Site Loader

Содержание

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

Логические основы компьютера

В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае – ток проходит, во втором – нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

Вентили, триггеры и сумматоры

Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Триггеры и сумматоры – это относительно сложные устройства, состоящие из более простых элементов – вентилей.

Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.

Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.

Изображения, использованные в статье

Таблицы истинности для конъюнкции, дизъюнкции и отрицания

Законы алгебры логики

Раздел: 

Логические основы компьютера

Номер темы: 

2

Для логических величин обычно используются три операции:

  1. Конъюнкция– логическое умножение (И) –and, &, .

  2. Дизъюнкция– логическое сложение (ИЛИ) –or, |, v.

  3. Логическое отрицание (НЕ) – not, ¬.

Логические выражения можно преобразовывать в соответствии с законами алгебры логики:

  1. Законы рефлексивности a ∨ a = a a ∧ a = a

  2. Законы коммутативностиa∨b = b∨a a∧b = b∧a

  3. Законы ассоциативности(a∧b)∧c = a∧(b∧c) (a∨b)∨c = a∨(b∨c)

  4. Законы дистрибутивностиa∧(b∨c) = a∧b∨a∧c a∨b∧c = (a∨b)∧(a∨c)

  5. Закон отрицания отрицания¬ (¬ a) = a

  6. Законы

    де Моргана ¬ (a ∧ b) = ¬ a ∨ ¬ b ¬ (a ∨ b) = ¬ a ∧ ¬ b

  7. Законы поглощения a ∨ a ∧ b = a a ∧ (a ∨ b) = a

Логические элементы. Вентили

Раздел: 

Логические основы компьютера

Номер темы: 

3

В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществленияарифметических операций, а на основе других строят различнуюпамятьЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль

НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕиИ-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

Изображения, использованные в статье

Схемы вентилей

РадиоКот :: Логические элементы

РадиоКот >Обучалка >Цифровая техника >Основы цифровой техники >

Логические элементы

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Смотрим:


Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется « таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.


Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.


Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».


Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» — единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:


Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:


Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.


Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Далее мы позанудствуем о том, как синтезировать цифровую схему, имея ее таблицу истинности. Это совсем несложно, а знать надо, ибо пригодится (еще как пригодится) нам в дальнейшем.

 

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

<<—Вспомним пройденное—-Поехали дальше—>>


Как вам эта статья?

Заработало ли это устройство у вас?

Базовые логические элементы и, или, не

 Схема И реализует конъюнкцию (логическое умножение) двух или более логических значений. 

Эл. схема

Таблица истинности

 х

y

х и у

0

0

0

0

1

0

1

0

0

1

1

1

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет нуль, на выходе также будет нуль. Связь между выходом z этой схемы и входами х и у описывается соотношением z = х ^ у (читается как «х и у»). Операция конъюнкции на функциональных схемах обозначается знаком & (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

Схема ИЛИ реализует дизъюнкцию (логическое сложение) двух или более логических значений.

Эл. схема

Таблица истинности

 х

y

х или у

0

0

0

0

1

1

1

0

10

1

1

1

Когда хотя бы на одном входе схемы ИЛИ будет единица, на ее выходе также будет единица.Знак «1» на схеме — от устаревшего обозначения дизъюнкции как «>=!» (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами х и у описывается соотношением z = х или у.

Схема НЕ (инвертор) реализует операцию отрицания.

Таблица истинности

 х

не х

0

1

1

0

Связь между входом х этой схемы и выходом z можно записать соотношением Z = , где х читается как «не х» или «инверсия. Если на входе схемы 0, то на выходе 1. Когда на входе 1 на выходе 0.

  1. Нарисуйте таблицы истинности для ло: «не», «и», «или», «Исключающее или»

Таблица истинности — это таблица, описывающая логическую функцию. Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» ( либо , либо ).

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Едем дальше. Дальше у нас очень простенький, но очень необходимый элемент.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Ну тогда поехали дальше. Следующие два элемента получаются путем установки инвертора на выход элементов «И» и «ИЛИ».

Элемент «Исключающее ИЛИ» (XOR) Сложе́ние по мо́дулю 2, логи́ческое сложе́ние, исключа́ющее и́ли, строгая дизъюнкция — булева функция и логическая операция. Результат выполнения операции является истинным только при условии, если является истинным в точности один из аргументов. Такая операция естественным образом возникает в кольце вычетов по модулю 2, откуда и происходит название операции.

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

  1. Дайте определение ЛЭ. Нарисуйте ЛЭ базовых ЛО.

Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Работу логических элементов описывают с помощью таблиц истинности.

Логические функции алгебры логики: схемы и таблицы истинности

В данной статье мы начнем обозревать булевую алгебру или алгебру логики. Рассмотрим элементы функции на схеме, а так же приведем таблицы истинности для всех логических функций.

Введение в булевую алгебру

В 1854 году Джордж Буль провел исследование «законов мышления», которые основывались на упрощенной версии теории «групп» или «множеств», и из этого была выведена булевая алгебра.

Булева алгебра имеет дело, главным образом, с теорией, согласно которой логические операции и операции над множествами являются либо «ИСТИННЫМИ», либо «ЛОЖНЫМИ», но не обеими одновременно.

Например, A + A = A, а не 2A, как это было бы в обычной алгебре. Булева алгебра — это простой и эффективный способ представления действия переключения стандартных логических вентилей, а основные логические операторы, которые нас здесь интересуют, задаются операциями логических вентилей функций И , ИЛИ и НЕ.

Логическая функция «И» (умножение)

Функция логики И утверждает, что два или более события должны происходить вместе и одновременно, чтобы происходило выходное действие. Порядок, в котором происходят эти действия, не имеет значения, поскольку он не влияет на конечный результат. Например, & B = B & . В булевой алгебре функция логики И подчиняется коммутативному закону, который допускает изменение положения любой переменной.

Функция «И» представлена в электронике символом точки или полной остановки ( . ) Таким образом, 2-входное ( АВ ) «И» элемент имеет выходной термин, представленный логическим выражением A.B или просто AB.

Представление функции «И» на схеме

представление логики функции И на схеме

Здесь два переключателя A и B соединены вместе, образуя последовательную цепь. Поэтому в вышеупомянутой цепи оба выключателя A «И» B должны быть замкнуты (логика «1»), чтобы включить лампу. Другими словами, оба переключателя должны быть замкнуты или должны иметь логическую «1», чтобы лампа горела.

Тогда логический элемент этого типа (логический элемент «И» ) создает выход только тогда, когда все его входы истины. В терминах булевой алгебры вывод будет ИСТИНА, только когда все его входы ИСТИНА. В электрическом смысле логическая функция «И» равна последовательной цепи, как показано выше.

Поскольку имеется только два переключателя, каждый с двумя возможными состояниями «открытый» или «закрытый». Определяя логическую «0» как то, когда переключатель разомкнут, и логическую «1», когда переключатель замкнут, существует четыре различных способа или комбинации расположения двух переключателей вместе, как показано в таблице ниже.

Таблица истинности для функции «И»

таблица истинности для функции И
2-входной элемент И

Логические «И» элементы доступны как стандартные пакеты ic, такие как общие TTL 74LS08 Четырехпозиционные 2-входные положительные элементы «И» (или эквивалент CMOS 4081), TTL 74LS11 Тройные 3-входные положительные элементы «И» или 74LS21 Двойные 4-входные положительные элементы «И». «И» ворота можно также «каскадировать» вместе для создания цепей с более чем 4 входами.

Логическая функция «ИЛИ» (сложение)

Функция логического «ИЛИ» заявляет, что выходное действие станет ИСТИНОЙ, если одно «ИЛИ» больше событий ИСТИНЫ, но порядок, в котором они происходят, не имеет значения, поскольку он не влияет на конечный результат.

Так , например, А + В = В + А . В булевой алгебре функция логического «ИЛИ» подчиняется коммутативному закону так же, как и для логической функции «И», что позволяет изменять положение любой переменной.

Логика или логическое выражение, данное для логического элемента «ИЛИ», является логическим выражением, которое обозначается знаком плюс, ( + ). Таким образом, 2-входной ( АВ ) Логический элемент «ИЛИ» имеет выход термин, представленный булевой выражением:  A + B = Q .

Представление функции «ИЛИ» на схеме

Представление функции "ИЛИ" на схеме

Здесь два переключателя А и B соединены параллельно и, либо переключатель A «ИЛИ» переключатель B может быть закрыт, чтобы включить лампу. Другими словами, выключатель может быть замкнут, либо быть на логике «1», чтобы лампа была включена.

Тогда этот тип логического элемента генерирует и выводит только тогда, когда присутствует «ЛЮБОЙ» из его входов, и в терминах Булевой алгебры выход будет ИСТИНА, если любой из его входов ИСТИНЕН. В электрическом смысле логическая функция «ИЛИ» равна параллельной цепи.

Как и в случае с функцией «И», есть два переключателя, каждый с двумя возможными положениями, открытыми или закрытыми, поэтому будет 4 различных способа расположения переключателей.

Таблица истинности для функции «ИЛИ»

таблица истинности для функции ИЛИ

Логические «ИЛИ» элементы доступны в виде стандартных пакетов ic, таких как общие TTL 74LS32 Четырехместные 2-входные положительные «ИЛИ» элементы. Как и в предыдущем логическом элементе «И», «ИЛИ» также может быть «каскадно» соединен для создания цепей с большим количеством входов, таких как системы охранной сигнализации (зона A или зона B или зона C и т.д.).

Логическая функция «НЕ» (отрицание)

Функция «Логическое НЕ» — это просто инвертор с одним входом, который изменяет вход логического уровня «1» на выход логического уровня «0» и наоборот.

«Функция логического НЕ» называется так, потому что ее выходное состояние НЕсовпадает с его входным состоянием с ее логическим выражением, обычно обозначаемым чертой или линией ( ¯ ) над его входным символом, который обозначает операцию инвертирования (отсюда ее название как инвертор).

Поскольку логическое «НЕ» выполняет логическую функцию инвертирования или комплементационной, их чаще называют инверторами, поскольку они инвертируют сигнал. В логических схемах это отрицание может быть представлено нормально замкнутым переключателем.

Представление функции «НЕ» на схеме

Представление функции "НЕ" на схеме

Если A означает, что переключатель замкнут, то «НЕ» A или А (с верхней чертой) говорит, что переключатель НЕ замкнут или, другими словами, он разомкнут. Функция логического НЕ имеет один вход и один выход, как показано на рисунке.

Таблица истинности для функции «НЕ»

таблица истинности для функции НЕ

Индикатор инверсии для логической функции «НЕ» является символом «пузыря», ( O) на выходе (или входе) символа логических элементов. В булевой алгебре инвертирующая логическая функция «НЕ» следует Закону дополнения, создающему инверсию.

закон дополнения

Логические «НЕ» элементы или «Инверторы», как их чаще называют, могут быть связаны со стандартными элементами «И» и» ИЛИ» для создания элементов «НЕ И» и «НЕ ИЛИ» соответственно. Инверторы также могут использоваться для генерации «дополнительных» сигналов в более сложных декодерах / логических схемах, например, дополнение логики A — это «НЕ» A , а два последовательно соединенных инвертора дают двойную инверсию, которая выдает на своем выходе исходное значение A.

При проектировании логических схем вам может понадобиться только один или два инвертора в вашей конструкции, но если у вас нет места или денег для выделенного чипа инвертора, такого как 74LS04. Тогда вы можете легко заставить логику «НЕ» функционировать, используя любые запасные элементы «НЕ А» или «НЕ ИЛИ», просто соединяя их входы вместе, как показано ниже.

эквиваленты функции НЕ

Логическая функция «НЕ И»

Функция «НЕ И» представляет собой комбинацию двух отдельных логических функций, функции «И» и функции «НЕ» последовательно. Логическая функция «НЕ И» может быть выражена логическим выражением AB (с верхней чертой)

элемент НЕ И на схеме

Функция логического «НЕ И» генерирует выход, только когда «ЛЮБЫЕ» из ее входов отсутствуют, и в терминах булевой алгебры выход будет ИСТИНА, только когда любой из ее входов ЛОЖЬ (0).

Представление функции «НЕ И» на схеме

Представление функции "НЕ И" на схеме

Таблица истинности для функции «НЕ И» противоположна таблице для предыдущей функции «И», потому что элемент «НЕ И» выполняет обратную операцию элемента «И». Другими словами, элемент «НЕ И» является дополнением элемента «И».

Таблица истинности для функции «НЕ И»

таблица истинности для функции НЕ И

Функция «НЕ И» обозначается вертикальной чертой или стрелкой вверх, например, логический B = A | Bили A ↑ B .

Логика «НЕ И» используется в качестве основных «строительных блоков», чтобы построить другие функции логического элемента и доступны в стандартных IC пакетов, такие как общий TTL — 74LS00 Четырехместный 2-входной «НЕ И» элемент, TTL — 74LS10 Тройной 3-входной «НЕ И» элемент или 74LS20 Двойной 4-х входной «НЕ И» элемент. Есть даже один чип 74LS30 с 8 входами «НЕ И» элемента.

Логическая функция «НЕ ИЛИ»

Логический элемент «НЕ ИЛИ» представляет собой комбинацию двух отдельных логических функций, «НЕ» и «ИЛИ», соединенных вместе, чтобы сформировать единую логическую функцию, которая идентична функции «ИЛИ», за исключением того, что выход инвертирован.

Чтобы создать вентиль «НЕ ИЛИ», функция «ИЛИ» и функция «НЕ» соединены вместе последовательно, и ее операция определяется булевым выражением как, A + B (с верхней чертой).

элемент НЕ ИЛИ на схеме

Функция логического «НЕ ИЛИ» генерирует и выводит только тогда, когда отсутствуют «ВСЕ» ее входы, и в терминах булевой алгебры выход будет ИСТИНА только тогда, когда все ее входы ЛОЖНЫ .

Представление функции «НЕ ИЛИ» на схеме

Представление функции "НЕ ИЛИ" на схеме

Таблица истинности для функции «НЕ ИЛИ» противоположна таблице для предыдущей функции «ИЛИ», потому что элемент «НЕ ИЛИ» выполняет обратную операцию элемента «ИЛИ». Тогда мы можем видеть, что элемент «НЕ ИЛИ» является дополнением элемента «ИЛИ».

Таблица истинности для функции «НЕ ИЛИ»

таблица истинности для функции НЕ ИЛИ

Функция «НЕ ИЛИ» иногда известна как функция Пирса и обозначается стрелкой вниз, А «НЕ ИЛИ» B = A ↓ B.

Логика элемента «НЕ ИЛИ» доступны как стандартные IC пакетов, таких как TTL 74LS02 Четырехместный 2-входной элемент «НЕ ИЛИ», TTL 74LS27 Тройной 3-входной элемент «НЕ ИЛИ» или 74LS260 Двойной 5-входной элемент «НЕ ИЛИ».

НОУ ИНТУИТ | Лекция | Функциональные узлы комбинаторной логики. Дешифраторы

Аннотация: Рассматривается принцип действия дешифраторов на положительной и отрицательной логике.

Дешифратор является частным случаем преобразователей произвольных кодов, рассмотренных в «Преобразователи произвольных кодов» .

Дешифратор — это логическая схема, преобразующая двоичный код в унарный, когда только на одном из всех выходов появляется активный сигнал. Номер этого активного выхода в десятичном коде совпадает с двоичным кодом, подаваемым на входные линии дешифратора.

Принцип действия дешифратора лежит в основе работы всем известного устройства — домофона. Когда мы набираем номер на домофоне, звонок звенит только в одной квартире с указанным номером.

Рассмотрим схему дешифратора на три входа. Как при синтезе логической схемы по арифметическому выражению ( «Преобразователи произвольных кодов» ), составляем таблицу истинности. Поскольку в нашем примере у схемы должно быть три входа, количество комбинаций на этих входах будет равно , поэтому выходов у схемы будет также 8. Обозначим входные сигналы переменной с индексом, соответствующим весу двоичного разряда — 1, 2, 4 (табл. 4.1). Выходные сигналы обозначим как с индексом, соответствующим поданному на входы двоичному коду, при котором этот выход активен. Для синтезируемой схемы примем положительную логику, когда активным является уровень логической 1.

В соответствии с принципом синтеза логических схем по заданной формуле, после составления таблицы истинности нужно для каждого выхода написать логическое выражение. В данном случае задача упрощается, так как для каждого выхода логическая 1 имеет место быть только в одной строке таблицы. Поэтому в логическом выражении для каждого выхода будет только один минтерм:

( 4.1)

На рис. 4.1 показана функциональная схема данного дешифратора, соответствующая логическим выражениям (4.1).

В реальных дешифраторах обязательно присутствует входной управляющий сигнал, разрешающий работу данного дешифратора в соответствии со своей функцией. В простейшем случае разрешающий сигнал (от англ. enable — давать возможность) может подаваться на каждый из логических элементов И, осуществляющих вычисление по (4.1), так, как показано на рис. 4.2 красным цветом. Если , то он не влияет на работу схемы (рис. 4.2). Дешифратор работает так, как описано выше. Если , то на всех выходах дешифратора будут логические 0 независимо от состояния входных сигналов, т.е. все выходы дешифратора будут в пассивном (в рассматриваемом случае нулевом) состоянии.

Все рассмотренные ранее логические элементы могут быть реализованы в виде отдельных интегральных микросхем (ИМС) малой степени интеграции. Так, сборка из четырёх 2-входовых элементов И-НЕ объединяется в одном корпусе ИС К155ЛА3 [4].

Интегральная микросхема (ИМС) — микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединённых элементов, которое рассматривается как единое целое [4, с.9].

Степень интеграции ИМС — показатель степени сложности микросхемы, характеризующийся числом содержащихся в ней элементов и компонентов [4, с.10]:

где — число входящих в ИМС элементов и компонентов.

Различают интегральные микросхемы малой ( МИС — малые интегральные схемы), средней ( СИС ), большой ( БИС ) и сверхбольшой ( СБИС ) степени интеграции.

На рис. 4.3 показаны примеры условного графического обозначения (УГО) дешифраторов с активным единичным уровнем входных и выходных сигналов. Здесь и далее на УГО выделяется три поля. Центральное поле содержит обозначение функции, выполняемой ИМС. В данном случае это DC — от англ. D e c oder — дешифратор. Левое поле содержит обозначение входов ИМС, правое — обозначение выходов.


Рис. 4.3. УГО дешифраторов с активными единичными входными и выходными сигналами: а — на один вход; б — на два входа; в — на три входа; г — на четыре входа.

При принятии отрицательной логики, когда активным уровнем всех сигналов является логический ноль, таблица истинности дешифратора на три входа (табл. 4.2) будет содержать в диагонали не единицы, а нули. При этом порядок следования комбинаций входных сигналов в данном случае удобно сделать обратным — в первой строке указать комбинацию , далее и т.д. до последней строки с комбинацией .

Активный нулевой уровень сигнала принято обозначать на УГО в виде инверсных входов и выходов так, как представлено на рис. 4.4. Поскольку в каждом столбце табл. 4.2 присутствует один ноль и семь единиц, логическое выражение удобнее представить в виде соответствующих макстермов:

( 4.2)

Логические элементы

 

Глава 1. КОМБИНАЦИОННЫЕ СХЕМЫ И ЦИФРОВЫЕ АВТОМАТЫ

 

1.1.  Логические элементы

Различают комбинационные схемы и цифровые автоматы. В комбинационных схемах состояние на выходе в данный момент времени однозначно определяется состояниями на входах в тот же момент времени. Комбинационными схемами, например, являются логические элементы И, ИЛИ, НЕ и их комбинации. В цифровом автомате состояние на выходе определяется не только состояниями на входах в данный момент времени, но и предыдущим состоянием системы. К цифровым автоматам относятся триггеры.

Логическими элементами называются элементы, выполняющие логические операции И, ИЛИ, НЕ и комбинации этих операций. Указанные логические операции можно реализовать с помощью контактно-релейных схем  и с помощью электронных схем. В настоящее время  в подавляющем большинстве применяется  электронные логические элементы, причем электронные логические элементы входят в состав микросхем. Имея в распоряжении логические элементы И, ИЛИ, НЕ, можно сконструировать цифровое электронное устройство любой сложности. Электронная часть любого компьютера состоит из логических элементов.

Система простых логических функций, на основе которой можно получить любую логическую функцию, называется функционально полной.

 Отсюда следует, что для построения логического устройства любой сложности достаточно иметь однотипные логические элементы, например, И-НЕ  или ИЛИ-НЕ.

Логические элементы могут работать в режимах положительной и отрицательной логики. Для электронных логических элементов в режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю — низкий уровень напряжения. В режиме отрицательной логики логической единице соответствует низкий уровень напряжения, а логическому нулю — высокий.

Для контактно-релейных схем в режиме положительной логики логической единице соответствует замкнутый контакт ключа или реле, а логическому нулю — разомкнутый. Светящийся индикатор (лампочка, светодиод) соответствует логической единице, а несветящийся — логическому нулю.

Логические элементы, реализующие для режима положительной логики операцию И, для режима отрицательной логики выполняют операцию ИЛИ, и наоборот. Так, например, микросхема, реализующая для положительной логики функции элемента 2И-НЕ, будет выполнять для отрицательной логики функции элемента 2ИЛИ-НЕ.

Как правило, паспортное обозначение логического элемента соответствует функции, реализуемой «положительной логикой». Логические элементы И, ИЛИ, НЕ  имеют один выход, число входов логических элементов  И, ИЛИ  может быть любым начиная с двух. Логические элементы И и ИЛИ, выпускаемые в составе микросхем, обычно имеют  2, 3, 4, 8 входов. В названии элемента первая цифра указывает число входов.

Прежде всего, рассмотрим реализацию логических элементов с помощью контактно-релейных схем. Рассмотрим логический элемент  2И. Он выполняет операцию логического умножения. На рисунке 1.1,а приведена контактно-релейная схема логического элемента 2И для режима положительной логики.

Обозначение логического элемента 2И на принципиальных схемах  показано на рисунке 1.1,б. Знак  & (амперсант) в левом верхнем углу прямоугольника  указывает, что это логический элемент И. Первые две буквы обозначения  DD1.2  указывают на то, что это цифровая микросхема, цифра слева от  точки указывает номер микросхемы на принципиальной схеме, а цифра справа от точки – номер логического элемента в составе данной микросхемы.

Функционирование логического элемента обычно задают  таблицей  истинности. Контактно-релейная схема логического элемента 2И (режим положительной логики) позволяет легко составить таблицу истинности этого элемента. Так как микросхема имеет для подачи входных сигналов два входа, то возможны  22=4 различных комбинации входных сигналов. Необходимо проанализировать состояние лампочки при различных положениях тумблеров Sa1, Sa2, т.е. рассмотреть 4 различных комбинации состояний тумблеров (рис. 1.1,в).   

Введение понятия активного логического уровня существенно облегчает анализ функционирования сложных цифровых устройств. Активным логическим уровнем на входе элемента (логический нуль, логическая единица) называется такой уровень, который однозначно задает состояние на выходе элемента независимо от логических уровней на остальных входах элемента. Активный логический уровень на одном из входов элемента определяет уровень на его выходе. Уровни, обратные активным, называются пассивными логическими уровнями.

Активным логическим уровнем для элементов И является логический нуль. Пусть, например, имеем логический элемент 8И.  Необходимо проанализировать 28=256 различных состояний для составления таблицы истинности этого элемента. Воспользуемся понятием активного логического уровня. Если хотя бы на одном из входов этого элемента будет активный логический уровень, то состояние на выходе элемента определено однозначно и нет необходимости анализировать состояния на остальных входах элемента.

 Таким образом, таблицу истинности логического элемента 8И можно свести к двум строчкам: на выходе этого элемента будет логическая единица, если на всех входах будут сигналы логической единицы и на выходе будет логический нуль, если хотя бы на одном из входов элемента будет сигнал логического нуля.

Логический элемент 2ИЛИ выполняет логическую операцию логического сложения  у=х1+х2. Контактно-релейная схема элемента приведена на рисунке 1.2,а, а его условное обозначение – на рисунке 1.2,б. Знание контактно-релейной схемы элемента позволяет составить таблицу истинности (рис.1.2,в). Лампочка будет гореть, если замкнуты контакты хотя бы одного тумблера, т.е. активным логическим уровнем для элементов ИЛИ является уровень логической единицы.

Логический элемент НЕ выполняет операцию отрицания, и для этого элемента проще составить сразу таблицу истинности, а не вычерчивать сначала контактно-релейную схему, а затем по ней составлять таблицу истинности. Для логических элементов И и ИЛИ проще сначала вычертить контактно-релейную схему, а уже потом составлять таблицу истинности.

Напомним алгоритм работы электромагнитного реле с нормально замкнутыми контактами: при отсутствии электрического тока через обмотку реле контакты реле замкнуты, а при протекании достаточного тока через обмотку реле контакты реле разомкнуты. Контактно релейная схема элемента НЕ приведена на рисунке 1.3а, а его условное обозначение – на рисунке 1.3б.

Проанализируем работу контактно-релейной схемы логического элемента НЕ (рис. 1.3а). Если контакты ключа Sa1 разомкнуты, то через обмотку К электромагнитного реле ток протекать не будет. Контакты К1.1 (цифра слева от точки указывает номер реле на принципиальной схеме, а цифра справа  – номер контактной группы данного реле) будут замкнуты (электромагнитное реле с нормально замкнутыми контактами). Электрическая лампочка HL1 в этом случае будет гореть, что для режима положительной логики будет означать логическую единицу. При замкнутых контактах ключа Sa1 (на входе элемента логическая единица) через обмотку реле протекает ток, достаточный для размыкания контактов К1.1,  поэтому лампочка перестает гореть (логический нуль). В результате анализа мы получили, что сигнал на выходе элемента противоположен сигналу на входе, т.е. если на входе элемента сигнал логической единицы, то на выходе элемента сигнал логического нуля и наоборот (рис. 1.3,в).

При анализе работы логических элементов следует помнить о режиме их работы (режим положительной или отрицательной логики). Логические элементы, реализующие для режима положительной логики операцию И, для

режима отрицательной логики выполняют операцию ИЛИ и наоборот.  Решим следующую задачу.

Задача. Какую логическую операцию выполняет контактно-релейная схема, приведенная на рисунке 1.4.

Правильным ответом в этой задаче будет следующий. Указанная контактно-релейная схема выполняет операцию 3И для режима положительной логики и 3ИЛИ для режима отрицательной логики (решение обосновать самостоятельно).

В практической работе широко используются комбинации логических элементов и особенно элементы И-НЕ и ИЛИ-НЕ. Рассмотрим подробнее контактно-релейную схему элемента 2ИЛИ-НЕ, приведенную на рисунке 1.5,а. Условное обозначение элемента на принципиальных схемах показано на рисунке 1.5,б. Заполним таблицу истинности, приведенную на рисунке 1.5в. Если оба ключа разомкнуты (Х1=0, Х2=0), то лампочка HL1 горит, что соответствует логической единице на выходе элемента (Y=1). Замкнем контакты ключа Sa1 (Х1=1), оставляя ключ Sa2 разомкнутым (Х2=0). Лампочка HL1 в этом случае не горит (Y=0). Если замкнут хотя бы один ключ, то лампочка не горит. Следовательно, активным логическим уровнем на входе элемента ИЛИ-НЕ является уровень логической единицы.

Для двух аргументов логического элемента возможны 16 логических функций. В данном пособии рассматриваются логические функции: логическое И, логическое ИЛИ, логическое НЕ, логическое И-НЕ, логическое ИЛИ-НЕ, сумма по модулю 2.

В таблице 1.1 приведены условные обозначения элементов 2И, 2ИЛИ, НЕ, 2И-НЕ, 2ИЛИ-НЕ, исключающее ИЛИ (сумма по модулю 2), условные обозначения выполняемых этими элементами логических операций, таблицы их истинности и контактно-релейные схемы. При анализе контактно-релейной схемы элемента исключающее ИЛИ необходимо учитывать, что положения переключателей SA1 и SA2 в таблице 1.1 соответствуют логическим единицам (верхнее положение подвижного контакта переключателя соответствует логической единице), т.е. Х1=1 и Х2=1. Лампочка HL1 горит лишь в том случае, когда подвижный контакт одного из переключателей находится в верхнем положении, а подвижный контакт второго переключателя в нижнем положении. Из анализа работы данной контактно-релейной схемы получаем таблицу истинности элемента исключающее ИЛИ.

Рассмотрим решение следующей задачи: имея в распоряжении логические  элементы 2И-НЕ, сконструировать устройство,  реализующее операцию  3ИЛИ-НЕ для режима положительной логики. Эту  задачу решим в  два этапа. Сначала сконструируем устройство, выполняющее операцию 3И-НЕ для режима положительной логики (рис. 1.6,а), а потом на входах и выходе элемента 3И-НЕ установим логические элементы НЕ (рис. 1.6,б).

По мере развития вычислительной техники электронные логические элементы совершенствовались. Рассмотрим принципиальную схему логического элемента 2И (рис. 1.7,а), построенного на диодах и резисторах. Для простоты рассмотрения будем считать, что напряжение  логического «0» на входе элемента равно 0 В, а напряжение логической  «1» — 5 В. Внутреннее сопротивление вольтметра значительно больше сопротивления резистора R1.

Вспомним особенности вольтамперной характеристики полупроводникового кремниевого диода небольшой мощности. При обратном напряжении ток, протекающий через диод, составляет десятые доли микроампера. Напряжение на диоде при протекании через него в прямом направлении тока в десятки миллиампер, равно приблизительно 0,7-0,8 В. Определим примерно параметры логических уровней на выходах данного элемента, если на входе действуют логические уровни с указанными ранее параметрами. Если на оба входа поданы напряжения логических «1», то токи через диоды VD1 и VD2 не протекают, и напряжение на выходе элемента при условии, что сопротивление  нагрузки значительно больше сопротивления резистора R1,  будет примерно равно напряжению питания. Если хотя бы один из входов элемента соединить с минусовым проводом источника питания, то на выходе элемента в случае кремниевых диодов будет напряжение 0,7 — 0,8 В (зависит от сопротивления резистора  R1 и напряжения источника питания).

Примечание: для рассмотренного логического элемента логическая «1» на входе будет, если вход никуда не подключен или подключен к плюсовому выводу источника питания.

На рисунке 1.7,б приведена схема простого и удобного в работе стенда для исследования диодно-резистивного логического элемента 2И. Светодиоды VD3 — VD5 являются индикаторами логических сигналов на входах и выходе логического элемента. Вольтметр V  позволяет определить напряжения логической единицы и логического нуля. Для диодно-резистивного логического элемента 2И напряжение логического нуля на выходе примерно 0,7-0,8 В, а напряжение логической единицы чуть меньше напряжения на зажимах источника питания (определяется соотношением сопротивлений резистора R1 и нагрузки).

На рисунках 1.8,а и 1.8,б приведены схемы для исследования диодно-резистивного логического элемента 2ИЛИ. Для этого элемента напряжение логического нуля на выходе равно 0 В, а напряжение логической единицы равно напряжению питания минус 0,7-0,8 В.

Следующим этапом совершенствования элементной базы цифровой техники  было создание логических  элементов  диодно-транзисторной  логики.

Рассмотрим принципиальную схему логического элемента 2И-НЕ диодно-транзисторной логики (рис. 1.9,а).

Для понимания принципа работы логического элемента  2И-НЕ диодно-транзисторной логики необходимо знать, какой вид имеет зависимость тока коллектора транзистора от напряжения база-эмиттер при постоянном напряжении эмиттер- коллектор. Эта характеристика имеет примерно такой же вид, как и прямая ветвь вольтамперной характеристики полупроводникового диода. Для кремниевых транзисторов при напряжении база-эмиттер (в прямом направлении) менее 0,5 В ток в цепи коллектор-эмиттер практически равен нулю при любых допустимых напряжениях коллектор-эмиттер (транзистор закрыт, сопротивление между коллектором и эмиттером закрытого транзистора VТ1 может достигать единиц МОм). При незначительном увеличении напряжения база-эмиттер (в прямом направлении) более 0,5 В ток коллектора значительно увеличивается, говорят, что транзистор  открывается.

Диоды VD1, VD2 и резистор R1 (рис. 1.9,а) образуют логический элемент 2И. Роль инвертора выполняет транзистор VT1. Если транзистор закрыт, то ток в цепи: плюс источника питания, резистор R2, коллектор-эмиттер транзистора VT1, минус источника питания не протекает и напряжение между эмиттером и коллектором транзистора будет равно напряжению на зажимах источника питания. Диоды VД3, VД4 необходимы для надежного закрытия транзистора VТ1, когда хотя бы на одном из входов элемента было напряжение логического нуля.

Если на обоих входах Х1, Х2 присутствуют сигналы логических единиц, транзистор VT1 открывается током базы, протекающим по цепи: плюс источника питания, резистор R1, диоды VD3, VD4, переход база-эмиттер транзистора VT1, минус источника. На выходе элемента будет напряжение 0,1-0,2 В, что соответствует логическому нулю.

На рисунке 1.9,б приведен вариант логического элемента 2И-НЕ на транзисторах. Инвертор на транзисторе VT1 не обеспечивает большую нагрузочную способность, поэтому в качестве инверторов применяют более сложные схемы. Сложный инвертор в микросхемах транзисторно-транзисторной логики будет рассмотрен чуть позже. Сейчас остановимся на принципе работы инверторов, схемы которых приведены на рисунке 1.10.

Рассмотрим делитель напряжения (делитель напряжения источника питания) образованного резистором R3 и цепью коллектор-эмиттер транзистора VТ1 (рис.1.10,а). Если на входе элемента логическая единица (подвижный контакт переключателя SA1 в верхнем положении), то транзистор VT1 открыт и в его коллекторной цепи  протекает ток. Напряжение между коллектором и эмиттером транзистора составляет десятые доли вольта (не более 0,4 В). При логическом нуле на входе элемента транзистор закрыт и напряжение на выходе элемента равно напряжению питания, что соответствует логической единице.

На рисунках 1.10,б и 1.10,в приведены схемы инверторов с использованием полевых транзисторов. Напомним устройство и принцип действия полевых транзисторов.  Существуют следующие виды полевых транзисторов: полевые транзисторы с управляющим p-n переходом, полевые транзисторы с изолированным затвором со встроенным каналом, полевые транзисторы с изолированным затвором с индуцированным каналом.   

Полевые транзисторы называются также униполярными, одноканальными. Полевой транзистор в отличие от биполярного имеет большое входное сопротивление по цепи управления. Ток в выходной цепи полевого транзистора управляется напряжением,  в то время как в биполярном транзисторе ток в выходной цепи транзистора управляется током  во входной цепи транзистора. Таким образом, мощность управления в полевом транзисторе значительно меньше, чем в биполярном.

Полевой транзистор имеет 3 вывода: исток, сток, затвор. Исток – это вывод полевого транзистора, от которого основные носители заряда идут в канал. Сток – это вывод полевого транзистора, к которому идут основные носители заряда из канала. Затвор — это вывод полевого транзистора, на который подается управляющее напряжение относительно истока или относительно стока.

Наибольшее распространение имеют схемы включения транзистора с общим истоком, когда управляющее напряжение подается на затвор  относительно истока.

В вычислительной технике в качестве электронных ключей широко используются полевые транзисторы с изолированным затвором с индуцированным каналом. Рассмотрим устройство и принцип действия  полевого транзистора с изолированным затвором с индуцированным каналом n-типа (рис. 1.11). В полупроводнике p-типа сделаны два кармана с проводимостью n-типа. Знак n+ указывает на большую концентрацию электронов, что делается для уменьшения сопротивлений выводов стока и истока. Металлический затвор изолирован от кристалла полупроводника.

При напряжении затвор-исток, равном  нулю, в цепи сток-исток ток не протекает  при любых допустимых напряжениях сток-исток, так как образуются два p-n  перехода, причем верхний подключен в обратном направлении.

Подадим на затвор относительно истока положительный потенциал.  В полупроводниках p-типа имеются неосновные носители заряда (электроны). Рассмотрим  движение электронов и дырок  в слое полупроводника p-типа, прилежащем к затвору. Для упрощения рассмотрения соединим область p-типа с выводом истока. Под действием электрического поля, обусловленного наличием напряжения затвор – исток, дырки будут  двигаться вправо, а электроны влево, т.е. в  полупроводнике в приграничной к затвору области концентрация дырок  уменьшается, а концентрация электронов увеличивается. При определенном напряжении затвор-исток в указанной области концентрация электронов станет больше концентрации дырок, наступит инверсия  проводимости, т.е. в приграничной к затвору области появится слой полупроводника n-типа. В этом случае в цепи сток-исток протекает ток, т.к. между выводами стока и истока появился канал n-типа. Этот канал называется индуцированным (наведенным).

Для понимания принципа работы логических элементов на полевых транзисторах необходимо знать, что собой представляет стоко-затворная характеристика полевого транзистора. Стоко-затворная характеристика полевого транзистора в схеме включения с общим истоком (исток является общим для входной и  выходной цепи) — это зависимость тока  стока от напряжения затвор-исток при постоянном напряжении сток-исток. Эта характеристика полевого транзистора с изолированным затвором с индуцированным каналом n-типа приведена на рисунке 1.12. Особенности стоко-затворных характеристик полевых транзисторов с изолированным затвором с индуцированным каналом позволяют использовать эти транзисторы в качестве электронных ключей. Сравним основные характеристики электронного ключа на полевом транзисторе с характеристиками механического ключа. Сопротивление разомкнутого механического ключа можно считать бесконечно большим (пока не наступит электрический пробой), сопротивление ключа на полевом транзисторе порядка 10 МОм. Когда контакты механического ключа замкнуты  сопротивление между контактами составляет сотые доли ома, для такого же состояния  полевого транзистора сопротивление между стоком и истоком сотни Ом.

Если на входе инвертора, схема которого приведена на рисунке 1.10,б, напряжение логической единицы, то сопротивление между выводами сток и исток транзистора мало. Сопротивление резистора R1 выбирают значительно больше сопротивления между стоком и истоком открытого полевого транзистора и, следовательно, напряжение на выходе элемента будет близко к нулю вольт. При логическом нуле на входе логического элемента НЕ полевой транзистор будет закрыт, и на выходе элемента будет напряжение, примерно равное напряжению источника питания. Это обусловлено тем, что сопротивление резистора R1 выбирают во много раз меньше сопротивления между стоком и истоком закрытого транзистора.

Рассмотрим принцип работы инвертора (логического элемента НЕ) КМОП (комплиментарный, металл, окисел, полупроводник) структуры (рис. 1.10,в). Комплиментарный означает дополняющий друг друга по типу проводимости. Микросхемы КМОП имеют транзисторы как с каналом p-типа, так и с каналом n-типа. Учтем, что сопротивление между выводами сток-исток открытого транзистора — 200-300 Ом, а сопротивление между выводами сток-исток закрытого транзистора более 10 МОм.

Выберем напряжение питания 9 В. Пусть на вход Х подано напряжение логического «0», тогда транзистор VТ2 будет закрыт, а транзистор VТ1 открыт, так как потенциал затвора транзистора VТ1 относительно истока этого же транзистора равен минус 9В. На выходе элемента логическая единица.

Подадим на вход Х напряжение, соответствующее логической единице. Для рассмотренного случая это + 9 В относительно общего провода. В этом случае транзистор VТ2 будет открыт, а транзистор VТ1 – закрыт и на выходе элемента будет напряжение логического нуля.

Рассмотрим основные параметры, которыми характеризуются цифровые микросхемы.

Помехоустойчивость Uп, макс – наибольшее значение напряжения помехи на входе микросхемы, при котором еще не происходит изменения уровней ее выходного напряжения.

Напряжение логической единицы U1 – значение высокого уровня напряжения для «положительной» логики и значение низкого уровня напряжения для «отрицательной» логики.

Напряжение логического нуля U0 – значение низкого уровня напряжения для «положительной» логики и значение высокого уровня напряжения для «отрицательной» логики.

Пороговое напряжение логической единицы U1пор – наименьшее значение высокого уровня напряжения для «положительной» логики или наибольшее значение низкого уровня напряжения для «отрицательной» логики на входе микросхемы, при котором она переходит из одного устойчивого состояния в другое.

Пороговое напряжение логического нуля U0пор – наибольшее значение низкого уровня напряжения для «положительной» логики или наименьшее значение высокого уровня напряжения для «отрицательной» логики на входе микросхемы, при котором она переходит из одного устойчивого состояния в другое.

Входной ток логической единицы I1вх – измеряется при заданном значении напряжения логической единицы.

Входной ток логического нуля I0вх – измеряется при заданном значении напряжения логического нуля.

Выходной ток логической единицы I1вых – измеряется при заданном значении напряжения логической единицы.

Выходной ток логического нуля I0вых– измеряется при заданном значении напряжения логического нуля.

Ток потребления в состоянии логической единицы I1пот – значение тока, потребляемого микросхемой от источников питания при логических единицах на выходах всех элементов.

Ток потребления в состоянии логического нуля I0пот – значение тока, потребляемого микросхемой от источников питания при логических нулях на выходах всех элементов.

Средний ток потребления Iпот. ср. – значение тока, равное полусумме токов, потребляемых цифровой микросхемой от источников питания в двух устойчивых различных состояниях.

Потребляемая мощность в состоянии логической единицы Р1пот – значение мощности, потребляемой микросхемой от источника питания при логических единицах на выходах всех элементов.

Потребляемая мощность в состоянии логического нуля Р0пот – значение мощности, потребляемой микросхемой от источника питания при логических нулях на выходах всех элементов.

Средняя потребляемая мощность Рпот. ср.– полусумма мощностей, потребляемых микросхемой от источников питания в двух устойчивых различных состояниях.

Время перехода интегральной микросхемы из состояния логической единицы в состояние логического нуля t1,0 – интервал времени, в течение которого напряжение на выходе микросхемы переходит от напряжения логической единицы к напряжению логического нуля, измеренный на уровнях напряжения 0,1 и 0,9 от амплитуды импульса.

Время перехода интегральной микросхемы из состояния логического нуля в состояние логической единицы t0,1 – интервал времени, в течение которого напряжение на выходе микросхемы переходит от напряжения логического нуля к напряжению логической единицы, измеренный на уровнях напряжения 0,1 и 0,9 от амплитуды импульса.

Время задержки распространения сигнала при включении t1,0зд, р – интервал времени между входным и выходным импульсами при переходе напряжения на выходе микросхемы от напряжения логической единицы к напряжению логического нуля, измеренный на уровне 0,5 амплитуды.

Время задержки распространения сигнала при выключении t0,1зд, р – интервал времени между входным и выходным импульсами при переходе напряжения на выходе микросхемы от логического нуля к логической единицы, измеренный на уровне 0,5 амплитуды.

Среднее время задержки распространения сигнала tзд, р.с.– интервал времени, равный полусумме времени задержки распространения сигнала при включении и выключении цифровой микросхемы.

Коэффициент объединения по входу Коб – число входов микросхемы, по которым реализуется логическая функция.

Коэффициент разветвления по выходу Краз – число единичных нагрузок, которые можно одновременно подключить к выходу микросхемы (единичной нагрузкой является один вход основного логического элемента данной серии интегральных микросхем).

Коэффициент объединения по выходу Коб.вых – число соединяемых между собой выходов интегральной микросхемы, при котором обеспечивается реализация соответствующей логической операции.

Сопротивление нагрузки Rн – значение активного сопротивления нагрузки, подключаемой к выходу интегральной микросхемы, при котором обеспечивается заданное значение выходного напряжения (выходного тока) или заданное усиление.

Емкость нагрузки Сн – максимальное значение емкости, подключенной к выходу интегральной микросхемы, при котором обеспечиваются заданные частотные и иные параметры.

Синхронизация работы отдельных узлов ЭВМ и других устройств цифровой техники осуществляется периодическими последовательностями прямоугольных импульсов напряжения. Импульсом напряжения называют отклонение напряжения от первоначального значения в течение короткого промежутка времени. Последовательность импульсов, мгновенные значения которых повторяются через равные промежутки времени, называют периодической последовательностью импульсов. Участок импульса, на котором происходит изменение напряжения от начального уровня до конечного, называют фронтом импульса, а участок, на котором напряжение возвращается к исходному уровню, называется срезом импульса. Длительностью фронта импульса считают время нарастания напряжения от 0,1 Uм  до 0,9 Uм, а длительностью среза – время изменения напряжения   от 0,9 Uм до 0,1 Uм, где Uм –  амплитуда импульса. Когда говорят о длительности импульса, то необходимо указывать, на каком уровне от амплитуды импульса проводились измерения: на уровне 0,1 Uм  или 0,5 Uм. Частота следования импульсов – это число импульсов в одну секунду. Период следования импульсов – это минимальное время, через которое повторяются мгновенные значения напряжения. Интервал времени между окончанием одного импульса и началом следующего называется паузой. Величину, равную отношению периода следования импульсов к длительности импульса, называют скважностью импульсов. Периодическая последовательность прямоугольных импульсов при скважности 2 называется меандром. Прямоугольный импульс напряжения иногда рассматривают как совокупность двух перепадов напряжения. Перепады напряжения – это быстрые изменения напряжения между двумя уровнями. Перепад называют положительным, если напряжение изменяется от низкого уровня к высокому, и отрицательным, если напряжение изменяется от высокого уровня к низкому. Перепад напряжения, у которого длительность равна нулю,  называется скачком напряжения. 

На рисунке 1.13 показано, как определяется длительность фронта входного импульса tф, время перехода интегральной микросхемы из состояния логической единицы в состояние логического нуля t1,0, время перехода интегральной микросхемы из состояния логического нуля в состояние логической единицы t0,1, время задержки распространения при включении t1,0зд, р, время задержки распространения при выключении t0,1зд, р .

 

 

Цифровая электроника. Законы алгебры логики. Базовые логические элементы. Таблицы истинности.

В Булевой алгебре, на которой базируется вся цифровая техника, электронные элементы должны выполнять ряд определённых действий. Это так называемый логический базис. Вот три основных действия:

ИЛИ – логическое сложение (дизъюнкция) – OR;

И – логическое умножение (конъюнкция) – AND;

НЕ – логическое отрицание (инверсия) – NOT.

Примем за основу позитивную логику, где высокий уровень будет «1», а низкий уровень примем за «0». Чтобы можно было более наглядно рассмотреть выполнение логических операций, существуют таблицы истинности для каждой логической функции. Сразу нетрудно понять, что выполнение логических функций «и» и «или» подразумевают количество входных сигналов не менее двух, но их может быть и больше.

Логический элемент И.

На рисунке представлена таблица истинности элемента «И» с двумя входами. Хорошо видно, что логическая единица появляется на выходе элемента только при наличии единицы на первом входеина втором. В трёх остальных случаях на выходе будут нули.

Вход X1 Вход X2 Выход Y

На принципиальных схемах логический элемент «И» обозначают так.

На зарубежных схемах обозначение элемента «И» имеет другое начертание. Его кратко называют AND.

Логический элемент ИЛИ.

Элемент «ИЛИ» с двумя входами работает несколько по-другому. Достаточно логической единицы на первом входе илина втором как на выходе будет логическая единица. Две единицы так же дадут единицу на выходе.

Вход X1 Вход X2 Выход Y

На схемах элемент «ИЛИ» изображают так.

На зарубежных схемах его изображают чуть по-другому и называют элементом OR.

Логический элемент НЕ.

Элемент, выполняющий функцию инверсии «НЕ» имеет один вход и один выход. Он меняет уровень сигнала на противоположный. Низкий потенциал на входе даёт высокий потенциал на выходе и наоборот.

Вот таким образом его показывают на схемах.

В зарубежной документации элемент «НЕ» изображают следующим образом. Сокращённо называют его NOT.

Все эти элементы в интегральных микросхемах могут объединяться в различных сочетаниях. Это элементы: И–НЕ, ИЛИ–НЕ, и более сложные конфигурации. Пришло время поговорить и о них.

Основные законы алгебры логики являются двойственными: относительно логического сложения и относительно логического умножения. Ими являются:

1. Переместительный (коммутативный) закон:

— относительно сложения

— относительно умножения

2. Сочетательный (ассоциативный) закон:

— относительно сложения

— относительно умножения

3. Распределительный (дистрибутивный) закон:

— относительно сложения

— относительно умножения

4. Закон инверсии (де Моргана):

— относительно сложения

 

— относительно умножения

5. Закон повторения (идемпотентности):

На основании алгебры логики очевидны следующие соотношения (аксиомы алгебры логики):

Последние соотношения (относительно a) легко доказываются подстановкой вместо a его возможных значений – 0 и 1.

Рассмотренные законы применимы не только к отдельным переменным, но и к группам переменных, объединенных операциями алгебры логики.

В алгебре логики установлен порядок выполнения действий. При отсутствии в выражении скобок первыми должны выполняться операции отрицания (инверсии), затем операции конъюнкции и последними – операции дизъюнкции. При наличии в выражении скобок в первую очередь производятся операции внутри скобок.

При преобразовании логических функций зачастую приходится производить операцию инверсирования их.

Таблица истинности — это таблица, в которой отражены все значения логической функции при всех возможных значениях, входящих в неё логически
Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» (true либо false, 1 либо 0).

Таблицы истинности для основных двоичных логических функций

Конъюнкция Дизъюнкция Импликация Эквиваленция

a b a∧b     a b a∨b     a b a→b     a b a↔b  
             
             
             
             
                                     

Алгоритм составления таблиц истинности.

1) Подсчитать количество логических переменных n

2) Подсчитать количество строк m=2^n

3) Количество столбцов = n+ количество логических операция

Цифровая электроника

В цифровой электронике используются не непрерывный ток, а импульсы, т.е. для тока возможны только два состояния – сильный ток или слабый. Цифровые схемы используются в электронных устройствах – калькуляторах, часах. Импульсы тока в цифровой схеме могут служить для двоичной записи информации. Двоичный код – это способ записи информации при помощи нулей и единиц. Двоичным кодом можно записывать слова, звуки, изображения. В электронных часах используются цифровые электронные схемы. В цифровых электронных устройствах сильный ток означает единицу, а слабый – нуль.

Электронные устройства меняют направление тока в цифровых схемах. А состоящие из них логические элементы способны производить вычисления. В карманном калькуляторе есть сложные цифровые схемы. Они могут запоминать числа и производить вычисления. Нажимая на кнопки, мы посылаем в схему электронные сигналы.

 

 



alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *