Site Loader

Содержание

Как устроен литий-ионный аккумулятор | Полезная информация | Cписок категорий | Блог

Берем два длинных листка: из графита и из оксида лития с кобальтом (LiCoO2). Смазываем их электролитом, прокладываем между ними тонкую перфорированную пластиковую пленку и сворачиваем рулончиком. Литий-ионный аккумулятор готов.


Когда мы подаем на пластинки напряжение — на графит минус, а на оксид лития плюс — от молекул оксида отцепляются положительно заряженные ионы лития и перепрыгивают на углеродную пластинку. Так происходит зарядка аккумулятора.
Первый в мире серийный электрический спорткар Tesla Roadster, питается как раз от литий-ионных аккумуляторов. Принципиально они не отличаются от аккумулятора для шуруповерта, ноутбука или телефона.

Когда аккумулятор заряжен и вы решаете им воспользоваться, то все происходит наоборот: положительно заряженные ионы лития перепрыгивают обратно на оксид лития, в свое нормальное состояние. В полученной батарейке графитовая пластинка становится минусом, а оксид лития — плюсом.

Такие аккумуляторы обладают большой емкостью, у них нет эффекта памяти, они легкие и компактные.

Эффект памяти аккумулятора — в настоящий момент под эффектом памяти понимается обратимая потеря ёмкости, имеющая место в некоторых типах электрических аккумуляторов при нарушении рекомендованного режима зарядки, в частности, при подзарядке не полностью разрядившегося аккумулятора. Название связано с внешним проявлением эффекта: аккумулятор как будто «помнит», что в предыдущие циклы работы его ёмкость не была использована полностью, и при разряде отдаёт ток до «запомненной границы».

Но при неправильном использовании у них есть и минусы:
  • При сильном нагревании аккумулятор может загореться.
  • Если аккумулятор сядет ниже определенного критического уровня, то его больше никогда нельзя будет зарядить.

Поэтому такие аккумуляторы объединяют в батареи со встроенной электроникой, которая следит за температурой и режимами зарядки каждого отдельного аккумулятора.

Все, что вы хотели знать о Li-Ion аккумуляторах, но боялись спросить.

    Сейчас на рынке представлено огромное разнообразие Li-Ion аккумуляторов различных марок, как с защитой, так и без. Взрывной рост их популярности пришелся на 2008-2010гг., когда на рынке появились большое количество мощных светодиодных фонарей в зарубежных интернет-магазинах.

    Но, стоит признать, что, до сих пор, для большинства пользователей, этот тип элементов питания является достаточно новым и незнакомым. Чтобы не запутаться во всем этом многообразии мы хотим вам дать несколько советов, чтобы помочь определиться, какой именно литиевый аккумулятор вам необходим (защищенный-незащищенный) и как не купить откровенно некачественный товар.

Что нужно знать при использовании Li-Ion аккумуляторов.

 В силу технологии Li-Ion аккумуляторы имеют ряд ограничений, которые необходимо соблюдать в процессе эксплуатации.
Это:
максимальное напряжение (напряжение перезаряда) не должно превышать 4,25-4,35В

минимальное напряжение (напряжение переразряда) не должно быть ниже 2,2-2,5В
ток разряда не должен превышать 2ух-кратное значение емкости (2С): т.е. для аккумулятора с емкостью 2200мАч максимальный ток разряда не должен быть выше 4400мА, а обладателя емкости в 3100мАч можно смело разряжать током до 6200мА. Есть особые типы высокомощных Li-Ion аккумуляторов, которые предназначены для работы с большими разрядными токами, превышающими величину их емкости в 5-10 раз.

          • ток заряда не должен быть выше половины значения емкости аккумулятора (0,5С).
          • По аналогии с током разряда для аккумулятора с емкостью 2200мАч максимальный ток заряда не должен быть выше 1100мА, а аккумулятор с емкостью 3100мАч можно зарядить током в 1550мА.
          • • Li-Ion аккумулятор НЕ ЗАРЯЖАЕТСЯ при минусовой температуре, но достаточно спокойно относится к работе на морозе с небольшой потерей емкости. Т.е. зарядили аккумулятор дома, пошли,- поработали на улице, потом, опять, принесли заряжать аккумулятор домой. Это утверждение вы можете проверить в действии на вашем смартфоне или фотоаппарате/видеокамере,- там стоит такой же литиевый аккумулятор, только в другом типоразмере.
          • • Незащищенные аккумуляторы
            нельзя паять
            . Если вы хотите собрать из отдельных аккумуляторов большую батарею,
          • то следует учитывать, что Li-Ion аккумуляторы очень не любят перегрева, а при попытке припаять провод к контакту аккумулятора вы, скорее всего, его перегреете.

Вот так делать не надо

Поэтому собирают аккумуляторные батареи с помощью контактной сварки и специальной ленты.

Качественная сварка Li-Ion аккумуляторной батареи

Опять же, для обслуживания такой батареи вам понадобится контроллер,

Li-Ion аккумуляторная батарея с контроллером заряда-разряда

который будет следить за процессами заряда-разряда аккумуляторов.

    Но, перейдем от теории к практике и попробуем дать ответы на самые распространенные вопросы, которые возникают у покупателей при выборе Li-Ion аккумулятора.

1. Защищенный или нет.

Как мы уже говорили, Li-Ion аккумуляторы должны работать в диапазоне напряжений 4,2-2,5В. Для того, чтобы в процессе работы напряжение на АКБ не выходило за пределы этого диапазона на минусовой контакт незащищенного Li-Ion АКБ (их еще называют «ячейка») ставят небольшую электронную плату защиты (зачастую, она именуется просто «защита»).

Именно эта плата обеспечивает работу ячейки в допустимом диапазоне напряжений, предохраняет от перегрузки по току и от короткого замыкания.

Плата защиты приваривается стальной лентой к контактам аккумулятора

и весь этот «бутерброд», упаковывается в термо-пленку с обозначение бренда и емкости (как реальной так и совершенно бредовой, в некоторых случаях).

на синем аккумуляторе (слева) заявленная емкость не соответствует действительности

Из-за платы защищенные аккумуляторы на пару миллиметров длиннее своих незащищенных сородичей и на 0,5 мм толще.

А, так как, качественная Li-Ion ячейка имеет длину 65мм, то защищенный Li-Ion АКБ вырастает в длине до 68-70мм. Такие аккумуляторы могут обозначаться типоразмером 18700 (где первые две цифры это диаметр в мм., а вторые две- длина). Это надо учитывать при выборе аккумулятора,- сможет ли такой аккумулятор влезть, к примеру, в ваш фонарь или зарядное устройство.

PS. На некоторых зарядных устройствах для Li-Ion аккумуляторах производители заранее указывают, что их продукт может заряжать аккумуляторы типоразмера вплоть до 18700.


зарядные устройства XTAR позволяют заряжать Li-Ion аккумуляторы вплоть до типоразмера 18700

Защищенные аккумуляторы можно применять в любых устройствах, которые расчитаны на работу с Li-Ion источниками питания и не имеют встроенного контроллера заряда-разряда. В настоящее время основными потребителями защищенных АКБ являются светодиодные фонари, так как именно такие аккумуляторы способны обеспечить питанием мощные светодиоды в течении продолжительного времени.

Так же, защищенные аккумуляторы находят все большее распространение в разнообразной маломощной бытовой электронике, которая работает от одного-двух АКБ.

При необходимости собрать более серьезный источник питания прибегают к изготовлению аккумуляторных батарей. Тут уже в ход идут только незащищенные аккумуляторы.

батарея из Li-ion аккумуляторов SANYO

Такие батареи стоят в большинстве современных ноутбуках, в электроинструменте, фото-видео технике, электровелосипедах и т.д. Управляет такими батареями специальный контроллер, который следит за напряжением на каждом отдельном аккумуляторе в батарее и необходимости в индивидуальных платах защиты нет.

контроллер батареи из Li-ion аккумуляторов

Подитог: если у вас светодиодный фонарь, с вероятностью 99% вам необходим защищенный аккумулятор. Если вы хотите отремонтировать батарею в ноутбуке или в шуруповерте или просто вам нужна БАТАРЕЯ из LI-Ion аккумуляторов, то вам необходимы именно незащищенные АКБ.

2. Емкость аккумулятора

Емкость аккумулятора указывается в мАч (милли-ампер-часах).

На момент написания статьи наиболее распространенными значениями емкости являются 2600-3500мАч (для Li-Ion АКБ типоразмера 18650). Емкость влияет только на время работы аккумулятора. Т.е. при прочих одинаковых условиях Li-Ion аккумулятор с емкостью 3400мАч будет работать примерно в 2 раза дольше чем аккумулятор емкостью 1700мАч.

ФАКТ: на настоящее время Li-Ion аккумуляторов типоразмера 18650 емкостью свыше 3500мАч НЕ СУЩЕСТВУЕТ. Все Li-Ion аккумуляторы типоразмера 18650 (а это наиболее распространенный типоразмер), имеющие обозначение 3800-5000мАч ФОТО изначально продукты сомнительного качества от покупки которых следует отказаться.

Обычно, реальная емкость таких АКБ составляет, в лучшем случае, 1500-2200мАч ссылка. А о «достоинствах» плат защит этих АКБ стоит только догадываться…  Бывали случаи когда под упаковкой защищенных АКб типоразмера 18650 с обещанием огромной емкости около 4000мАч скрывался неизвестный представитель гораздо меньшего типоразмера, а остальное пространство было забито материалом похожим на обычный песок.

3. Производитель аккумулятора.

    В настоящее время существует не так уж и много производителей Li аккумуляторов. Технология их изготовления не тривиальна и качественное масштабное производство возможно только на больших высокотехнологичных предприятиях. Среди самых известных и отлично-зарекомендовавших себя производителей можно выделить такие компании как: Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB.

    Сразу надо отметить: это фирмы которые непосредственно производят Li-Ion ячейки (незащищенные аккумуляторы). Заводы таких компаний зачастую располагаются в Японии, Тайване или Южной Корее.

ФАКТ: крупные производители Li-Ion аккумуляторов НЕ ВЫПУСКАЮТ ЗАЩИЩЕННЫХ АКБ. Они производят только НЕЗАЩИЩЕННЫЕ аккумуляторы. В природе не существует защищенных Li-Ion аккумуляторов Panasonic или SAMSUNG, которые были бы выпущены непосредственно «панасоником прямо в Японии» или «самсунгом» а все, кто утверждает обратное, по какой-то причине пытаются ввести вас в заблуждение.

    Защищенные аккумуляторы СОБИРАЮТСЯ из незащищенного Li-Ion аккумулятора (ячейки) и платы защиты.

И собираются они тоже по-разному: сборка защищенных АКБ, в основном, происходит на заводах в Китае. Но Китай — Китаю рознь. Есть как откровенное барахло (с емкостями 3800мАч и выше) так и очень качественные продукты.

    Защищенные аккумуляторы выпускаются под совершенно различными брендами, не имеющими отношения к производителю ячеек.

Наименование защищенному аккумулятору дает уже тот производитель, который собрал и упаковал этот аккумулятор. Зачастую, внешняя термоплёнка с нанесенным обозначение бренда скрывает реального производителя Li-Ion ячейки. Хотя, в последнее время наблюдается тенденция к вытеснению откровенно некачественных товаров аккумуляторами, изготовленными на основе качественных Li-Ion ячеек и плат защиты, производителями которых являются общепризнанные лидеры, такие как SANYO, Panasonic, SAMSUNG, SEIKO…

   


 Ниже, мы приведем основные составляющие «качественного» защищенного Li-Ion аккумулятора:

1. Упаковка.

На упаковке явно указано из каких составляющих состоит аккумулятор. К качеству упаковки претензий быть не должно. Наличие «бренда» является хорошим знаком,-аккумуляторы без опознавательных знаков, по-умолчанию, доверия не вызывают.

2. Плюсовой контакт

(выступающий бугорок) должен быть жестко зафиксирован на аккумуляторе.

Проще говоря, он должен быть приварен, а не просто прижат картонной шайбой с термоусадкой. Иногда, плюсовой колпачок приваривают к стальной ленте а уже эту ленту приваривают к плюсовому контакту Li-Ioт ячейки.

Ключевое слово везде: «ПРИВАРИВАЮТ»

3. Плата защиты

должна быть от известного производителя и содержать 2-3 МОСФЕТа обеспечивая высокий разрядный ток.

4. Почитайте отзывы

о интересующем вас аккумуляторе на авторитетных интернет- ресурсах, посвященных этой тематике. Зачастую, там можно найти подробнейшие тесты и многочисленные отзывы от конечных пользователей.


скриншот страницы с большим тестом аккумуляторов 18650 с форума cpf.com

Среди самых известных русскоязычных форумов стоит выделить:
http://forum.fonarevka.ru/

Из англоязычных:
http://www.candlepowerforums.com/vb/forum.php
http://lygte-info.dk/

    Будем надеяться, что данная статья смогла дать ответы на большинство вопросов, которые могли возникнуть у вас при покупке и использовании Li-ion аккумуляторов и уберечь вас от разочарования приобретения некачественных продуктов.

    Если же мы упустили какие-либо моменты, которые вы считаете важными,- оставляйте свои комментарии,- мы обязательно ответим и, по возможности, внесем коррективы в текст статьи.

С уважением, коллектив Запас Мощности

Как работает литиевая батарея — подробное устройство

Обновленная статья от: 10.11.2020


Литий-ионные аккумуляторы – универсальный тип элементов питания. Они используются в смартфонах, фонариках, портативной технике, специнструменте, источниках 

бесперебойного питания. Литий-ионные батареи обеспечивают автономное питание складской и клининговой техники, электромобилей, гольфкаров, инвалидных колясок, гироскутеров, самокатов, велосипедов на электротяге и многих других устройств.

Источники питания на основе лития отличаются высокой энергоемкостью при относительно малых размерах и массе. Дополнительными их преимуществами выступают:

  • большой ресурс – более 1000 полных циклов заряд-разряд;
  • малый саморазряд – не более 5–10 % в год;
  • высокая токоотдача;
  • широкий диапазон допустимых температур – от -20 до +60 °С при работе, от 0 до +45 °С при подзарядке;
  • простота и удобство использования.

Литиевый аккумулятор – устройство и принцип работы

В структуре Li-ion аккумулятора есть катод из производных лития на алюминиевой фольге и графитовый анод на фольге из меди. В качестве производных лития используются различные соединения: LiCoO2, LiMn2O4, LiFePO4, LiNiO2, LiMnRON, LiC6, LiMnO2, Li4Ti5O12 и др. Между катодом и анодом находится пористый сепаратор, пропитанный электролитом с функциями проводника. Заряд переносят ионы лития, легко встраиваемые в кристаллическую решетку пористого углерода и вызывающие соответствующую химическую реакцию.

Конструкция из электродов и находящегося между ними сепаратора сворачивается в виде рулона и помещается в герметичную оболочку из стали, алюминия или полимерного материала. При этом электроды подсоединяются к токосъемникам. В итоге получаются Li-ion элементы цилиндрической или призматической формы – в зависимости от принципа сворачивания фольги. Самый распространенный типоразмер Li-ion аккумуляторов в форме цилиндра – 18650.

Как работает Li-ion аккумулятор

Принцип действия литий-ионного аккумулятора заключается в создании необходимых условий для перемещения ионов лития между катодом и анодом:

  1. При подаче на электроды напряжения ионы лития отрываются от катода, переходят через сепаратор к графитовому аноду и встраиваются в его молекулярную структуру. В результате протекает реакция окисления, и аккумулятор заряжается.
  2. При подаче нагрузки ионы лития перемещаются обратно к катоду. Углеродистая пластинка на медной фольге становится «минусом», а производные лития на алюминии – «плюсом».

Задачи и функции BMS платы

Слабым местом Li-ion аккумуляторов считается их чувствительность к перезарядам и глубоким разрядам. Чтобы напряжение элементов автоматически поддерживалось в безопасном диапазоне, батарея оснащается BMS платой контроля и защиты. Она автоматически размыкает выходные ключи – отключает АКБ от нагрузки при критическом разряде и от сети при полном заряде. БМС плата оберегает элементы питания и от короткого замыкания. В таких ситуациях напряжение на элементах питания резко просаживается, и мгновенно срабатывает защита от глубокого разряда. Тем самым модуль защиты продлевает срок службы АКБ.

Основой BMS платы выступает микросхема. В ней есть полевые транзисторы, используемые для раздельного управления защитой на протяжении заряда и разряда ячеек. Плата защиты следит, чтобы напряжение на каждой ячейке не превышало 4,2 В и не опускалось ниже 2,3 В. Также в схеме обычно присутствует датчик, замеряющий уменьшение напряжения на полевых транзисторах. Функции измерительного шунта выполняет переходное сопротивление транзисторов. В ряде плат дополнительно используется детектор токовых перегрузок.

Как работает контроллер заряда в литиевой батарее

Контроллер заряда – важная составляющая зарядного устройства, которая обеспечивает правильный режим подзарядки. Для литиевых элементов это режим CC/CV – вначале осуществляется зарядка при неизменном токе, а затем – при стабильном напряжении.

Контроллер ограничивает зарядный ток и контролирует объем энергии, поступающей на ячейки в единицу времени. Избыточную энергию он рассеивает в виде тепла. При достижении порога срабатывания 4,2 В контроллер переключается в режим стабилизации напряжения и плавно уменьшает ток заряда.

Режимы работы литиевых АКБ

Есть 2 основных режима использования литиевых АКБ:

  1. Буферный – например, в современных источниках бесперебойного питания. Батарея в таком случае постоянно подпитывается от электросети, а при перебоях в электроснабжении – отдает накопленный заряд подключенному к ней оборудованию. Когда электроснабжение от сети восстанавливается, АКБ снова подзаряжается и находится в режиме постоянной готовности к дальнейшему использованию.
  2. Циклический – подразумевает чередование фаз заряд-разряд, когда после пассивной фазы восстановления заряда следует продолжительная фаза активной работы. В таком режиме работают аккумуляторные батареи электровелосипедов и других видов персонального электротранспорта, погрузчиков, поломоечных машин, электромобилей, мотолодок, мобильных кофемашин и другой техники. Срок службы таких АКБ измеряется не годами, а количеством циклов глубокого разряда (до 80%) и последующего заряда.

Литий-ионные батареи успешно используются и в буферном, и в циклическом режиме. Если эксплуатация АКБ подразумевает жесткие условия и частые глубокие разряды, лучше всего с такими задачами справляются литий-железо-фосфатные батареи (LiFePO4). В частности, они используются для питания лодочных электромоторов, складской и клининговой техники, е-байков и других видов электротранспорта.

Старение и деградация литиевых АКБ

В результате циклического заряда-разряда литиевые аккумуляторы постепенно «стареют» – ионы лития не всегда возвращаются в свое исходное положение, состояние катода меняется, в системе накапливаются продукты окисления. В итоге аккумуляторная батарея медленно и безвозвратно утрачивает часть своей емкости.

Считается, что при потере 30% исходной емкости жизненный цикл батареи завершается. При потере емкости на 50% батарея подлежит утилизации. Рабочий ресурс батареи определяется как количество полных циклов заряда-разряда до тех пор, когда емкость АКБ снизится на 20%. В среднем ресурс Li-ion аккумуляторов составляет 1000 циклов, у моделей вида LiFePO4 – более 2000, а у литий-титанатных – более 20 000.

Рекомендации по использованию

Чтобы продлить срок службы Li-ion батарей, нужно:

  1. Следовать рекомендациям производителя по их эксплуатации.
  2. Не превышать рекомендованный зарядный ток. Оптимальным током заряда считается значение, равное 50% номинальной емкости батареи. Так, для АКБ емкостью 10 Ач оптимальный зарядный ток составляет 5 А. Исключение – современные литий-титанатные модели. Они допускают токовые нагрузки до 10С.
  3. Избегать перезаряда, глубокого разряда батарей, их длительного хранения в разряженном состоянии, механических повреждений, перегрева и переохлаждения.

Используйте литиевые АКБ правильно, и они долго будут радовать вас отличными рабочими характеристиками.

Предлагаем для ознакомления обзор электрических фэтбайков – электровелосипедов с толстыми колесами.

На замену литий-ионным батареям создали аккумулятор на основе натрия — Наука

ТАСС, 1 июня. Американские химики разработали новый тип натриевых аккумуляторов: у них такая же энергоемкость, как и у их литиевых аналогов, и при этом они почти не теряют емкость через тысячу циклов разрядки. Описание разработки опубликовал научный журнал ACS Energy.

«Наша работа открывает дорогу для создания практичных натриевых батарей, а данные о взаимодействиях катода и электролита помогут понять, как избавиться от кобальта в электродах аккумуляторов. Если мы найдем альтернативу и литию, и кобальту, натриевые батареи смогут реально конкурировать с их литиевыми аналогами», – рассказал один из разработчиков, химик из Университета штата Вашингтон Цзюньхуа Сун.

Сейчас литий-ионные аккумуляторы – основной источник питания для всех автономных электрических устройств, начиная с различных гаджетов и заканчивая межпланетными зондами и промышленными инструментами. Несмотря на все плюсы, у них есть ряд недостатков: эти аккумуляторы медленно заряжаются, они взрывоопасны и запасают недостаточно много энергии.

Химики и физики пытаются решить эту проблему двумя путями: совершенствуя устройство уже существующих батарей и пытаясь заменить соли лития на другие вещества. В частности, сейчас ученые пытаются создать батареи на основе чистого лития, а также различных соединений натрия, серы, калия и ряда других элементов.

Замена для лития

У подобных аккумуляторов есть множество других проблем: например, они недолговечны, а их производство сложно масштабировать. В частности, большинство литий-воздушных батарей выходят из строя через несколько десятков циклов заряда-разряда, а у натриевых батарей низкие энергоемкость и скорость повторной зарядки.

Сун и его коллеги решили эту проблему, создав новый тип катода – одного из двух электродов батареи, который играет роль ее положительного полюса и источника электрической энергии. Как правило, мощность и долговечность литий-ионных и натриевых батарей очень сильно зависит от того, из чего состоит катод и как он взаимодействует с их электролитом.

Химики объясняют, что в результате этих взаимодействий на границе между катодом и электролитом часто образуются кристаллов из соли. Это мешает ионам натрия «путешествовать» между ними, в результате чего снижается емкость батареи. Сун и его коллеги смогли подавить этот процесс, покрыв катод специальной пленкой из оксидов никеля, марганца, кобальта и натрия.

Этот состав, как показали опыты ученых, не мешает миграциям ионов, но при этом не дает кристаллам формироваться на поверхности катода. Благодаря этому ученые смогли добиться того, что энергоемкость экспериментальной натриевой батареи стала почти такой же, как у большинства литий-ионных аккумуляторов. При этом они теряли лишь 20% емкости через тысячу циклов разряда и заряда.

Дальнейшее изучение процесса формирования кристаллов соли на поверхности катода, как надеются ученые, поможет им сделать натриевые батареи еще дешевле. Благодаря этому они могут заменить не только литий-ионные аккумуляторы, но и другие типы источников питания, которые сейчас применяются в быту и промышленности, надеются авторы исследования.

Как создают аккумуляторные батареи / Блог компании ASUS / Хабр

Практически все современные гаджеты объединяет одна деталь — в них есть аккумуляторная батарея. И её ёмкость остаётся одним из главных критериев при выборе устройства. Мы живем в эру мобильности, и требования к аккумуляторам растут с каждым годом.

Батареи для ноутбуков (и многие другие) состоят из энергетических элементов, скомпонованных в связанные друг с другом ячейки. Ноутбуки, как и большая часть других мобильных устройств, работают на литий-ионных или литий-полимерных аккумуляторах.

Мало кто задумывается о том, как сложно создать аккумуляторную батарею, отвечающую требованиям времени. Сегодня вы узнаете, как их производят в промышленных масштабах… начиная с химических элементов.

Li-ion — литий-ионные


Широко распространённый литий-ионный аккумулятор состоит из электродов (катода из алюминиевой фольги и анода из медной), разделенных пористым сепаратором, пропитанным жидким электролитом. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации.


Типичная литий-ионная перезаряжаемая батарея состоит из положительного электрода (зеленый), отрицательного электрода (красный) и разделяющим их слоем сепаратора (желтый). Ионы лития (Li +, синий) перемещаются от отрицательного электрода (анода) к положительному (катод). Во время зарядки происходит обратный процесс, ионы лития переносятся к аноду. Источник

Литий-ионный аккумулятор обладает высокой энергоплотностью, но быстро разряжается при использовании на морозе и может быть взрывоопасен при перезаряде выше 4,2 В. Если вы проколете литий-ионную батарею и создадите короткое замыкание, она загорится и возникнет действительно сильный огонь, который нельзя легко потушить с помощью обычного огнетушителя. Именно поэтому многие такие аккумуляторы оснащают специальной защитой.

Li-po — литий-полимерные


Литий-полимерный аккумулятор (литий-ионный полимерный аккумулятор) представляет собой усовершенствованную конструкцию литий-ионного аккумулятора. В таком аккумуляторе в качестве электролита используется не жидкость, а сухой полимерный материал (синтетический пластик). В отличие от Li-ion, Li-po безопаснее, может отдавать сильные токи и, благодаря полимерному материалу, может быть какой угодно толщины и формы.

Li-po и технологии


Ноутбук, оснащенный литий-полимерным аккумулятором, поддерживает в 3 раза больше циклов зарядки (то есть служит в 3 раза дольше), чем ноутбук со стандартным литий-ионным аккумулятором.

Эффективность энергопотребления достигается не только за счет химических свойств батареи. Если ноутбук остается подключенным к зарядке, когда аккумулятор уже полностью заряжен, это может привести к ухудшению рабочих характеристик аккумулятора и, соответственно, к сокращению срока его службы. Это может также стать причиной набухания аккумулятора из-за внутреннего накопления газов, вызванного окислением, а значит и деформированию или повреждению ноутбука. Дополнительные программные технологии позволяют установить предельный уровень заряда 60%, 80% или 100%, чтобы продлить срок службы батареи и уменьшить вероятность ее набухания.

Ноутбуки также оснащаются механизмом быстрой зарядки, с помощью которого аккумулятор заряжается за несколько десятков минут чуть более чем наполовину.

Li-po vs Li-ion

Положительные и отрицательные электроды Li-po и Li-ion имеют сходный химический состав. Основное различия между двумя видами батарей заключается в способе их компоновки. С литий-ионной технологией для оболочки можно выбрать только жесткий металлический корпус, в то время как литий-полимерная технология позволяет использовать мягкую оболочку для корпуса (пластиковая или алюминиевая фольга). При толщине до 3 мм Li-po имеет преимущество в емкости. При толщине более 3 мм Li-ion дает существенную выгоду в цене.

Существуют и другие виды аккумуляторов на основе лития: LiFePO4 — литий-железо-фосфатные, LiFeYPO4 — литий-железо-иттрий-фосфатные, и другие. Отличаются они различными добавками, улучшающими характеристики батареи. Однако в основе большей части новых экспериментов лежит всё тот же металл, пришедший на смену некогда популярным никель-кадмиевым и никель-металлгидридным аккумуляторам.

Литий



Очень легкий, очень мягкий металл серебристо-белого цвета.

Первые работы в области создания перезаряжаемого аккумулятора на основе лития были начаты в 1912 году, но до 1970-х эксперименты не выходили за пределы лабораторий из-за нестабильности лития. В 1980-х на основе технологий, разработанных в Оксфордском университете, стали появляться первые промышленные литиевые аккумуляторные батареи, которые быстро перегревались и выходили из строя. Только в 1991 году был создан аккумулятор, в котором металлический литий был заменен более безопасной ионной формой.
Литий снискал заслуженную популярность за счет своих особых свойств. Это один из самых легких металлов в периодической таблице, который действительно помогает сохранять большие объемы энергии в небольшом объеме и при незначительном весе. Однако популярность лития сегодня может привести к исчерпанию этого металла в будущем.

Добыча лития — это трудоемкий процесс даже в тех регионах, где металла много. На протяжении десятилетий коммерческое производство лития основывалось на минеральных рудных источниках, таких как сподумен, петалит и лепидолит. Однако извлечение лития из руды вдвое превышает стоимость производства из соляных растворов.

Основные залежи лития, пригодные для активной разработки, находятся в Южной Америке и Китае. На территории России больше всего лития содержится в слюде, сопровождающей месторождения редкоземельных металлов. До недавнего времени добыча лития из слюды стоила слишком дорого, но в 2017 году ученые НИТУ «МИСиС» представили установку, сделавшую добычу соединений лития из бедной руды вдвое дешевле.

Большая часть лития сегодня добывается из естественных водяных линз соляных озер, в насыщенных соляных растворах которых концентрируется хлорид лития, калий и натрий. Раствор выкачивается и выпаривается на солнце, полученная смесь солей перерабатывается.

Извлечение лития



Солончак Уюни содержит около 100 миллионов тонн лития, или от 50 до 70% его мировых запасов

.

Крупнейший источник лития находится в Боливии — это солончак Уюни, высохшее соленое озеро, расположенное на высоте около 3650 м над уровнем моря. Имеет площадь 10 588 км². Внутренняя часть покрыта слоем поваренной соли толщиной 2-8 м. Хлорид лития, находящийся здесь в огромных количествах, пригоден для добычи из него лития, а раньше использовался в качестве замены обычной соли. Употреблять в пищу его перестали после открытия токсических эффектов.


Литиевый соляной пруд в Аргентине.

Для извлечения лития соляные растворы сначала перекачивают на поверхность в специальные пруды, где под воздействием солнца в течение нескольких месяцев происходит медленное испарение. Когда хлорид лития в испарительных прудах достигает оптимальной концентрации, раствор перекачивают на восстановительную установку, где фильтрацией удаляют из смеси нежелательные примеси.

Преобразование лития в металл производится в электролитической ячейке. Хлорид лития смешивается с хлоридом калия в соотношении 55% к 45% для того, чтобы произвести расплавленный эвтектический электролит. Далее электролизом расплава при температуре 600 °C получают расплавленный литий, который поднимается на поверхность электролита.

Другие химические элементы



Составляющие стоимости Li-ion батареи.

Внутри литий-ионного аккумулятора может использоваться несколько материалов для катодов. Первоначально основным компонентом катода был кобальт, но он имеет ограниченную доступность в природе и токсичен, что является огромным недостатком для массового производства. Сегодня кобальт частично замещается никелем, а также смесью кобальта, никеля и марганца.

Безопасная и долговечная батарея нуждается в надежном электролите, который может выдерживать существующее напряжение и высокие температуры и имеет длительный срок хранения, обеспечивая высокую подвижность ионов лития. Растворы электролита состоят из органических растворителей, соли LiPF6 (гексафторфосфат лития) и различных добавок.

Электролит высокой чистоты играет ключевую роль в транспортировке положительных ионов лития между катодом и анодом. Электролитные добавки улучшают стабильность, предотвращая деградацию раствора. Состав электролитов варьируется в зависимости от используемых анодных и катодных материалов, однако выбор электролита часто подразумевает компромисс между воспламеняемостью и электрохимическими характеристиками.

Полимерные электролиты представляют собой ионно-проводящие полимеры. Они часто смешиваются в композитах с керамическими наночастицами, что приводит к более высокой проводимости и устойчивости к более высоким напряжениям.

В литий-ионных батареях в качестве токоприемников используется разнообразная металлическая фольга — медная, никелевая или фольга из каталитической меди. Как правило, медная фольга ставится в качестве отрицательного электрода для коллектора анодного тока, а алюминиевая фольга применяется в качестве положительного электрода для катодного токосъемника.


Строение Li-po батареи

Анод состоит из смеси графита и лития (возможно также использование интерметаллидов или кремния), в то время как катод объединяет литий и другие металлы (материалы катода требуют чрезвычайно высокой чистоты и должны быть почти полностью очищены от нежелательных металлических примесей — железа, ванадия и серы).

Отделяет катод от анода сепараторный материал из полипропилена, полиэтилена или другого схожего полимерного материала. Сепараторы большинства батарей состоят из очень простых пластиковых пленок, которые имеют правильный размер пор, чтобы позволить ионам перемещаться, блокируя при этом другие элементы. В случае жидкого электролита сепаратор представляет собой вспененный материал, который пропитывается электролитом и удерживает его на месте.

Процесс производства батареи


Основы для анода и катода поставляются на завод в виде черного порошка, и для неподготовленного глаза они почти неотличимы друг от друга. Порошок очень мелкой фракции, чтобы достичь максимальной эффективной площади поверхности электродов. Форма частиц также важна. Предпочтительны гладкие сферические крупицы с закругленными краями, поскольку острые кромки или шелушащиеся поверхности чувствительны к высоким электрическим нагрузкам.

Аноды и катоды в литиевых батареях имеют одинаковую форму и выполняются по аналогичным процессам на идентичном оборудовании. Но поскольку загрязнение между анодным и катодным материалами приведет к разрушению батареи, то для предотвращения контакта материалов их обычно обрабатываются в разных цехах.

Первая стадия производства заключается в смешивании материалов электродов и нанесении суспензии на поверхность фольги. Активные электродные материалы покрываются с обеих сторон металлической фольгой, которая действует как токоприемник, проводящий ток внутри и снаружи ячейки. Затем фольга с материалами сушится, разрезается на узкие полоски и сворачивается в несколько слоев. Это требует постоянного контроля, поскольку любые заусенцы на краях полосок фольги могут привести к внутренним коротким замыканиям в ячейках.

В процессе сборки батареи сепаратор зажимают между анодом и катодом. После помещения батареи в корпус ее заполняют электролитом и запечатывают. Это должно выполняться в «сухой комнате», так как электролит реагирует с водой. Влага приведет к разложению электролита с выбросом токсичных газов.


Электроды помещают в корпус, оставляя отверстие для добавления электролита/

Как только сборка ячейки будет завершена, она должна пройти хотя бы один контролируемый цикл зарядки/разрядки. Процесс зарядки начинается с низкого напряжения, которое постепенно нарастает. Только после прохождения теста батарея покинет завод и отправится дальше.

* * *

В будущем, несомненно, появятся новые виды аккумуляторов. Возможно, тогда литий останется в прошлом. Пока же есть еще множество возможностей для улучшения характеристик существующих аккумуляторных батарей.

Литий-ионные аккумуляторы. Устройство и виды.Работа и применение

Сегодня именно литий-ионные аккумуляторы наиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.

Устройство

В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.

  • Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
  • Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
  • Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
  • Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
  • Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.

Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.

Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.

Принцип действия
  • В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
  • Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
  • Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
  • После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.

При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.

  • Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.

Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.

Стандартная зарядка аккумулятора выглядит следующим образом:
  • Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
  • Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
  • В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.

Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.

Разновидности и применение
Существуют два форм-фактора литий-ионных аккумуляторов:

  1. Цилиндрические литий-ионные аккумуляторы.

  2. Таблеточные литий-ионные аккумуляторы.

Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.

Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
  1. Литий-кобальтовый аккумулятор. Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.

Области применения

; мобильная электроника.
  1. Литий-марганцевый аккумулятор. Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.

Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.

  1. Литий-никель-марганец-кобальт-оксидный аккумулятор. В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.

Области применения; для частного и промышленного использования (источники бесперебойного питания, системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).

  1. Литий-железо-фосфатный аккумулятор. Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.

Области применения;

 стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.
  1. Литий-никель-кобальт-алюминий-оксидный аккумулятор. Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.

Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.

  1. Литий-титанатный аккумулятор. Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.

Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.

Области применения; уличное освещение на солнечных элементах, электрические силовые агрегаты автомобилей (Honda Fit-EV, Mitsubishi i-MiEV), ИБП.

Типичные характеристики
В целом литий-ионные аккумуляторы имеют следующие типичные характеристики:
  • Минимальное напряжение — не ниже 2,2-2,5В.
  • Максимальное напряжение – не выше 4,25-4,35В.
  • Время заряда: 2-4 часа.
  • Саморазряд при комнатной температуре – порядка 7 % в год.
  • Диапазон рабочих температур, начиная от −20 °C и заканчивая +60 °C.
  • Число циклов заряд/разряд до достижения потери 20% емкости составляет 500-1000.
Достоинства и недостатки
К преимуществам можно отнести:
  • Высокая энергетическая плотность при сравнении с щелочными аккумуляторами с применением никеля.
  • Достаточно высокое напряжение одного аккумуляторного элемента.
  • Отсутствие «эффекта памяти», что обеспечивает простую эксплуатацию.
  • Значительное число циклов заряда-разряда.
  • Длительный срок эксплуатации.
  • Широкий температурный диапазон, обеспечивающий неизменные рабочие характеристики.
  • Относительная экологическая безопасность.
Среди недостатков можно выделить:
  • Умеренный ток разряда.
  • Относительно быстрое старение.
  • Сравнительно высокая стоимость.
  • Невозможность работы без встроенного контроллера.
  • Вероятность самовозгорания при высоких нагрузках и при слишком глубоком разряде.
  • Конструкция требует существенных доработок, ведь она не доведена до совершенства.
Похожие темы:

Электромобили спровоцировали борьбу за металлы

Прогнозируемый рост мирового спроса на электромобили заставляет автопроизводителей озаботиться наличием сырья для выпуска аккумуляторов. К нему относятся литий, никель, кобальт, графит и редкоземельные металлы. Поэтому производители электромобилей и аккумуляторов стремятся обеспечить их поставки, договариваясь с горнодобывающими компаниями.

По данным Международного энергетического агентства (МЭА), в прошлом году в мире было 2 млн электромобилей. К 2040 г. их число достигнет минимум 40 млн, прогнозирует МЭА. И крупнейшие горнодобывающие компании уже начали менять свой бизнес, чтобы обеспечить поставку материалов для литий-ионных аккумуляторов. Нынешний год должен стать «переломным моментом» для электромобилей, заявила BHP Billiton.

В сентябре китайский автопроизводитель Great Wall Motor подписал соглашение с австралийской Pilbara Minerals об обеспечении себе поставок лития на пять лет. В октябре другая австралийская горнодобывающая компания, Galaxy Resources, сообщила, что ведет переговоры о долгосрочных поставках лития с несколькими производителями автомобилей и аккумуляторов. В их число входит Panasonic, выпускающая аккумуляторы для Tesla. «Это подчеркивает, какое стратегическое значение для мировой автомобильной промышленности приобретает доступ к крупным, надежным и высококачественным источникам материалов для аккумуляторов в странах с низким риском», – заявил гендиректор Pilbara Кен Бринсден.

Спекулянты тоже не остаются в стороне, так как эти металлы сильно дорожают; их возросшая активность на рынке еще больше толкает цены вверх. Инвесткомпания Cobalt 27 уже закупила более 2000 т кобальта. Этот металл подорожал более чем на 190% за последние полтора года. Обеспечить поставки кобальта труднее всего, поскольку 65% его добычи приходится на Демократическую Республику Конго (ДРК), одну из беднейших стран мира. По прогнозам аналитиков UBS, спрос на кобальт удвоится к 2020 г. примерно до 200 000 т в год. Поэтому потребуются новые проекты, чтобы избежать его дефицита в долгосрочной перспективе. «Без кобальта из ДРК вообще нельзя будет говорить о производстве электромобилей – вот насколько рынку нужно больше этого металла», – утверждает Саймон Мурс из Benchmark Mineral Intelligence.

Литий хоть и более доступен, но в ближайшие годы тоже может возникнуть нехватка его предложения. Спрос на литий вырастет в четыре раза до 779 000 т к 2025 г., по оценкам Goldman Sachs. Но удовлетворить его будет трудно, так как «многие проекты, которые были анонсированы с фанфарами, не смогли привлечь достаточного финансирования», отмечают аналитики банка. Литий сейчас добывается в горах Австралии и пустынях Южной Америки. Но не все его запасы пригодны для производства аккумуляторов, отмечает гендиректор Neo Lithium Вальдо Перес. Например, у Боливии огромные запасы лития, но они содержат много примесей магния. Поэтому «Боливия определенно не подходит», говорит Перес.

Главную неопределенность для сырьевых рынков представляет то, какой будет технология выпуска аккумуляторов. Их производители сокращают использование кобальта из-за высокой цены и проблем с поставками. В сентябре британская Johnson Matthey заявила, что разработала более эффективные аккумуляторы с использованием лития и никеля и меньшим содержанием кобальта. Как отмечает инвестбанк Liberum, никель помогает повысить мощность аккумуляторов и при этом стоит в шесть раз дешевле кобальта, а его предложение примерно в 20 раз выше. По прогнозам Мурса из Benchmark Mineral Intelligence, спрос на никель вырастет с 75 000 т в 2016 г. до 400 000 т к 2025 г.

В долгосрочной перспективе производители аккумуляторов намерены изменить их конструкцию. Британская Dyson планирует выйти на рынок электромобилей к 2020 г. с помощью твердотельных аккумуляторов, которые должны хранить и отдавать больше энергии. Toyota тоже стремится начать использовать твердотельные аккумуляторы в своих автомобилях в начале 2020-х гг. Они заменят аккумуляторы с жидким электролитом.

«Всем хочется в будущем иметь чудесные химические вещества, не связанные с этими редкими материалами, но сейчас они недоступны, – говорит Стивен Айриш из британской Hyperdrive, занимающейся аккумуляторами. – Все задаются вопросом, произойдет ли революция в производстве аккумуляторов. Но на самом деле речь идет о серии постепенных улучшений».

Перевел Алексей Невельский

Как работает литий-ионный аккумулятор?

Литий-ионные аккумуляторы чрезвычайно популярны и универсальны. Эти аккумуляторные батареи, которые используются в сотовых телефонах, автомобилях, электроинструментах и ​​некоторых других типах электронных устройств, также оказывают влияние на оборудование для погрузочно-разгрузочных работ и наземного обслуживания аэропортов.

Технология, лежащая в основе литий-ионных аккумуляторов, делает их отличным выбором из-за их явных преимуществ и экологических преимуществ.

Но как именно работают литий-ионные аккумуляторы? И что делает их такими популярными во многих приложениях?

Вот что вам нужно знать о компонентах, из которых состоит литий-ионный аккумулятор, и о том, как они работают вместе для создания высокоэффективных и долговечных источников энергии.

Компоненты

Литий-ионные батареи

доступны во многих различных формах и размерах. Однако внутри они обычно выглядят одинаково. Чтобы понять, как работает литий-ионный аккумулятор, важно знать роль, которую играют отдельные части.

Ячейка

Литий-ионный аккумулятор состоит из нескольких частей. Элемент, служащий рабочей лошадкой для батареи, является наиболее важным компонентом батареи.

Ячейка состоит из следующих материалов батареи:

  • Электроды — это два конца батареи. Один — анод, другой — катод.
  • Анод накапливает литий и обычно изготавливается из углерода.
  • Катод также хранит литий и сделан из химического соединения, которое представляет собой оксид металла.
  • Сепаратор блокирует поток отрицательных и положительных электронов внутри батареи, но позволяет ионам проходить через нее.
  • Электролит , жидкость находится между двумя электродами. Он переносит положительно заряженные ионы лития от анода к катоду и наоборот, в зависимости от того, заряжается батарея или разряжается.
Аккумулятор

Батарейный блок, в котором находятся литий-ионные элементы, работает как компьютер. Он содержит следующее:

  • Как минимум один датчик температуры для контроля температуры батареи.
  • Преобразователь напряжения и схема регулятора , которая фокусируется на поддержании напряжения и тока на безопасных уровнях.
  • Разъем евро, который позволяет питанию и информации поступать в аккумуляторную батарею и извлекаться из нее.
  • Элемент отвод , который контролирует напряжения элементов в аккумуляторной батарее.
  • Система мониторинга батареи , небольшой компьютер, который контролирует всю батарею и обеспечивает безопасность пользователя.
Движение в камере

Так как же ячейка обеспечивает питание оборудования?

Когда вы подключаете литий-ионный аккумулятор к устройству или части оборудования, положительно заряженные ионы перемещаются от анода к катоду.В результате катод становится более положительно заряженным, чем анод. Это, в свою очередь, притягивает к катоду отрицательно заряженные электроны.

Сепаратор в ячейке включает электролиты, которые образуют катализатор. Это способствует перемещению ионов между ними. Движение ионов через раствор электролита — это то, что заставляет электроны перемещаться через устройство, в которое вставлен аккумулятор.

Литий-ионные батареи

перезаряжаемые. При перезарядке ионы лития проходят тот же процесс, но в противоположном направлении.Это восстанавливает аккумулятор для дополнительного использования.

Общая конструкция литий-ионной батареи обеспечивает множество преимуществ для пользователей оборудования:

  • Время работы значительно увеличивается с их использованием по сравнению с батареями других типов.
  • Возможности быстрой зарядки сокращают время простоя сменных рабочих и повышают производительность.
  • Они имеют плоские кривые разряда и обеспечивают более высокую постоянную мощность. Это означает, что больше не будет раздражающей медлительности в работе оборудования при снижении уровня заряда аккумулятора.
Система управления батареями (BMS)

Система управления играет важную роль в обеспечении максимальной работы аккумуляторной батареи. Это также влияет на работу аккумулятора, предлагая несколько защит и функций.

Например:

  • BMS поддерживает температуру элементов в идеальном рабочем диапазоне для предотвращения перегрева или замерзания.
  • BMS контролирует ток и напряжение, чтобы поддерживать их на безопасном уровне.Дендриты начинают формироваться в ячейке, если напряжение падает слишком низко, что может привести к короткому замыканию ячейки, поэтому важно, чтобы литий-ионный аккумулятор имел систему, позволяющую контролировать это.
  • В аккумуляторе нет встроенной «памяти», поэтому частичные разряды не повреждают аккумулятор. Литий-ионные батареи могут заряжаться и разряжаться в наиболее удобное для операторов время.
  • Встроенные контроллеры предотвращают перезарядку, чтобы предотвратить образование, которое может привести к значительному повреждению литий-ионных аккумуляторов.
  • Балансировка ячеек контролируется, поэтому выравнивающие заряды никогда не требуются. Поскольку литий-ионные батареи не нуждаются в уравнительном заряде, они не выделяют опасные газы.
  • Система управления батареями также позволяет менеджерам отслеживать состояние батареи своего флота с помощью бортовых компьютеров, которые отправляют жизненно важные данные через облачные сервисы.

Литий-ионные батареи содержат несколько элементов передовых технологий, которые работают вместе, чтобы предоставить пользователям явные преимущества.

Вы можете узнать о том, почему литий-ионные батареи являются лучшим вариантом, чем свинцово-кислотные, в нашей статье Литий-ионные батареи для вилочных погрузчиков лучше, чем свинцово-кислотные?

Как работает литий-ионный аккумулятор?

Представьте себе мир без литий-ионных батарей (часто называемых литий-ионными батареями или LIBs ). Нужна помощь? Мобильные устройства не будут выглядеть так, как сейчас. Представьте себе огромные, тяжелые сотовые телефоны и ноутбуки.Также представьте, что обе эти вещи настолько дороги, что их могут себе позволить только очень богатые люди. Вы представляете 1980-е. Страшно, правда?

Знаете ли вы?

Литий-ионные батареи были впервые произведены и произведены компанией SONY в 1991 году.

Литий-ионные батареи

стали огромной частью нашей мобильной культуры. Они обеспечивают питание большей части технологий, которые использует наше общество.

Из каких частей состоит литий-ионный аккумулятор?

Батарея состоит из нескольких отдельных ячеек , которые соединены друг с другом.Каждая ячейка содержит три основные части: положительный электрод , (катод , ), отрицательный электрод (анод , ) и жидкий электролит , .

Части литий-ионной батареи (© Let’s Talk Science, 2019 г., на основе изображения ser_igor с iStockphoto).

Литий-ионные батареи, подобно сухим щелочным батареям, используемым в часах и пультах дистанционного управления от телевизора, обеспечивают питание за счет движения ионов. Литий в своей элементарной форме чрезвычайно реактивен.Вот почему в литий-ионных батареях не используется элементарный литий. Вместо этого литий-ионные батареи обычно содержат оксид лития-металла, такой как оксид лития-кобальта (LiCoO 2 ). Это поставляет литий-ионы. В катоде используются оксиды лития-металла, а в аноде — литий-углеродные соединения. Эти материалы используются, потому что они допускают интеркаляцию. Интеркаляция означает, что молекулы могут что-то в них вставлять. В этом случае электроды могут легко перемещать ионы лития в свою структуру и выходить из нее.

Каков химический состав литий-ионных аккумуляторов?

Внутри литий-ионного аккумулятора протекают окислительно-восстановительные реакции.

Восстановление происходит на катоде. Здесь оксид кобальта соединяется с ионами лития с образованием оксида лития-кобальта (LiCoO 2 ). Половина реакции:

CoO 2 + Li + + e → LiCoO 2

Окисление происходит на аноде.Здесь соединение интеркаляции графита LiC 6 образует графит (C 6 ) и ионы лития. Половина реакции:

LiC 6 → C 6 + Li + + e

Вот полная реакция (слева направо = разрядка, справа налево = зарядка):

LiC 6 + CoO 2 ⇄ C 6 + LiCoO 2

Как работает подзарядка литий-ионного аккумулятора?

Когда литий-ионный аккумулятор в мобильном телефоне питает его, положительно заряженные ионы лития (Li +) перемещаются от отрицательного анода к положительному катоду.Они делают это, перемещаясь через электролит, пока не достигнут положительного электрода. Там они хранятся. С другой стороны, электроны движутся от анода к катоду.

Что происходит в литий-ионной батарее при разряде (© Let’s Talk Science, 2019 г., на основе изображения ser_igor с iStockphoto).

Иллюстрация — текстовая версия

Когда батарея используется, ионы лития текут от анода к катоду, а электроны движутся от катода к аноду.

Когда вы заряжаете литий-ионный аккумулятор, происходит прямо противоположный процесс. Ионы лития возвращаются от катода к аноду. Электроны движутся от анода к катоду.

Что происходит с литий-ионным аккумулятором при зарядке (© Let’s Talk Science, 2019 г., на основе изображения ser_igor с iStockphoto).

Иллюстрация — текстовая версия

Когда батарея заряжается, ионы лития текут от катода к аноду, а электроны движутся от анода к катоду.

Пока ионы лития переходят от одного электрода к другому, существует постоянный поток электронов. Это дает энергию для работы вашего устройства. Поскольку этот цикл может повторяться сотни раз, этот тип аккумулятора перезаряжаемый .

Знаете ли вы?

Иногда литий-ионные батареи называют «батареями для кресел-качалок». Это потому, что ионы лития «качаются» между электродами.

Что делает литий-ионные аккумуляторы подходящими для мобильных технологий?

Все просто. Литий-ионные батареи имеют самую высокую плотность заряда среди всех сопоставимых систем. Это означает, что они могут дать вам массу энергии, не будучи очень тяжелыми.

Это по двум причинам. Во-первых, литий — это самый электроположительный элемент . Электроположительность — это мера того, насколько легко элемент может отдавать электроны для образования положительных ионов. Другими словами, это показатель того, насколько легко элемент может производить энергию.Литий очень легко теряет электроны. Это означает, что он может легко производить много энергии.

Литий также самый легкий из всех металлов. Как вы узнали, в качестве электродов в литий-ионных батареях используются интеркаляционные материалы, а не настоящий металлический литий. Тем не менее, эти батареи весят намного меньше, чем батареи других типов, в которых используются такие металлы, как свинец или никель.

Есть ли риски при использовании литий-ионных батарей?

Хотя эти батареи впечатляют, у них есть свои недостатки.Самая большая жалоба заключается в том, что они довольно быстро изнашиваются, независимо от того, используете вы их или нет. Обычный литий-ионный аккумулятор прослужит около 2–3 лет, прежде чем его потребуется заменить. Это может обойтись дорого! Производство и утилизация литий-ионных батарей также оказывает большое влияние на окружающую среду, поэтому чем дольше эти батареи могут прослужить, тем лучше.

Как вы узнали, литий чрезвычайно реактивен. Когда производители производят литий-ионные батареи, они должны принимать определенные меры предосторожности, чтобы их можно было безопасно использовать.Однако вы, возможно, слышали о некоторых электронных устройствах, таких как ноутбуки или сотовые телефоны, которые загорелись из-за своих батарей. Хотя это может быть хорошим предлогом для того, чтобы не сдать эссе на английском вовремя, это довольно опасная ситуация. По соображениям безопасности литий-ионные батареи включают сепаратор. Это предотвращает соприкосновение электродов элементов батареи друг с другом. Но если этот разделитель будет порван или поврежден, электроды могут соприкоснуться. Это может вызвать сильное перегревание. Если это нагревание вызывает искру, легко воспламеняющийся электролит может загореться.

Как только в одной камере возникает пламя, оно может быстро распространиться на другие. И прежде чем вы это заметите, ваш ноутбук представляет собой лужу расплавленного пластика. Накопление тепла также может вызвать очень быстрое повышение давления в вашем ноутбуке и БУМ!

Посмотрите, что происходит при коротком замыкании литий-ионного аккумулятора (1:13 мин.).

Однако не стоит особо беспокоиться. Эти события очень редки. На самом деле литий-ионные батареи очень безопасны. Кроме того, прямо сейчас ведется много исследований по улучшению каждой части этих батарей.Например, исследователи создали жидкий электролит, который при ударе превращается в твердое тело. Это поможет предохранить батареи от нагрева или возгорания в случае их повреждения! Вскоре литий-ионные батареи, вероятно, станут еще безопаснее, прослужат дольше и будут стоить еще дешевле.

Знаете ли вы?

Большинство электромобилей работают на литий-ионных батареях. Мы начинаем видеть все больше и больше автомобилей, которые подключаются к сети вместо того, чтобы заправляться бензином!

Литий-ионные батареи

| PhysicsCentral

Доставка заряда

Литий-ионные аккумуляторы

уже питают ваш мобильный телефон и ноутбук, а вскоре могут питать ваш автомобиль.Но что это за батареи и что делает их намного лучше обычных щелочных батарей?

Чтобы ответить на этот вопрос, важно понимать, как работают батареи. Батарея — это устройство, которое накапливает электрическую энергию и затем может доставлять эту энергию с помощью легко контролируемой электрохимической реакции.

Схема литий-ионного элемента. Перепечатано с любезного разрешения HowStuffWorks.com

Батарея обычно состоит из ряда ячеек, вырабатывающих электричество.Каждая ячейка состоит из трех основных компонентов: анода, катода и электролита. Когда анод и катод соединены электрическим проводником, таким как провод, электроны текут от анода через провод к катоду, создавая электрический ток, в то время как электролит проводит положительный ток в виде положительных ионов или катионов. Материалы, используемые для каждого из этих компонентов, определяют характеристики батареи, включая ее емкость — или общее количество энергии, которое она может доставить — и ее напряжение — или количество энергии на электрон.Представьте, что батарея похожа на резервуар с водой, которую сливают из шланга. Объем бака — это емкость аккумулятора, а давление в шланге — это его напряжение.

Литий-ионный аккумулятор от мобильного телефона.

Материалы анода и катода выбираются таким образом, чтобы анод отдавал электроны, а катод принимал их. Тенденция материала отдавать или принимать электроны обычно выражается как стандартный электродный потенциал объекта. Разница между электродными потенциалами катода и анода определяет напряжение всей ячейки.Анод и катод разделены электролитом, который представляет собой жидкость или гель, проводящий электричество. Когда анод и катод затем соединяются друг с другом с помощью провода, анод вступает в химическую реакцию с электролитом, в которой он теряет электроны, создавая катионы или положительные ионы — процесс, называемый окислением. Электроны и катионы встречаются на катоде, где они подвергаются химической реакции, называемой восстановлением. Вместе весь процесс известен как окислительно-восстановительная или окислительно-восстановительная реакция.Электроны перемещаются по проволоке от анода к катоду, потому что они имеют более высокую энергию на аноде, чем на катоде. Когда электроны проходят через такое устройство, как электрическая лампочка, энергия батареи используется для работы. Химические реакции в батарее могут длиться некоторое время, но не вечно. В конце концов они истощают или разъедают анод и катод, оставляя недостаточно материала для поддержания реакции.

Литий-кобальтовый оксид состоит из слоев лития (показаны здесь как пурпурные сферы), которые лежат между пластинами, образованными атомами кобальта и кислорода (показаны здесь как соединенные красные и синие сферы).

В литий-ионной батарее ион лития — это катион, который перемещается от анода к катоду. Литий (Li) легко ионизируется с образованием Li + плюс один электрон. Электролит обычно представляет собой комбинацию солей лития, таких как LiPF 6 , LiBF 4 или LiClO 4 , в органическом растворителе, таком как эфир. Графит (углерод) чаще всего используется в качестве анода, а оксид лития-кобальта (LiCoO 2 ) является наиболее распространенным катодным материалом. Эта комбинация дает общее напряжение 3.6 Вольт (В), что более чем в два раза больше, чем у стандартной щелочной батареи AA. Это дает литий-ионным батареям гораздо лучшее соотношение энергии к объему или удельной энергии, чем у обычных щелочных батарей или других обычных перезаряжаемых батарей, таких как никель-металлгидридные. Отчасти это связано с тем, что литий является третьим по величине элементом после водорода и гелия, и, таким образом, ион лития может нести положительный заряд в очень небольшом пространстве. Однако важно иметь в виду, что даже литий-ионные батареи во много раз менее энергоемкие, чем такие вещества, как моторное топливо или продукты питания, которые хранят энергию в химических связях.Увеличение количества энергии, которое может быть упаковано в батарею заданного объема, является одной из основных задач, стоящих сегодня перед производителями батарей.

Литий-ионные батареи

, в отличие от стандартных щелочных батарей AA и AAA, можно заряжать, выполняя анодную и катодную реакции в обратном порядке. Обычно это делается с помощью зарядного устройства, которое подключается к мощному источнику электроэнергии, например к сетевой розетке или автомобильному прикуривателю. Возможность многократной перезарядки без большой потери емкости — еще одно важное преимущество литий-ионного аккумулятора.Представьте, если бы вам приходилось покупать новую батарею для мобильного телефона каждые несколько дней!

Зарядка и разрядка. Перепечатано с разрешения рисунка 2 из: «Батареи и электрохимические конденсаторы», Абруна, Кия и Хендерсон, Physics Today , декабрь 2008 г. Авторское право 2008 г., Американский институт физики.

Несмотря на все эти преимущества, литий-ионные аккумуляторы не идеальны. Возможно, вы заметили, что количество заряда, которое может выдержать аккумулятор вашего мобильного телефона и ноутбука, уменьшается через несколько лет.Литий-ионные батареи со временем развивают повышенное внутреннее сопротивление, что снижает их способность передавать ток. Кроме того, литий-ионные аккумуляторы уязвимы для ряда потенциальных проблем, включая перегрев на аноде (возможно, из-за тепла от устройства, которое питает аккумулятор) и выработка кислорода из-за перезарядки на катоде. Сложите эти две проблемы вместе, и вы получите хорошие условия для пожара — именно то, что случилось с несколькими незадачливыми владельцами ноутбуков.

Изображение внутренней части литий-ионной аккумуляторной батареи с защитными устройствами.Любезно предоставлено ZDNet UK.

Сегодня литий-ионные аккумуляторы производятся с защитой для ограничения зарядного напряжения и отключения аккумулятора, если температура становится слишком высокой. Другие меры предосторожности позволяют удалить воздух в случае повышения давления и предотвратить слишком глубокую разрядку, после которой аккумулятор не может быть перезаряжен. Эта защитная схема делает батарею безопасной, но она также уменьшает долю батареи, которая используется для хранения энергии, а также медленно разряжает батарею, даже когда устройство выключено.Ряд исследовательских групп занимаются улучшением этих и других аспектов литий-ионной батареи, и в будущем эта трудолюбивая батарея будет появляться во все большем количестве устройств, включая электромобили, о которых мы так много слышим. Эти дни.

Исследования

Большая часть недавних усилий по усовершенствованию литий-ионных аккумуляторов была сосредоточена на разработке анодных или катодных материалов, которые могут удерживать больше заряда в заданном объеме, что приводит к более высокой плотности энергии. Многочисленные исследовательские группы сосредотачиваются на замене графитового анода кремнием, который потенциально может хранить до десяти раз больше текущей емкости.Обратной стороной является то, что кремниевые пленки имеют тенденцию расширяться при поглощении ионов лития во время зарядки и снова сжиматься при высвобождении ионов лития во время разряда, что приводит к измельчению и разрушению анода и короткому сроку службы батареи. Недавно группа под руководством И Цуй из Стэнфордского университета использовала кремниевые нанопроволоки для создания анода, который не имеет этого недостатка. На рисунке 3 представлены изображения этих нанопроволок с ионами лития и без них, полученные с помощью сканирующего электронного микроскопа (SEM).

Рис. 3. Морфология и электронные изменения Si ННК в результате реакции с Li. Из «Высокопроизводительные аноды литиевых батарей с использованием кремниевых нанопроволок». Чан и др. Nature Nanotechnolog, 3, 31 — 35 (2008).

Другая идея, привлекшая значительное внимание, — использование фосфата лития-железа (LiFePO 4 ) в качестве катода. Хотя он имеет немного меньшую емкость и значительно более низкую проводимость по сравнению с оксидом лития-кобальта, фосфат железа дешевле и менее химически активен.Тем не менее-Мин Чан и его коллеги из Массачусетского технологического института (MIT) работают над тем, чтобы это изменить. В 2002 году они показали, что путем «легирования» (добавления примесей) фосфата железа они могут достичь гораздо более высокой проводимости, чем считалось возможным ранее. А в 2004 году команда Чанга смогла использовать очень маленькие (менее 100 нанометров) частицы фосфата железа для улучшения емкости и проводимости катода.

Шарообразная модель фосфата лития-железа, в которой атомы лития — синие, атомы железа — серые, атомы фосфора — желтые, а атомы кислорода — красные.Из «Электропроводящие фосфооливины в качестве электродов-аккумуляторов лития». S Cung, J. Bloking и Y. Chiang. Nature Material , том 1, октябрь 2002 г.

Chiang также принимал участие в исследованиях передовых технологий сборки. Группа исследователей недавно использовала вирусы для сборки катодов литий-ионных аккумуляторов из очень тонких проводов из золота и оксида кобальта. Вирусы и другие биологические системы способны распознавать молекулы и собираться в организованные структуры, что делает их идеальными для инженерии микроскопических батарей.Как и в случае кремниевых анодов, описанных выше, эти новые катоды используют большую площадь поверхности нанопроволок, что обеспечивает большую емкость для заряженных частиц.

Изображение с помощью туннельного электронного микроскопа (ПЭМ) нанопроволок Co3O4, созданных на основе вирусов. «Синтез и сборка нанопроволок для электродов литий-ионных батарей с использованием вирусов». Нам и др., Science, , 12 мая 2006 г., том 312, стр. 886.

Другие исследовательские группы занимаются новыми электролитическими материалами. Как упоминалось ранее, современные литий-ионные батареи со временем теряют емкость, в основном из-за химических реакций между электролитами и электродами.Мохит Сингх из начинающей компании SEEO разрабатывает новый электролит на основе полимеров, которые представляют собой молекулы, состоящие из длинных цепочек повторяющихся структурных единиц. Сингх объединил структурно стабильный полимер с полимером, который хорошо проводит ионы, чтобы создать слой электролита, который является более тонким и менее химически активным, чем те, которые используются сегодня. Хироюки Нисиде из Университета Васэда в Токио разрабатывает полностью органическую гибкую батарею с электродами, состоящими из цепочек органических молекул вместо металлов.Это могло бы избежать проблем, связанных с некоторыми металлами, включая ограниченную доступность и удаление отходов. По сравнению с сегодняшними литий-ионными батареями, Nishide предлагает возможность более быстрой зарядки и разрядки и более длительного срока службы в обмен на, по крайней мере, на данный момент, более низкую плотность заряда.

Фотография гибкого полимерного аккумулятора Nishide. От Такео Суги, Хироки Охширо, Шухей Сугиты, Кеничи Ояйдзу и Хироюки Нисиде, адв. Матер. в печати (adma200803073).

Схема, показывающая реакции зарядки и разрядки.От Такео Суги, Хироки Охширо, Шухей Сугиты, Кеничи Ояйдзу и Хироюки Нисиде, адв. Матер. в печати (adma200803073).

Какими бы материалами ни были выбраны электроды и электролиты, ясно одно: для обеспечения энергоэффективного будущего, о котором мы все мечтаем, батареи будущего, как и многие многообещающие технологии, будут зависеть от инженерных технологий нанометрового уровня. все еще изобретается.

Ссылки

HowStuffWorks
Как работают литий-ионные батареи

Battery University
Отличный веб-сайт, посвященный батареям.

Science @ Berkeley Lab
Батареи будущего II

YouTube
Как это сделано: литий-ионные батареи

Tech-On
Повышение безопасности литий-ионных аккумуляторов

Science Daily
Новый аккумулятор из нанопроволоки удерживает в 10 раз больше заряда существующих аккумуляторов

Обзор технологий
Литий-ионные батареи повышенной емкости

Лес медных стержней диаметром около 100 нанометров создает гораздо большую площадь поверхности для электродов батарей большой емкости.Первоначально опубликовано в «Электроды с наноархитектурой на основе Fe3O4 на основе Fe3O4 для литий-ионных аккумуляторов»
P.L. Таберна, С. Митра, П. Пойзот, П. Саймон * и Дж.М. Тараскон, Nature Materials , 5 (2006) 567-573

Как работают литий-ионные батареи | HowStuffWorks

Литий-ионные аккумуляторные батареи бывают всех форм и размеров, но все они выглядят примерно одинаково внутри. Если бы вам пришлось разобрать аккумуляторную батарею ноутбука (что мы НЕ рекомендуем из-за возможности короткого замыкания аккумулятора и возникновения пожара), вы бы обнаружили следующее:

  • Литий-ионные элементы могут быть либо цилиндрическими батареями, которые выглядят почти идентичными элементам AA, либо они могут быть призматическими , что означает, что они имеют квадратную или прямоугольную форму. Компьютер, который включает:
  • Один или несколько датчиков температуры для контроля температуры батареи
  • A схема преобразователя и регулятора напряжения для поддержания безопасных уровней напряжения и тока
  • Экранированный разъем для ноутбука , который позволяет питанию и информации поступать в аккумуляторный блок и из него
  • A Отвод напряжения , который контролирует энергоемкость отдельные элементы в аккумуляторном блоке
  • A монитор состояния заряда аккумулятора , который представляет собой небольшой вычислительный r, который выполняет весь процесс зарядки, чтобы аккумуляторы заряжались как можно быстрее и полностью.

Если аккумуляторная батарея становится слишком горячей во время зарядки или использования, компьютер отключит подачу питания, чтобы попытаться охладиться. Если вы оставите ноутбук в очень горячей машине и попытаетесь использовать ноутбук, он может не дать вам включиться, пока все не остынет. Если элементы когда-либо полностью разряжаются, аккумуляторная батарея отключится из-за разрушения элементов. Он также может отслеживать количество циклов зарядки / разрядки и отправлять информацию, чтобы измеритель заряда батареи ноутбука мог сказать вам, сколько заряда осталось в аккумуляторе.

Это довольно сложный маленький компьютер, питающийся от батарей. Такое энергопотребление является одной из причин, по которой литий-ионные батареи теряют 5 процентов своей мощности каждый месяц, когда они простаивают.

Литий-ионные элементы

Как и у большинства батарей, внешний корпус сделан из металла. Здесь особенно важно использование металла, потому что аккумулятор находится под давлением. В этом металлическом корпусе есть чувствительное к давлению вентиляционное отверстие . Если аккумулятор когда-либо станет настолько горячим, что может взорваться из-за избыточного давления, это вентиляционное отверстие сбросит дополнительное давление.Батарея, вероятно, впоследствии станет бесполезной, так что этого следует избегать. Отверстие строго предусмотрено в качестве меры безопасности. То же самое и с переключателем с положительным температурным коэффициентом (PTC) , устройством, которое должно предохранять аккумулятор от перегрева.

Этот металлический корпус содержит длинную спираль, состоящую из трех спрессованных вместе тонких листов:

  • A Положительный электрод
  • A Отрицательный электрод
  • A сепаратор

Внутри корпуса эти листы погружены в органический растворитель, который действует как электролит.Эфир — один из распространенных растворителей.

Сепаратор представляет собой очень тонкий лист пластика с микроперфорацией. Как следует из названия, он разделяет положительный и отрицательный электроды, позволяя ионам проходить через них.

Положительный электрод изготовлен из оксида лития-кобальта или LiCoO 2 . Отрицательный электрод изготовлен из углерода. Когда батарея заряжается, ионы лития перемещаются через электролит от положительного электрода к отрицательному и прикрепляются к углю. Во время разряда ионы лития возвращаются в LiCoO 2 из углерода.

Движение этих ионов лития происходит при достаточно высоком напряжении, поэтому каждая ячейка производит 3,7 вольт. Это намного выше, чем 1,5 В, типичные для обычного щелочного элемента AA, который вы покупаете в супермаркете, и помогает сделать литий-ионные батареи более компактными в небольших устройствах, таких как сотовые телефоны. См. Раздел «Как работают батареи» для получения подробной информации о батареях различного химического состава.

Мы рассмотрим, как продлить срок службы литий-ионных аккумуляторов, и выясним, почему они могут взорваться в следующий раз.

Материалы и обработка литий-ионных аккумуляторов

Литий-ионный аккумулятор Предполагается, что это технология чехарда для электрификации трансмиссии и обеспечить стационарное хранение решения, позволяющие эффективно использование возобновляемых источников энергии.В технология уже используется для малой мощности такие приложения, как потребительские электроника и электроинструменты. Обширный исследования и разработки улучшили технологии до стадии, когда кажется очень вероятным, что безопасный и надежный литий-ионные батареи скоро будут бортовой гибридный электрический и электрический транспортных средств и подключенных к солнечным батареям и ветряные мельницы. Однако безопасность технология по-прежнему вызывает беспокойство, сервис жизни еще недостаточно, и стоит слишком высоки.Эта статья резюмирует современный литий-ионный аккумулятор технология для неспециалистов. В нем перечислены материалы и обработка для аккумуляторов и суммирует связанные с этим затраты с ними. Этот документ должен способствовать общее понимание материалов и обработка и необходимость преодоления оставшиеся препятствия на пути к успеху введение на рынок.

ВВЕДЕНИЕ

Мировой спрос на батареи в основном движется бытовой электроникой и прогнозируется рост количества электроинструментов в 6.9% годовых до 2010 г. 73,6 миллиарда долларов. 1

Эффективное использование низкоэмиссионных и безэмиссионные источники энергии, такие как как возобновляемый, но непостоянный ветер и солнечная энергия, требует стационарных, высокопроизводительных, долговечных и низких эксплуатационных расходов накопитель электроэнергии решения. В 2006 году Германия, ведущая нация в использовании энергии ветра как часть его общего производства энергии портфель, потратил впустую 15% своего ветроэнергетического энергии из-за отсутствия подходящих хранение электроэнергии. 2

Гибридные электромобили (HEV) и полностью электрические транспортные средства (электромобили) могут снизить зависимость США от иностранной нефти и будет способствовать увеличению спроса на батареи в будущее. Подсчет эффективности двигателя и включая производство электроэнергии, Электромобили могут сократить потребление бензина до одной четвертой сегодняшнего потребления и может снизить зависимость США на импортную нефть до одной шестой части сегодняшний уровень. 3

В центре внимания U.S. Департамент Energys (DOE) Автомобильные технологии Программа на литий-ионной основе электрохимическое накопление энергии за счет электрохимический потенциал и теоретические мощность, обеспечиваемая этой системой. Литий-ионные батареи могут обеспечить надежная аккумуляторная технология хранения. Изменения в этой программе включают литий-ионный, литий-ионный полимер, и литий-металлическая технология.

Краткосрочные цели DOE для HEV с усилителем достигнуты или превышены в восьми из 11 областей, показывая огромные успех программы.В восемь областей включают разрядный импульс мощность, регенеративная импульсная мощность, доступная энергия, эффективность, срок службы, система вес, объем системы и собственное увольнять. Тем не менее, три цели кажутся сложнее и остаются неудовлетворенными: рабочая температура от 30С до 52C, срок службы 15 лет и цена продажи ниже 500–800 долларов за штуку система на 100000 единиц, произведенных на год. 4 Для гибридных электромобилей с подзарядкой от сети (PHEV) в среднесрочной перспективе и для электромобилей в долгосрочной перспективе, достижения далеки от встречи с цели, а также значительный материал и обработка технологические барьеры необходимо быть преодоленным.Рисунок 1 иллюстрирует Министерство энергетики США и Консорциум передовых аккумуляторов США (USABC) цели и вехи встретились для приложений HEV и EV.

Программа DOE ориентирована на преодоление технических барьеров, связанных с аккумуляторной технологией HEV, а именно стоимость, производительность, безопасность и жизнь: 6

  • Стоимость Текущие литий-ионные стоимость батареи за киловатт составляет примерно в 2 раза больше. Основные затраты связаны с дороговизна сырья и обработка материалов, а также стоимость ячейки, упаковки и изготовление.
  • ПроизводительностьБарьеры производительности в основном связаны с сокращенными мощность разряда при низкой температуре и потеря мощности из-за использования и старение.
  • Безопасность Фактический литий-ионный аккумулятор технология не по сути безопасно. Короткое замыкание, перезаряд, чрезмерная разрядка, раздавливание и высокий температура может привести к термическому побег, пожар и взрыв.
  • Системы двигателей LifeHybrid имеют предполагаемый срок службы 15 лет. Аккумуляторная технология должна соответствовать эта цель с целью 300 000 циклы зарядки.Цикл жизни был продемонстрирован, но календарь жизнь не имеет.

Исторически, электрохимия и приборостроение доминировало разработка аккумуляторов. Вышеупомянутый барьеры производительности проблемы, связанные с материалами. Плохая низкая температура производительность — это распространение проблема при низкой температуре. Утрата мощность из-за использования в основном проблема связано с механическим поведением, трещина инициирование и рост с последующим летальным исходом разрушение и последующее покрытие и пассивация поверхностей.Кроме того, разработка и обработка материалов развитие должно быть решаются согласованно, чтобы сократить стоить и создать безопасную аккумуляторную технологию. Поэтому материаловеды и инженеры-технологи медленно входят арена, на которой цель надежная, безопасная и долговечная электрическая энергия хранилище будет достигнуто.

ПРИНЦИП БАТАРЕИ И ОСНОВНЫЕ НАПРАВЛЕНИЯ

КАК БЫ ВЫ…
… опишите общее значение этой статьи?
Литий-ионный аккумулятор необходимо преодолеть значительные технологичность, безопасность и стоимость препятствия на пути к успеху в рынок. Традиционно аккумуляторная технология была запущена электрохимическими НИОКР. Сегодня, материаловеды и процессы инженеры могут помочь в преодолении барьеры и понимание механизмы отказа.Эта бумага обучает материаловедов и инженеры, чтобы начать этот процесс.

… опишите эту работу в материалы специалист в области науки и техники без опыта в вашем техническая специальность?

Литий-ионный аккумулятор предполагается, что это будет чехарда технология для электрификации трансмиссии и обеспечить стационарные складские решения для обеспечения эффективного использования возобновляемые источники энергии.Однако безопасность технологии высока. все еще вызывает беспокойство, срок службы еще не достаточно, а затраты слишком высоки. В этом документе кратко излагается состояние литий-ионных аккумуляторов технология для неспециалистов и способствует пониманию материалов ученые и технологи.

… опишите эту работу неспециалисту?
Гибридные и полностью электрические автомобили и возобновляемые ветровые и солнечные мощность полагается на эффективную энергию место хранения.Однако в наличии аккумуляторная технология должна преодолевать значительные препятствия по стоимости и эффективности стать надежный и достаточно безопасный для работы как мобильное или стационарное хранилище. Материаловеды и инженеры работают над увеличением своих надежность и снижение их стоимости стать безопасным и доступным решение нашего энергетического кризиса.

Наименьший рабочий элемент в батарее электрохимическая ячейка, состоящая катода и анода разделены и подключен электролитом.В электролит проводит ионы, но является изолятором электронам. В заряженном состоянии анод содержит высокую концентрацию интеркалированного лития, в то время как катод обеднен литием. В течение разряд, ион лития покидает анод и мигрирует через электролит к катоду, в то время как связанный с ним электрон собирается током коллектор, который будет использоваться для питания электрического устройство (показано на рисунке 2).

Конструкции и комбинации ячеек по модулям и пакам сильно различаются.Чтобы установить базовое понимание, это В документе показаны основные конструкции ячеек и затем сосредотачивается на материалах, обработке, и производство с особым упором на батареях для транспортировки.

Электроды в литий-ионных элементах всегда твердые материалы. Можно различать типы клеток по к их электролитам, которые могут быть жидкие, гелевые или твердотельные компоненты. Электролиты в гелевом и твердом состоянии. ячейки представляют собой структурный компонент и не нужны дополнительные разделители для эффективного разделения электродов и предотвращение коротких замыканий.Ячейки бывают кнопочными, цилиндрическими и призматические формы (см. рис. 3). Хороший обзор форм и материалов ячеек предоставлено J. Besenhard et al. 9

Для приложений с низким и низким энергопотреблением, ячейка часто представляет собой полная батарея. Для высокой энергии и большой мощности приложения, такие как транспорт или стационарное хранилище, ряд ячейки упакованы в модуль, а количество модулей упаковано в аккумулятор.

Тонкопленочные батареи
Особой категорией являются твердотельные тонкопленочный аккумулятор. Тонкопленочные батареи состоят только из твердых материалов. В электролит представляет собой твердое ионное стекло или кристалл, а компоненты осаждаются с помощью методов осаждения из паровой фазы. Этот дизайн предлагает максимальную энергию плотность, безопасность и терпимость к злоупотреблениям, но это применимо только к маленьким устройствам для специальных приложений и включает самый затратный способ производства.А хороший обзор систем тонкопленочных аккумуляторов предоставлен N.J. Dudney и Б. Дж. Нойдекер. 10

МАТЕРИАЛЫ

Катодные материалы
Современные катодные материалы включают оксиды лития-металла [например, LiCoO 2 , LiMn 2 O 4 и Li (NixMnyCoz) O 2 ], оксиды ванадия, оливины (такие как LiFePO 4 ) и перезаряжаемые оксиды лития. 11,12 Многослойный оксиды, содержащие кобальт и никель, являются наиболее изученные материалы для литий-ионных батареи. Показывают высокую стабильность в диапазоне высокого напряжения, но кобальт имеет ограниченную доступность в природе и является токсичен, что является огромным недостатком для массового производства. Марганец предлагает недорогую замену на высокий тепловой порог и отличный оцените возможности, но ограниченное поведение на велосипеде. Поэтому смеси кобальта, никель и марганец часто используются объединить лучшие свойства и минимизировать недостатки.Оксиды ванадия имеют большую емкость и отличную кинетику. Однако из-за вставки лития и экстракция, материал имеет тенденцию стать аморфным, что ограничивает езда на велосипеде. Оливины нетоксичны и иметь умеренную мощность с низким выцветают из-за езды на велосипеде, но их проводимость низкий. Способы покрытия материала были введены, которые делают из-за плохой проводимости, но добавляет некоторые затраты на обработку для батареи.

Материалы анода
Материалы анода: литий, графит, литий-легирующие материалы, интерметаллиды, или кремний. 11 Литий кажется самый простой материал, но показывает проблемы с поведением на велосипеде и рост дендритов, который создает короткие замыкания. Углеродистые аноды наиболее часто используемый анодный материал благодаря их невысокая стоимость и доступность. Однако, теоретическая емкость (372 мАч / г) плохо по сравнению с зарядом плотность лития (3862 мАч / г). Некоторые усилия с новыми разновидностями графита и углеродные нанотрубки имеют пытался увеличить емкость, но приходить с ценой высокой обработки расходы.Аноды из сплавов и интерметаллиды компаунды обладают высокой емкостью, но также показывают резкое изменение громкости, что приводит к плохому поведению при езде на велосипеде. Усилия были сделаны, чтобы преодолеть изменение объема за счет использования нанокристаллических материалы и сплав фаза (с Al, Bi, Mg, Sb, Sn, Zn, и др.) в нелегированной стабилизации матрица (с Co, Cu, Fe или Ni). Кремний обладает чрезвычайно высокой емкостью 4199 мАч / г, что соответствует состав Si 5 Li 22 .Однако езда на велосипеде поведение плохое, а дееспособность угасание еще не понято.

Электролиты
Требуется безопасная и долговечная батарея прочный электролит, который выдерживает существующее напряжение и высокие температуры и имеет длительный срок хранения, предлагая высокая подвижность ионов лития. Типы включают жидкость, полимер и твердотельные электролиты. 11 Жидкие электролиты в основном органические, на основе растворителей электролиты, содержащие LiBC 4 O 8 (LiBOB), LiPF 6 , Li [PF 3 (C 2 F 5 ) 3 ] или аналогичный.Самое важное соображение их горючесть; лучший растворители имеют низкую температуру кипения точки и имеют точки вспышки вокруг 30С. Следовательно, вентиляция или взрыв ячейки, а затем и батареи представляют опасность. Разложение электролита и сильно экзотермические побочные реакции в литий-ионных батареях может создавать эффект, известный как тепловой разгон. Таким образом, подбор электролита часто предполагает компромисс между воспламеняемостью и электрохимические характеристики.

Сепараторы со встроенным тепловым отключением механизмы, и дополнительные внешние сложное управление температурным режимом системы добавлены в модули и аккумуляторные батареи. Ионные жидкости находятся под рассмотрение из-за их термического стабильность, но есть серьезные недостатки, например, растворение лития из анод.

Полимерные электролиты ионные проводящие полимеры. Они часто смешанный в композитах с керамикой наночастицы, что приводит к более высокой проводимости и устойчивость к более высоким напряжения.Кроме того, из-за их высокого вязкость и квазитвердое поведение, полимерные электролиты могут ингибировать литий дендриты из растущих 13 и могли поэтому может использоваться с металлическим литием аноды.

Электролиты твердые литий-ионные проводящие кристаллы и керамические стекла. Они показывают очень плохую низкотемпературную производительность, потому что литий подвижность в твердом теле значительно снижена при низких температурах. Кроме того, твердые электролиты требуют специального осаждения условия и температурные процедуры добиться приемлемого поведения, сделав они чрезвычайно дороги в использовании, хотя они устраняют необходимость в сепараторы и риск теплового разгона.

Сепараторы

Хороший обзор материалов сепараторов и потребности обеспечивает П. Арора и З. Чжан. 14 Как следует из названия, разделитель аккумулятора разделяет два электроды физически друг от друга, таким образом избегая короткого замыкания. В случае жидкого электролита сепаратор пеноматериал, пропитанный электролит и удерживает его на месте. Это должен быть электронный изолятор при минимальном сопротивлении электролита, максимальная механическая стабильность, и химическая стойкость к деградации в высоко электрохимически активном окружающая обстановка.Кроме того, разделитель часто имеет функцию безопасности, называемую термической неисправность; при повышенных температурах, он тает или закрывает поры, чтобы закрыть вниз по литий-ионному транспорту без теряет механическую устойчивость. Сепараторы либо синтезируются в листах и собран с электродами или наносится на один электрод на месте. С точки зрения затрат последний метод является предпочтительным, но предполагает некоторый другой синтез, обработка и механические проблемы. Твердотельные электролиты и некоторые полимеры электролиты не нуждаются в сепараторе.

ОБРАБОТКА И ПРОИЗВОДСТВО

Разряд аккумулятора основан на диффузии ионов лития с анода к катоду через токоприемник, как показано на рисунке 2. Этот движущийся механизм в первую очередь основан на диффузионные процессы: доставка лития ионы на поверхность анода, переходя к и распространение через электролит, и переход на и диффузия в катод.Распространение самый ограничивающий фактор в сильноточных разрядка и зарядка, а также при низких температурах представление. Кроме того, интеркаляция и деинтеркаляция процессы создают изменение объема в активные электродные материалы. Это повторилось процесс из-за цикла может инициировать трещины и могут привести к возможному разрушению в результате непригодного активного электрода материал из-за отключения токоприемник или короткое замыкание а в случае литий-металлических батарей — угроза безопасности из-за шероховатости анода и роста дендритов.

Работы по обработке материалов и производство для повышения производительности и управлять неизбежным объемом изменения привели к составным материалы с микро- и наноразмерными частицы. Наночастицы могут вместить изменение громкости с минимальным риск возникновения трещин и их микромасштабные агломераты и композиты приводит к минимальному распространению длины пути через медленную диффузию фазы (электроды). Сильное внимание уделяется от плотности упаковки, чтобы максимально увеличить активную содержание материала, открытая пористость для доступа электролит и электронная непрерывность гарантировать обмен заряда на токоприемники.

Ячейки цилиндрические изготавливаются. и собран следующим образом. Электролиты формируются из паст активных порошки материалов, связующие, растворители, и добавки и подаются на покрытие машины выкладывать на токоприемник фольга, например алюминиевая для катодная сторона и медь для анода боковая сторона. Последующее ведение календаря для однородная толщина и частицы после размера следует разрезать до нужного ширина. Затем компоненты уложены на сепаратор-анод-катод-сепаратор стопки с последующей намоткой на цилиндрические ячейки, вставки в цилиндрические корпуса, и сварка проводки таб.Затем ячейки заполняются электролит. Электролит должен смачиваться разделитель, впитайте и намочите электроды. Процесс смачивания и замачивания это самый медленный шаг и поэтому является определяющим фактором скорости линии. Все остальные необходимые изоляторы, затем прикрепляются пломбы и предохранительные устройства. и подключен. Тогда клетки заряжаются с первого раза и тестируются. Часто необходимо вентилировать клетки во время первая зарядка. Далее следуют первые циклы зарядки. сложные протоколы для улучшения производительность, поведение на велосипеде и срок службы ячеек.В последнее время усилия были произведены в сочетании и гибридная обработка, такая как прямое осаждение разделителей на электроды и быстрые термообработки.

АНАЛИЗ РАСХОДОВ НА АККУМУЛЯТОРЫ ДЛЯ ТРАНСПОРТИРОВКИ

Требования к аккумуляторной батарее для HEV отличаются от таковых для PHEV и электромобили. 6 Программа Министерства энергетики целевые производственные цены от $ 500 до 800 долларов США за аккумуляторные блоки HEV и 1700 долларов США до 3400 долларов за аккумуляторные блоки PHEV.

Материальные потребности и сырье Затраты на материалы
Потребности в сырье и затраты на основе исследования Л. Гейнса и Р. Куэнса. 15 Стандартная цилиндрическая ячейка это так называемая ячейка 18650 (18 мм шириной и длиной 65 мм), которая имеет общую масса около 40 г (включая неактивные материал и упаковка) и емкость около 1,35 Ач. 16 Масса материала необходимо для аккумуляторов HEV и EV ячейки показаны в таблице I.

Из таблицы I можно оценить, что емкость ячеек примерно зависит от масса. Хотя упаковка в составе всего для большой батареи меньше чем у маленькой батареи, общая масса батареи на 10 Ач составляет примерно 325 г, а общая масса ячейки 100 Ач составляет примерно 3430 г. Таким образом, расчет стоимости материалы можно получить, увеличив масштаб затраты на материалы в ячейке 18650 на в 10 раз для HEV и в раз 100 для электромобилей.Большинство конструкций батарей в результате батарейки в общей сложности около 100 ячеек в нескольких модулях (например, как 12 × 8, 10 × 10 или аналогичный).


Таблица I. Расчетное содержание материалов в типичных литий-ионных элементах (на основе ссылки 15)
Высокоэнергетический (100 Ач) элемент EV
Ячейка повышенной мощности (10 Ач) HEV
Материал / компонент Количество (г) Часть (%) Количество (г) Часть (%)
Анод (сухой)
Активный материал (графит) 563.6 16,4 14,1 4,3
Папка 69,7 2,0 3,1 1,0
Токосъемник (Cu) 151,9 4,4 41,6 12,8
Катод (сухой)
Активный материал 1,408.6 41,0 74,4 22,9
Углерод 46,4 1,4 3,2 1,0
Папка 92,9 2,7 6,3 1,9
Токосъемник (Al) 63,0 1,8 19.4 6,0
Электролит 618,0 18,0 44,0 13,5
Разделитель 60,5 1,8 16,4 5,0
Остальная часть ячейки
Выступы, концевые пластины, клеммные блоки 66.2 1,9 32,2 9,9
Ядро 0,9 0,0
Контейнер 291,0 8,5 70,1 21,6
Итого 3 432,7 324.8

Например, затраты на материалы для элемента 18650 на основе LiCoO 2 (включая обработка материалов) может быть оценивается примерно в 1,28 доллара за весь клетка. 15

Обработка материалов очень сложна отделить от стоимости материалов и поэтому включается в стоимость материалов в этом разделе. Кроме того, стоимость обработки материалов меняется резко с разными материалами и поэтому может считаться зависящим от материала.Однако новая обработка методы могут снизить текущий максимум стоимость сырья.

Затраты на производство и оплату труда
Современное производство цилиндрическая ячейка на производственной линии включает смешивание и нанесение покрытия, календарное оформление и продольная резка, резка, намотка, сварка язычков, автоматизированная сборка и проверка с последующим тестированием, ездой на велосипеде и упаковка. Произвести 100000 единиц в год требуется общая рабочая сила От 76 до 104 человек, работающих на двух линиях в две смены.Гейнс и Куэнса 15 по оценкам стоимость рабочей силы на ячейку и накладные расходы стоит 0,42 доллара на основе 18650 сотовый.

Итого
Общая стоимость 18650 ячеек в сумме составляет примерно 1,70 доллара. Масштабирование до аккумуляторов HEV дает 1700 долларов (вдвое дороже цель). Для Аккумуляторы для электромобилей пока нет. Однако на основании этот расчет, можно было бы вычислить весьма неопределенная оценка в 17000 долларов на батарею.

Оценка показывает, что для достижения целей, необходимы огромные усилия, чтобы снизить стоимость обработки, стоимость материалов, и количество необходимого материала.

ЗАКЛЮЧЕНИЕ

Нет сомнений в том, что литий-ионный клеточная химия предлагает одни из лучших варианты хранения электроэнергии для приложения с высокой и высокой мощностью такие как транспортные и стационарные хранение за счет их электрохимических потенциал, теоретические возможности и плотность энергии.Однако по оценкам стоимость батареи для примера приложения HEV все еще вдвое выше целевой цены учреждено USABC и DOE. С ростом цен на нефть немного выше цена, которую цель может уже получить достаточно потребительского признания для успешный выход на рынок. Однако цена еще впереди вниз.

Есть четкие потребности в областях разработки материалов, оптимизации, и обработка. Расчеты выше отдельно между материалами и Затраты на рабочую силу.Однако это практически невозможно разделить затраты на сырье от затрат на обработку материалов, потому что мы никогда не используем чистое сырье в процесс; скорее, мы используем материальные соединения которые подходят для применения и это наименее дорогие в производство. Кроме того, даже сырье и материальные соединения имеют обработано. Таким образом, новые недорогие методы обработки этих материалов и соединения должны быть разработаны чтобы свести к минимуму сырые батареи стоимость материала.

Требуются работы по гибридным технологиям например, сочетание недорогих навозной жижи техники с методами лечения заменить задачи, которые в настоящее время выполняется в два разных этапа. Высокоскоростной процедуры, такие как лучистая обработка, необходимо оптимизировать, чтобы заменить медленные печные процедуры. Инвестиции затраты и время производства должны быть минимизированным, чтобы сделать их выполнимыми для аккумуляторные приложения. Кроме того, гибрид материалы, которые могут выполнять функции из двух или более компонентов в настоящее время в использовании должны быть разработаны и встроены в батареи (например,г., цельный или высоковязкие электролиты, не нужны сепараторы, имеют усиленный литий обменное поведение, намочите электрод, и образуют хорошую связь).

БЛАГОДАРНОСТИ

Автор выражает благодарность. поддержка Дэвида Хауэлла (Энергия Руководитель программы НИОКР по хранению, Транспортное средство Программа технологий, Управление энергетики Эффективность и возобновляемые источники энергии, Департамент энергетики) и Раймонд Боеман (директор транспортной программы, Окриджская национальная лаборатория), руководство от Крейга Блю и плодотворные дискуссии с Нэнси Дадни и многие другие коллеги.Это исследование в Национальной лаборатории Ок-Ридж, под управлением ООО «ЮТ-Баттель» для Министерство энергетики США под контракт DE-AC05-00OR22725, имеет спонсируется Vehicle Technologies Программа для Управления энергетики Эффективность и возобновляемые источники энергии.

ССЫЛКИ

1. World Batteries, Промышленное исследование с прогнозами до 2010 и 2015 гг., (Исследование № 2095) (Кливленд, Огайо: Freedonia Группа, 2006).
2. Федеральное министерство образования и науки Германии, Innovation Alliance, Литий-ионная батарея, 2015 г. (2008 г.), http://www.bmbf.de/de/11828.php.
3. Расчеты Национальной лаборатории Ок-Ридж основаны на по информации Управления энергетической информации, Агентство по охране окружающей среды США, KEMA, и Университет штата Делавэр (2008 г.).
4. Д. Хауэлл, Исследования и разработки в области накопления энергии, Годовой отчет о проделанной работе за 2006 г. (Вашингтон, Округ Колумбия: Управление FreedomCAR и транспортных технологий, U.С. Министерство энергетики, 2007 г.).
5. FreedomCAR и Fuel Partnership and United State Advanced Battery Consortium, Электрохимический Техническая группа по хранению энергии Разработка технологий Дорожная карта (Саутфилд, Мичиган: USCAR, 2006).
6. Д. Хауэлл, Исследования и разработки в области накопления энергии, Годовой отчет о проделанной работе за 2007 г. (Вашингтон, Округ Колумбия: Управление автомобильных технологий, Департамент США. энергетики, 2008).
7. Дж. Гуденаф, H.D. Абруна, М. Бьюкенен, редакторы журнала «Потребности в фундаментальных исследованиях в области электроэнергетики» Хранение (Вашингтон, Д.C .: Управление фундаментальных энергетических наук, Министерство энергетики США, 2007 г.).
8. Х.А. Кене, редактор, Справочник по аккумуляторным технологиям , 2-е издание (Нью-Йорк: Марсель Деккер, Инк., 2003).
9. Й. Безенхард, редактор, Справочник материалов для батарей (Вайнхайм, Германия: Wiley-VCH, 1999).
10. Дадни Н.Дж., Нойдекер Б.Дж., Твердотельные тонкие Системы пленочных литиевых батарей, Curr. Opin. Твердое состояние Мат. Sci., 4 (5) (1999), стр. 479482.
11. А.К. Шукла и Т. Кумар, Материалы для Next- Литиевые батареи поколения, Curr. Sci. , 94 (3) (2008), С. 314331.
12. M.S. Уиттингем, Материалы, с которыми сталкиваются проблемы Накопитель электроэнергии, Бюллетень MRS , 33 (4) (2008), стр. 411419.
13. Дж. Ньюман, К. Монро, Влияние эластичности Деформация в кинетике осаждения лития / полимера Интерфейсы, J. Electrochem. Soc. 152 (2) (2005), стр.A396A404.
14. P. Arora, Z. Zhang, Battery Separators, Chem. Ред. , 104 (2004), стр. 44194462.
15. Л. Гейнс, Р. Куэнза, Стоимость литий-ионных батарей. для транспортных средств (Отчет ANL / ESD-42) (Аргонн, Иллинойс: Аргоннская национальная лаборатория, 2000 г.).
16. Дж. Карконе, Обновленная информация о литий-ионных батареях (документ представлен на 15-м международном семинаре и выставке по первичным и вторичным батареям, Форт-Лодердейл, Флорида, 25 марта 1998 г.).

Клаус Даниэль занимается обработкой материалов Группа, Отделение материаловедения и технологий, Национальная лаборатория Ок-Ридж, Ок-Ридж, Теннесси, а также Департамент материалов Наука и инженерия, Университет Теннесси, Ноксвилл, Теннесси. С доктором Дэниелом можно связаться по телефону (865). 241-9521; электронная почта [email protected].

Подержанные литий-ионные батареи | Агентство по охране окружающей среды США

Литий-ионные батареи и устройства, содержащие эти батареи, НЕ должны выбрасывать в бытовой мусор или в мусорные баки.

Литий-ионные аккумуляторы СЛЕДУЕТ сдавать на отдельные пункты переработки или сбора опасных бытовых отходов.

Во избежание возгорания заклейте клеммы аккумуляторных батарей и / или поместите литий-ионные аккумуляторы в отдельные пластиковые пакеты.

На этой странице:


Общая информация

Литий-ионные (Li-ion) аккумуляторы

используются во многих продуктах, таких как электроника, игрушки, беспроводные наушники, портативные электроинструменты, малая и крупная бытовая техника, электромобили и системы хранения электроэнергии.При неправильном обращении в конце срока их полезного использования они могут нанести вред здоровью человека или окружающей среде.

Повышенный спрос на литий-ионные аккумуляторы на рынке в значительной степени объясняется высокой «плотностью энергии» этого химического состава аккумуляторов. «Плотность энергии» означает количество энергии, которое система хранит в определенном пространстве. Литиевые батареи могут быть меньше и легче других типов батарей, сохраняя при этом такое же количество энергии. Такая миниатюризация привела к быстрому увеличению потребления потребителями портативных и беспроводных продуктов меньшего размера.


Информация для потребителей

Существует два типа литиевых батарей, которые используются потребителями в США и с которыми необходимо работать по окончании срока службы: одноразовые неперезаряжаемые литий-металлические батареи и перезаряжаемые литий-полимерные элементы (литий-ионные, литий-полимерные). ионные ячейки).

Щелкните изображение, чтобы увеличить его. Литий-ионные батареи сделаны из таких материалов, как кобальт, графит и литий, которые считаются важными минералами. Критические полезные ископаемые — это сырье, которое экономически и стратегически важно для США.S., имеют высокий риск того, что их снабжение будет нарушено, и для которых нет легких заменителей. Когда эти батареи выбрасываются в мусор, мы полностью теряем эти критически важные ресурсы. Для получения дополнительной информации о важнейших минералах посетите веб-сайт Геологической службы США.

Кроме того, если аккумулятор или электронное устройство, содержащее аккумулятор, выбрасывать в мусорное ведро или помещать в муниципальный мусорный бак вместе с бытовыми вторсырьями, такими как пластик, бумага или стекло, они могут быть повреждены или раздавлены во время транспортировки или обработки и сортировки. оборудование, создающее пожарную опасность.

Поэтому литий-ионные аккумуляторы

или аккумуляторы, содержащиеся в электронных устройствах, следует утилизировать в сертифицированных перерабатывающих предприятиях аккумуляторной электроники, которые принимают аккумуляторы, а не выбрасывать их в мусор или выбрасывать в муниципальные мусорные баки.

Одноразовые неперезаряжаемые батареи
  • Изготовлен из металлического лития и обычно используется в таких продуктах, как фотоаппараты, часы, пульты дистанционного управления, портативные игры и детекторы дыма.
  • Эти батареи может быть трудно отличить от обычных размеров щелочных батареек, но они также могут иметь особую форму (например,g., кнопочные элементы или батарейки для монет) для определенного оборудования, например некоторых типов фотоаппаратов: поищите слово «литиевый» на батарее, чтобы помочь идентифицировать их.
Перезаряжаемые литий-полимерные элементы (литий-ионные, литий-ионные элементы)
  • Обычно встречается в мобильных телефонах, электроинструментах, цифровых камерах, ноутбуках, детских игрушках, электронных сигаретах, мелкой и крупной бытовой технике, планшетах и ​​электронных книгах.
  • Некоторые литий-ионные батареи можно легко извлечь из продуктов, в которых они работают, а другие — нет.

Утилизация литий-ионных батарей для потребителей

Рекомендация EPA: найдите место для переработки литий-ионных аккумуляторов и продуктов, содержащих литий-ионные аккумуляторы, используя одну из предлагаемых ссылок; не выбрасывайте их в мусорное ведро или в муниципальные мусорные баки.

Литий-ионные аккумуляторы в электронике: Отправьте электронные устройства, содержащие литий-ионные аккумуляторы, сертифицированным переработчикам электроники, участвующим розничным продавцам и перерабатывающим компаниям в службах возврата электроники или обратитесь в местную программу сбора твердых или опасных бытовых отходов для получения дополнительных вариантов.

Литий-ионные аккумуляторы, которые легко отделяются от продукта (например, электроинструменты): Найдите ближайший к вам пункт переработки, чтобы правильно утилизировать литий-ионные аккумуляторы. Отправляйте отдельные аккумуляторы специализированным предприятиям по переработке аккумуляторов или розничным продавцам, которые участвуют в услугах по возврату, или обратитесь в местную программу по твердым отходам или бытовым опасным отходам для получения дополнительных вариантов.

Два ресурса для поиска переработчика — это база данных службы экстренной помощи Earth 911 и Call2Recycle.

Меры предосторожности при обращении: Поместите каждую батарею или устройство, содержащее батарею, в отдельный пластиковый пакет.Оберните токонепроводящую ленту (например, изоленту) на клеммах аккумулятора. В случае повреждения литий-ионного аккумулятора обратитесь к производителю аккумулятора или устройства за конкретной информацией по обращению. Даже использованные батареи могут иметь достаточно энергии, чтобы нанести травму или вызвать возгорание. Не все батареи могут быть удалены или обслужены пользователем. Соблюдайте маркировку батареи и продукта относительно безопасности и использования.

Утилизация литий-ионных аккумуляторов среднего и крупного размера

Рекомендация EPA: Свяжитесь с производителем, автомобильным дилером или компанией, которая установила литий-ионную батарею, для получения информации о возможностях управления; не выбрасывайте его в мусорное ведро или в муниципальные мусорные баки.

Из-за размера и сложности этих аккумуляторных систем, средние и крупные литий-ионные аккумуляторы не могут быть удалены потребителем. См. Инструкции производителя, а также предупреждения и инструкции по технике безопасности.

  • Автомобиль: обратитесь к дилеру автомобилей, в магазин или на ремонтную мастерскую, где был приобретен аккумулятор.
  • Накопитель энергии: обратитесь к производителю оборудования для аккумулирования энергии или компании, установившей аккумулятор.

«Избегайте искры.Будьте осторожны с аккумулятором ». Кампания

В связи с увеличением числа пожаров на предприятиях по переработке и утилизации отходов по всей стране отраслевые группы совместно разработали «Избегайте искры». Будьте осторожны с аккумулятором. Кампания . Эта кампания направлена ​​на ознакомление американского потребителя с безопасностью использования батарей и правильным обращением с использованными литий-ионными батареями. Главный посыл кампании заключается в том, что батареи можно и нужно утилизировать, когда срок их службы истечет. Для получения дополнительной информации посетите веб-сайт Call2Recycle.

Кампания «Поставь галочку» Министерства транспорта (DOT)

Кампания DOT «Check the Box» — это кампания по информированию общественности, направленная на предотвращение серьезных инцидентов за счет повышения осведомленности населения о предметах повседневного пользования, которые считаются опасными при транспортировке, в том числе о батареях, которые упаковываются и отправляются на переработку или утилизацию. Перед отправкой на переработку или утилизацию батареи должны быть правильно идентифицированы, упакованы и промаркированы с помощью маркировки на упаковке.Для получения дополнительной информации перейдите в кампанию DOT’s Check the Box и посмотрите видео кампании.


Информация для бизнеса

Некоторые литий-ионные батареи могут соответствовать определению опасных отходов в соответствии с Законом о сохранении и восстановлении ресурсов (RCRA), если они демонстрируют такие характеристики опасных отходов, как воспламеняемость, реактивность или токсичность при утилизации. Лица, производящие отходы, которые определены как опасные в соответствии с RCRA, называются «производителями опасных отходов».«Эти правила не применяются к домашним хозяйствам, потому что согласно RCRA опасные отходы, выбрасываемые домашними хозяйствами, как правило, не подпадают под действие правил обращения с опасными отходами. Напротив, коммерческие предприятия несут ответственность за определение того, являются ли производимые ими отходы опасными отходами, включая литий-ионные батареи по окончании срока их службы.

Литий-ионные батареи с различным химическим составом могут выглядеть почти одинаковыми, но при этом иметь разные свойства. Кроме того, некоторые утилизированные литий-ионные батареи с большей вероятностью будут иметь опасные свойства, если они содержат значительный заряд, однако такие батареи могут показаться пользователю полностью разряженными.По этим причинам генератору может быть трудно определить, какие из его отработавших литий-ионных аккумуляторов считаются опасными при утилизации. Таким образом, в случае неопределенности EPA рекомендует компаниям рассмотреть возможность обращения с литий-ионными аккумуляторами в соответствии с федеральными правилами «универсальных отходов» в Разделе 40 Свода федеральных правил (CFR), часть 273.

Правила универсальных отходов содержат упрощенный набор требований к производителям конкретных типов обычных опасных отходов (например,g., люминесцентные лампы, содержащие ртуть, батарейки) из самых разных коммерческих помещений. Требования различаются в зависимости от того, накапливаете ли вы за один раз меньше или больше 5000 кг общих универсальных отходов, но они включают инструкции о том, как обращаться с отходами, как маркировать контейнеры, как долго отходы могут накапливаться на месте и куда могут быть отправлены отходы, среди прочего. Правила универсальных отходов не требуют отправки с использованием декларации об опасных отходах, но требуют, чтобы отходы отправлялись на разрешенный объект по удалению опасных отходов или в переработчик.EPA рекомендует предприятиям проконсультироваться со своими государственными агентствами по твердым и опасным отходам для получения дополнительной информации о применимых правилах в отношении универсальных отходов.

Дополнительным соображением, особенно для малых предприятий или предприятий, производящих небольшие количества опасных отходов в месяц, являются правила RCRA «Генераторы очень малых количеств» (VSQG). Литий-ионные аккумуляторы, выбрасываемые предприятиями, которые производят менее 100 кг (220 фунтов) опасных отходов в месяц, считаются отходами генератора с очень небольшим количеством и могут подлежать сокращению требований к опасным отходам.Перед тем, как использовать освобождение от VSQG, сверьтесь с программой государственного регулирования, так как они могут иметь другие требования. Хотя EPA рекомендует утилизировать все батареи в соответствии со стандартами универсальных отходов, лица, собирающие или хранящие использованные литий-ионные батареи в домашних хозяйствах или в VSQG для целей любого исключения, должны хранить их отдельно от других собранных литий-ионных аккумуляторов, на которые распространяются более высокие требования. строгие требования. В противном случае они рискуют подвергнуть всю смешанную коллекцию более строгим требованиям (например,g., упрощенные требования к универсальным отходам или стандартные правила образования опасных отходов).


Информация для рабочих

Управление охраны труда и здоровья Министерства труда (OSHA) выпустило информационный бюллетень по безопасности и охране здоровья: Предотвращение травм от пожара и / или взрыва от небольших и переносных устройств с питанием от литиевых батарей . Бюллетень носит рекомендательный характер, информационный по содержанию и предназначен для обучения работников и помощи работодателям в обеспечении безопасных и здоровых условий труда.


Информация для перевозчиков

Правила обращения с опасными материалами Департамента транспорта (DOT)

Литиевые батареи

являются опасными материалами и подпадают под действие Положений об опасных материалах Министерства транспорта (HMR; 49 CFR, части 171–180). Сюда входят требования к упаковке и стандартным сообщениям об опасности (например, маркировка, ярлыки, отгрузочные документы, информация о действиях в чрезвычайных ситуациях) и требования к обучению сотрудников, связанных с опасностями. Требования к информированию об опасности содержатся в части 172 HMR, а требования, специфичные для литиевых батарей, — в разделе 173 49 CFR.185.


Дополнительные ресурсы

литий-ионных аккумуляторов Как они работают?

Ваши беспроводные наушники, мобильный телефон, умные часы, солнечная панель или электромобиль были бы невозможны всего пару десятилетий назад. Эта революция произошла, в частности, благодаря литий-ионным батареям . Эти батареи способны хранить больше энергии в меньшем пространстве, чем другие, и поэтому будут иметь ключевое значение для будущего хранения энергии перед лицом проблем изменения климата, включая декарбонизацию и возобновляемые источники энергии.

Стоимость литий-ионных аккумуляторов упала на 85% с 2010 года и, как ожидается, будет еще больше падать в течение следующего десятилетия. По словам Рори Маккарти, аналитика по хранению энергии из Wood Mackenzie, «литий-ионный имеет значительное преимущество перед другими альтернативными технологиями хранения, а именно экономия на масштабе». Другими словами, его постепенное внедрение снижает затраты.

ЧТО ТАКОЕ ЛИТИЙ-ИОННАЯ БАТАРЕЯ

Литий-ионная или литий-ионная батарея — это тип перезаряжаемой батареи, в которой в качестве одного из электродов используются соединения лития.В 1985 году Акира Ёшино разработал первый прототип на основе более ранних исследований Джона Гуденаф и других экспертов в 1970-х годах. Впоследствии команда Sony разработала первую коммерческую литий-ионную батарею в 1991 году. За прошедшие годы были достигнуты дальнейшие успехи, особенно в использовании катодов из никель-марганец-кобальта (NMC) , которые улучшили плотность заряда, производительность и безопасность. .

ЗАРЯДКА ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ. ФУНКЦИОНИРОВАНИЕ И ХАРАКТЕРИСТИКИ

Литий-ионные батареи состоят из следующих частей: отрицательного электрода или анода, из которых высвобождаются электроны, и положительного электрода или катода, принимающего их.Когда батарея подключена, ионы лития перемещаются от анода к катоду через электролит , , что приводит к разности потенциалов, которая создает ток. Когда аккумулятор заряжен, ионы лития возвращаются к аноду.

В свою очередь, батареи состоят из одного или нескольких элементов и, в зависимости от их конечного использования, бывают разных типов: цилиндрические элементы, которые используются в большинстве электромобилей, состоят из листов различных компонентов, которые свернуты в цилиндр. , в то время как плоские элементы, такие как те, которые используются в мобильных телефонах и ноутбуках, используют литий-ионный полимер в виде уложенных друг на друга листов.

Кроме того, литий-ионные аккумуляторы включают в себя другие элементы, улучшающие их характеристики и безопасность: датчик температуры, схему регулятора напряжения и монитор состояния заряда. Эти компоненты контролируют заряд и протекание тока , записывают последнюю емкость, достигнутую при полной зарядке, и контролируют температуру, что может отрицательно сказаться на сроке службы батареи.

Рекомендации по продлению срока службы литий-ионных батарей.

СМОТРЕТЬ ИНФОРМАЦИЮ: Рекомендации по продлению срока службы литий-ионных батарей [PDF]

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ЛИТИЙ-ИОННЫХ БАТАРЕЙ

По сравнению с традиционными никель-гидридными или никель-кадмиевыми батареями , литиево-ионные батареи имеют несколько преимуществ: в первую очередь, они заряжаются за меньшее время и дольше разряжаются, но они также имеют более высокую плотность энергии, не имеют эффекта памяти и практически не теряют заряд, когда они не используются, и т. д.

Однако, как и любая технология, они имеют определенные недостатки, в основном связанные с защитой (они должны включать системы для предотвращения перезарядки и перегрева) и стоимостью (несмотря на вышеупомянутое снижение цены, они все еще примерно на 40% дороже в производстве, чем никель-кадмиевые).

ПРИМЕНЕНИЕ ЛИТИЙ-ИОННЫХ БАТАРЕЙ

Преимущества литий-ионных аккумуляторов и их снижение стоимости привели к увеличению их использования во многих областях:

Системы аварийного питания

В критических установках, таких как серверные фермы, батареи ИБП (источника бесперебойного питания) защищают вас от потери или нестабильности электроснабжения.

Накопитель солнечной энергии

Накопитель солнечной энергии работает с перебоями, и эти батареи лучше всего подходят для солнечных панелей из-за способа их зарядки и их скорости, особенно для собственного потребления.

Бытовая электроника и мобильные устройства

Мобильные устройства стали основным применением этих аккумуляторов, что позволяет постоянно увеличивать их миниатюризацию.

Помощь инвалидам

Эти типы батарей используются в электрических инвалидных колясках, лестничных подъемниках или моторизованных протезах, что облегчает жизнь людям с ограниченными физическими возможностями.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *