ко мне, я сразу же сверстаю и предоставлю нашим читателям.

 

«Новосибирский генератор TEG»

Владислав АРМБРИСТЕР

Источник

Закон Фарадея

Закон Фарадея

Любое изменение магнитной среды катушки с проводом вызовет «индукцию» напряжения (ЭДС) в катушке. Независимо от того, как производится изменение, напряжение будет генерироваться. Это изменение может быть вызвано изменением напряженности магнитного поля, перемещением магнита к катушке или от нее, перемещением катушки в магнитное поле или из него, вращением катушки относительно магнита и т. д.

Дополнительные комментарии к этим примерам Гальванометр и катушка

Закон Фарадея — это фундаментальное соотношение, вытекающее из уравнений Максвелла. Он служит кратким изложением того, как напряжение (или ЭДС) может генерироваться изменяющейся магнитной средой. ЭДС индукции в катушке равна отрицательному значению скорости изменения магнитного потока, умноженной на число витков в катушке. Это связано с взаимодействием заряда с магнитным полем.

Закон Ленца Пример катушки переменного тока
Закон Фарадея и самовоспламенение
Индекс

Концепции закона Фарадея

 
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Когда ЭДС создается изменением магнитного потока в соответствии с По закону Фарадея полярность ЭДС индукции такова, что она производит ток, магнитное поле которого противостоит вызывающему его изменению. Индуцированное магнитное поле внутри любой петли провода всегда поддерживает постоянный магнитный поток в петле. В приведенных ниже примерах, если поле B увеличивается, индуцированное поле действует против него. Если оно уменьшается, индуцированное поле действует в направлении приложенного поля, пытаясь сохранить его постоянным.

Индекс

Концепции закона Фарадея

 
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Когда магнит перемещается в катушку с проводом, изменяя магнитное поле и магнитный поток через катушку, в катушке будет генерироваться напряжение в соответствии с законом Фарадея. В примере, показанном ниже, когда магнит перемещается в катушку, гальванометр отклоняется влево в ответ на возрастающее поле. Когда магнит вытягивают обратно, гальванометр отклоняется вправо в ответ на уменьшение поля. Полярность ЭДС индукции такова, что она производит ток, магнитное поле которого противостоит вызывающему его изменению. Индуцированное магнитное поле внутри любой петли провода всегда поддерживает постоянный магнитный поток в петле. Это неотъемлемое поведение генерируемых магнитных полей резюмируется в законе Ленца.

Индекс

Концепции закона Фарадея

 
Гиперфизика***** Электричество и магнетизм R Ступица
Вернуться

Электромагниты, катушки и источники питания магнитов

Электромагниты, катушки и источники питания магнитов — GMW Associates

5201 Поле горизонтальной проекции

Электромагнит с горизонтальной проекцией поля. Открытый доступ для зондов, лазеров и микроскопов.

  • Масса = 2,1 кг
  • 70 х 60 х 120 мм
  • Поле в плоскости 0,35 Тл при z=2 мм
  • Поле в плоскости 0,1 Тл при z=12 мм
  • Пиковое возбуждение 20 А/20 В
Нет в наличии

5203 Поле вертикальной проекции

Электромагнит с вертикальной проекцией поля. Открытый доступ, поле преимущественно перпендикулярно поверхности магнита.

  • Масса = 2,5 кг
  • 74 х 74 х 123,5 мм
  • Сменные стержни
  • Перпендикулярное поле 0,5 Тл при z=5 мм
  • Перпендикулярное поле 0,4 Тл при z=10 мм
  • Пиковое возбуждение 100 А/30 В
Нет в наличии

5204 Векторное проецируемое поле

Магнит с проецируемым векторным полем, обеспечивающий поле любой ориентации в месте над поверхностью магнита.

  • Масса = 2,5 кг
  • 74 х 74 х 123,5 мм
  • Проецируемое векторное поле до 0,3T
  • Сменные удлинители полюсов
  • Любое монтажное положение
  • Работа до 200 Гц
Нет в наличии

5205 Поле вертикальной проекции

Низкопрофильный магнит с проекционным вертикальным полем, обеспечивающий однородное поле Bz над поверхностью магнита.

  • Масса = 1,3 кг
  • 92 х 92 х 32,6 мм
  • Перпендикулярное проецируемое поле (±5%) до 50 мТл при z=5 мм
  • Высокая рабочая температура
  • Изменяемая геометрия полюса
Нет в наличии

5207 Поле вертикальной проекции

Система, предназначенная в первую очередь для интеграции в зондовые станции для тестирования MRAM. Положение поверхности полюса можно отрегулировать так, чтобы оно располагалось относительно ИУ с высокой точностью.

  • Масса = 20 кг
  • Перпендикулярное поле 1,5 Тл при z=2 мм
  • Внешний ø 196 мм x высота 122 мм
  • Любое монтажное положение
  • Непрерывное возбуждение 35А/50В
Нет в наличии

5301 Электромагнит для проверки датчиков

Электромагнит для проверки датчиков. Подходит для длинных массивов датчиков.

  • Поле до 50 мТл
Нет в наличии

3470 Диполь, 45 мм

Самый маленький и легкий стандартный дипольный электромагнит от GMW.

  • Масса = 31 кг
  • 377 х 233 х 217 мм
  • >1T при зазоре 10 мм, 0,5T при зазоре 25 мм
  • Реверсивные плоские (40 мм) или конические стержни (20 мм)
  • Регулируемый зазор между полюсами
  • Воздушное (3,5 А) или водяное (6 А) охлаждение
  • Регулируемое расстояние между катушками
Нет в наличии

3480 Диполь, 45 мм

Дипольный электромагнит 3480 представляет собой легкую универсальную систему, способную создавать поля силой более 2 тесла.

  • Масса = 34 кг
  • 285 х 197 х 213 мм
  • 3,6 Т при зазоре 2 мм
  • 1T @ зазор 25 мм
  • Пиковая мощность 35 А/60 В
  • Любое монтажное положение
Нет в наличии

5403 Диполь, 76 мм

Дипольный электромагнит С-образной рамы с переменным зазором. Небольшой вес позволяет использовать его на оптических столах или производственном испытательном оборудовании, а простые стойки позволяют согласовать осевые входные и выходные отверстия с оптической геометрией.

  • Масса = 124 кг
  • 604 х 270 х 359 мм
  • Регулируемый зазор, от 0 до 86 мм
  • Различные колпачки для полюсов, 10, 38, 76 мм
  • 1T @ 35 мм, 2T @ 15 мм зазор
Нет в наличии

5405 Диполь, 76 мм

Дипольный электромагнит 5405 представляет собой модификацию по форме и функциям электромагнитной системы 5403.

  • Масса = 155 кг
  • 600 x 322 x 355 мм – возможность установки на оптический стол
  • 3,3T при зазоре 5 мм, 2T при зазоре 20 мм, 1T при зазоре 50 мм
Нет в наличии

5501 Диполь, 250 мм

Электромагнит 5501 представляет собой дипольный электромагнит с фиксированным зазором между полюсами. C-образная рама обеспечивает открытый доступ к области зазора между полюсами, и 5501 можно устанавливать в любом положении.

  • Масса = 1800 кг
  • 830 х 410 х 710 мм
  • Поля до >0,6T при зазоре 204 мм
  • Фиксированный зазор, выбираемая заводская настройка

 

Нет в наличии

5503 Диполь, 400 мм

Электромагнит 5503 представляет собой дипольный электромагнит С-образной рамы с фиксированным зазором между полюсами. С-образная рама обеспечивает открытый доступ к области зазора между полюсами, а модель 5503 может быть установлена ​​в любом положении.

  • Масса = 1790 кг
  • 790 х 710 х 815 мм
  • Поле >0,35T при зазоре 300 мм

Нет в наличии

3472 Диполь, 100 мм

3472-50 оснащен парой катушек на 50 А, зазор между катушками — 115 мм. 3472-70 оснащен парой катушек на 70А с усиленным охлаждением, зазор между катушками – 82мм.

  • Масса = 325 кг
  • 372 х 233 х 217 мм
  • Версии на 50 или 70 А
  • Регулируемый зазор между стойками, от 0 до 115 мм
  • Широкий выбор колпачков для столбов, от 25 до 100 мм
  • 2,5 зуб. с зазором 10 мм, 1 зуб. с зазором 60 мм
Нет в наличии

3473 Диполь, 150 мм

3473-50 оснащен парой катушек на 50 А, зазор между катушками — 127 мм. 3473-70 оснащен парой катушек на 70А с усиленным охлаждением, зазор между катушками – 96мм.

  • Масса = 600 кг
  • 686 х 405 х 570 мм
  • Версии на 50 или 70 А
  • Регулируемый зазор между стойками, от 0 до 150 мм
  • Широкий выбор колпачков для столбов, от 25 до 150 мм
  • 3T с зазором 10 мм, 1T с зазором 80 мм
Нет в наличии

3474 Диполь, 250 мм

Дипольный электромагнит 3474 рекомендуется, когда требуются сильные поля и/или высокая однородность.

  • Масса = 1800 кг
  • 920 х 636 х 864 мм
  • Регулируемый зазор между стойками, от 0 до 160 мм
  • Широкий выбор колпачков для столбов, от 25 до 250 мм
  • 3,5 зуб. @ 10 мм, 2 зуб. @ 50 мм, 1 зуб. @ 120 мм
Нет в наличии

5404 Диполь сильного поля

Дипольный электромагнит сильного поля модели

5404 предназначен для приложений, требующих небольшого объема сильного поля в диапазоне от 4 до 5 Тл. Сменные полюса.

  • Масса = 170 кг (столешница)
  • 284 х 356,5 х 380 мм
  • 5,4T при зазоре между полюсами 1 мм
  • 4T при зазоре между полюсами 5 мм
  • 1,4T в конфигурации с раздельным соленоидом
  • Полный ± цикл поля за 10 секунд
Нет в наличии

5414 Диполь, 315 мм

5414 — самый большой стандартный дипольный электромагнит GMW. Он имеет фиксированные колпачки для столбов, адаптированные к требованиям пользователя, с диаметром до 315 мм и зазорами между столбами до 200 мм.

  • Поле >2,7T при зазоре 50 мм
Нет в наличии

5451 Катушка Гельмгольца, 300 мм

Электромагнит с катушкой Гельмгольца модели 5451 представляет собой пару катушек с одной осью, расположенных в геометрии Гельмгольца для создания относительно большого объема высокооднородного магнитного поля.

  • Масса = 100 кг
  • 340 х 480 х 415 мм
  • Поле 50 мТл диаметром более 300 мм
  • 0,77 мТ/А
Нет в наличии

5452 Катушка Гельмгольца, 160 мм

Электромагнит с катушкой Гельмгольца модели 5452 представляет собой пару катушек с одной осью, расположенных в геометрии Гельмгольца, чтобы создать относительно большой объем высокооднородного магнитного поля.

  • Масса = 6 кг
  • 122 х 270 х 276 мм
  • 3 метра диаметром более 160 мм
  • 1 мТ/А
Нет в наличии

5453 Экранированная катушка Гельмгольца, 260 мм

Электромагнит с катушкой Гельмгольца модели 5453 представляет собой пару катушек с одной осью, расположенных в геометрии Гельмгольца для создания относительно большого объема высокооднородного магнитного поля.

  • Масса = 200 кг
  • 330 х 425 х 425 мм
  • Чистая апертура: 260 мм
  • Внутренняя длина в чистоте (двери закрыты): 320 мм
  • 150мТ
  • 100 частей на миллион в сфере диаметром 30 мм
Нет в наличии

Система катушки Гельмгольца Бартингтона, HCS

Система катушек Гельмгольца HCS генерирует магнитное поле известной частоты и интенсивности от стандартной однофазной сети переменного тока. Предусмотрен монтажный стол для удержания испытуемого объекта внутри объема гомогенности.

  • Индивидуальное управление полем Bx, By, Bz
Нет в наличии

Электромагнитные катушки GMW

9Катушки электромагнита стандарта GMW 0005 разработаны для обеспечения высокой надежности и высоких полей при умеренном энергопотреблении.

Нет в наличии

Низкопрофильный соленоид HTS-110 LM

HTS-110 LM Короткий соленоид

  • Поле до 3T
  • Высота от 35 до 85 мм Диаметр отверстия от 30 до 80 мм
Нет в наличии

HTS-110 2T Проектируемое поле

Компактный магнит HTS-110 с полем Bz 2 Тл, перпендикулярным поверхности магнита

Нет в наличии

HTS-110 Высокочастотные экранированные соленоиды

HTS-110 Сверхпроводящий высокопольный экранированный соленоид, до 16 Тл.

  • Безкриогенная работа с быстрым охлаждением
  • Быстрое линейное изменение свыше 3 Т/с
  • Поле от нуля до полного за <30 с
Нет в наличии

Раздельный соленоид HTS-110 XT

HTS-110 представляет собой новую универсальную линейку раздвоенных магнитов с железным ярмом, доступных в стандартной конфигурации до 8 тесла.

  • Безкриогенная работа с быстрым охлаждением
  • Быстрое линейное изменение свыше 3 Т/с
  • Поле от нуля до полного за <30 с
Нет в наличии

Токоподводы HTS-110

В стандартных электродах CryoSaver™ используется композитный корпус из стекловолокна, в который заключена проволока HTS для обеспечения структурной целостности. Никелированные медные заглушки используются для теплых и холодных концевых соединений.

Предназначенные для работы в криогенной жидкости или паре, герметичные провода CryoSaver™ имеют внешний корпус и крышку из тонкостенной нержавеющей стали для создания герметичного уплотнения, препятствующего поглощению гелия высокотемпературной проволокой.

Нет в наличии

Блоки питания электромагнитов

Однополярные и биполярные источники питания, усилители мощности и реверсивные переключатели, оптимизированные для электромагнитов GMW.

Нет в наличии

Elemental Instruments Precision, перестраиваемые постоянные магниты

Перестраиваемые постоянные магниты The Elemental Instruments используются в приложениях, которые варьируются от медицинской визуализации до химического анализа, материал
Наука и физика элементарных частиц.

  • Для полей до ±0,35 Тесла
  • Однородность более 10 мм2

 

Нет в наличии

Постоянные магниты Metrolab, PM

Постоянные магниты Metrolab PM1055 обеспечивают высокую однородность поля при небольшом общем физическом размере.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *