Site Loader

Содержание

Цифровой LC-метр • HamRadio

Цифровой LC-метр удобный для испытания оборудования, который вы можете сделать для себя для измерения индуктивности и емкости в широком диапазоне. Цифровой LC-метр основан на оригинальной методике измерений, обеспечивает удивительную точность и прост в сборке. Многие современные цифровые мультиметры имеют широкие диапазоны измерения емкости, особенно в дорогих моделях.

Поэтому нетрудно измерить значение конденсаторов, если их значение превышает 50 пФ или около того. Ниже этого уровня цифровые мультиметры не очень полезны для измерения емкости. Конечно, существуют специальные цифровые измерители емкости, которые обычно измеряют до нескольких пФ или около того. Но если вы хотите измерить такие вещи, как паразитная емкость, они тоже имеют ограниченное применение. Еще хуже, когда дело доходит до измерения индуктивности. Очень немногие цифровые мультиметры имеют способность измерять индуктивность, поэтому во многих случаях приходится использовать мост индуктивности старого типа или измеритель Q. Оба они в основном являются аналоговыми приборами и не предоставляют ни высокого разрешения, ни особенно высокой точности.

Это отличается от профессионалов, которые в течение последнего времени могли использовать цифровые измерители LCR. Они позволяют быстро и автоматически измерять практически любой пассивный компонент, часто измеряя не только их первичный параметр (например, индуктивность или емкость), но и один или несколько вторичных параметров. Тем не менее, многие из этих приборов имеют высокую цену, благодаря микроконтроллерной технологии эта ситуация несколько изменилась за последние несколько лет, и теперь стали гораздо более доступны цифровые приборы. К ним относятся как профессиональные, так и самодельные приборы, а также устройство, описанное здесь.

Основные особенности цифровой LC-метр

Как показано на рисунке в тексте, наш новый цифровой LC-метр очень компактен. Он прост в сборке, имеет жидкокристаллический дисплей и его можно разместить в небольшом корпусе. Себестоимость цифровой LC-метр не высока так что каждый желающий может это себе позволить. Несмотря на свою скромную цену, цифровой LC-метр предлагает автоматическое прямое цифровое измерение в широком диапазоне емкости (C) и индуктивности (L) с разрешением в 4 знака. Фактически, он измеряет емкость от 0,1 до 800нФ и индуктивность от 10 до 70мГн. Точность измерения также удивительно хорошая, лучше, чем ± 1% от показаний. Цифровой LC-метр работает от 9В до 12В постоянного тока, потребляя в среднем ток менее 20 мА. Это означает, что он может питаться от 9В батареи встроенной в корпус или от внешнего блока питания.

Как работает цифровой LC-метр

Впечатляющие характеристики цифровой LC-метр зависят от оригинальной методики измерений, разработанной около 12 лет назад Нилом Хехтом из штата Вашингтон в США. Он использует тестовый генератор широкого диапазона, частота которого изменяется путем подключения неизвестной индуктивности или конденсатора, которую вы измеряете.

Результирующее изменение частоты измеряется микроконтроллером, который затем вычисляет значение компонента и отображает его непосредственно на жидкокристаллическом дисплее. Так что в приборе в основном только две ключевые части: (1) сам тестовый генератор и (2) Микроконтроллер, который измеряет его частоту (с измеряемым компонентом и без него) и вычисляет значение компонента. Для достижения надежной генерации в широком частотном диапазоне тестовый генератор основан на аналоговом компараторе с положительной обратной связью смотрим на рисунке. Эта конфигурация имеет естественную склонность к генерации из-за очень высокого усиления между входом и выходом компаратора. При первом включении питания (+ 5 В) неинвертирующий (+) вход компаратора удерживается при половине напряжения питания (+2,5) V делителем смещения, образованным двумя резисторами сопротивлением 100к.

Однако напряжение на инвертирующем входе изначально равно нулю, поскольку конденсатору 10мФ на этом входе требуется время для зарядки через резистор обратной связи сопротивлением 47к. Таким образом, с неинвертирующим входом, намного более положительным, чем его инвертирующий вход, компаратор первоначально переключает свой выходной сигнал на высокий уровень (т. е. на + 5 В). Как только это происходит, конденсатор 10 мФ на инвертирующем входе начинает заряжаться через резистор 47к и таким образом, напряжение на этом входе возрастает экспоненциально. Как только оно поднимается немного выше уровня + 2,5 В, выход компаратора внезапно переключается на низкий уровень. Это низкое напряжение подается обратно на неинвертирующий вход компаратора через резистор обратной связи сопротивлением 100к. Он также подключен через входной конденсатор 10 мФ к настроенной цепи, образованной индуктивностью L1 и конденсатором C1. Это вызывает генерацию на своей резонансной частоте.

Измерение цифровой LC-метр.

В результате компаратор и настроенная схема теперь функционируют как генератор на этой резонансной частоте. Фактически, компаратор эффективно функционирует как «отрицательное сопротивление» во всей схеме, чтобы компенсировать его потери и поддерживать колебания. Как только возникла генерация, то на выходе компаратора появляется прямоугольные импульсы той же частоты, именно эта частота (Fout) измеряется микроконтроллером. На практике, прежде чем что-либо еще будет подключено к цепи, Fout просто соответствует резонансной частоте L1, C1 и любой паразитной емкости, которая может быть связана с ними. Когда частота сначала подается на измеритель, микроконтроллер измеряет эту частоту (F1) и сохраняет его в памяти. Затем он запитывает герконовое реле RLY1, которое переключает конденсатор C2 параллельно с C1 и, таким образом, изменяет частоту генератора (то есть понижает ее). Микроконтроллер измеряет и сохраняет эту новую частоту (F2). Затем микроконтроллер использует эти две частоты плюс значение C2 для точного расчета значений как C1, так и L1. Если вам интересно, уравнения, которые он использует для этого, показаны на рисунке (Режим калибровки). После этих вычислений микроконтроллер снова выключает реле RLY1 для отключения конденсатора C2 из контура, позволяя частоте генератора вернуться к F1. Теперь прибор готов к измерению неизвестной индуктивности или конденсатора (Cx или Lx).

Как показано на рисунке, неизвестный компонент подключается через тестовые клеммы. Затем он подключается к настроенной цепи генератора через переключатель S1. При измерении неизвестного конденсатора S1 переключается в положение «C», так что конденсатор подключается параллельно C1. В качестве альтернативы для неизвестной индуктивности S1 переключается в положение «L», так что бы индуктивность соединялась последовательно с L1. В обоих случаях добавленные значения Cx или Lx снова вызывают изменение частоты генератора на новую частоту (F3). Как и в случае с F2, это всегда будет ниже, чем F1. Таким образом, измеряя F3, как и ранее, и отслеживая положение переключателя S1 (что осуществляется через соединение C / L на выводе 12 IC1), микроконтроллер может рассчитать значение неизвестного компонента, используя одно из уравнений, показанных в нижней части поля уравнений — т. е. раздел с надписью: «В режиме измерения».

Из этих уравнений вы можете видеть, что микроконтроллер имеет довольно максимальное «сжатие чисел», как в режиме калибровки, когда он вычисляет значения L1 и C1, так и в режиме измерения, когда он вычисляет значение Cx или Lx. Каждое из этих значений должно быть рассчитано с высокой степенью разрешения и точности. Для достижения этого в прошивке микроконтроллера необходимо использовать некоторые математические вычисления с 24-разрядными числами с плавающей запятой.

Так как эта оригинальная, но в то же время простая схема измерения используется для создания практичного прибора, видно из полной принципиальной схемы цифровой LC-метр высокой точности, показанной на рисунке. Это даже проще, чем вы могли бы ожидать, потому что нет отдельного компаратора, который сформировал бы ядро измерительного генератора. Вместо этого мы используем компаратор, встроенный в сам микроконтроллер (IC1). Как показано, микроконтроллер IC1 представляет собой PIC16F628A и фактически содержит два аналоговых компаратора, которые можно настраивать различными способами. Здесь мы используем компаратор 1 (CMP1) в качестве измерительного генератора. Компаратор 2 (CMP2) используется только для обеспечения некоторого дополнительного «возведения в квадрат» выхода CMP1, а затем его выход управляет внутренней схемой подсчета частоты. Схема генератора практически не отличается от схемы, показанной на рисунке.

Обратите внимание, что IC1 управляет реле RLY1 (которое переключает калибровочный конденсатор C2 в цепь и из нее) через линию RB7 его порта ввода / вывода B (контакт 13). Диод D1 служит для защиты внутренней схемы микроконтроллера от индуктивных всплесков, когда реле выключается. Во время работы IC1 определяет, в каком положении находится переключатель S1 в режиме использования RB6 (вывод 12). Он поднимается вверх, когда S1b находится в положении «C» и в низ, когда S1b находится в положении «L». Кварц X1 (4 МГц) устанавливает тактовую частоту микроконтроллера IC1, в то время как соответствующие конденсаторы 33 пФ обеспечивают правильное согласование для обеспечения надежного запуска тактового генератора. Результаты вычислений микроконтроллера IC1 выводятся на стандартный 2 × 16 ЖК-модуль. Это управляется непосредственно через контакты портов RB0-RB5. Потенциометр VR1 позволяет настроить оптимальную контрастность ЖК-дисплея.

Прошивка микроконтроллера IC1 предназначена для автоматического выполнения функции калибровки сразу после первоначального включения. Однако это также может быть выполнено в любое другое время при нажатии кнопки S2. При нажатие этой кнопки микроконтроллер вынужден сброситься и запустить снова калибровку. Перемычки LK1 — LK4 не установлены при нормальной работе прибора, но используются для начальной настройки, тестирования и калибровки. Как показано, эти линии соединяются между RB3 и RB0 и землей соответственно. Например, если вы установили перемычку LK1, а затем нажали S2 для принудительного сброса, микроконтроллер активирует реле RLY1 (чтобы переключить конденсатор C2 в цепь) и измерить частоту генератора F2. Это тогда выводиться на ЖК-дисплее. Точно так же, если вы установили LK2 и нажали S2, микроконтроллер просто измеряет начальную частоту генератора (F1) и отображает ее на ЖК-дисплее. Это позволяет вам не только убедиться, что генератор работает, но также вы можете проверить его частоту. Мы еще расскажем об этом позже. Перемычки LK3 и LK4 позволяют выполнять ручную калибровку «подстройки» измерителя. Это полезно, если у вас есть доступ к конденсатору, значение которого очень точно известно (потому что он был измерен, например, с помощью профессионального тестера LCR).

 При установленном LK3 показание емкости уменьшается на небольшое значение каждый раз, когда оно составляет новое измерение (примерно пять раз в секунду). И наоборот, если вместо этого установлен LK4, микроконтроллер с небольшим шагом увеличивает показание емкости при каждом новом измерении. Каждый раз, когда вносятся изменения, поправочный коэффициент сохраняется в EEPROM микроконтроллера, и это значение калибровки затем применяется для будущих измерений. Также обратите внимание, что, хотя калибровка выполняется с использованием «стандартного» конденсатора, она также влияет на функцию измерения индуктивности. Короче говоря, идея состоит в том, чтобы установить перемычку на одну или другую (т. е. На LK3 или LK4) до верного считывания. Затем перемычка снимается. Как упоминалось выше, все перемычки LK1-LK4 не используются для нормальной работы. Они используются только для устранения неполадок и калибровки.

Питание для прибора поступает от внешнего источника постоянного тока от 9 до 12 В. Можно использовать любой подходящий сетевой блок питания либо, от внутренней батареи на 9 В. При подключенном сетевом источнике переключаемый разъем постоянного тока автоматически отключает батарею. Напряжение постоянного тока подается через диод защиты от обратной полярности D2 и выключатель питания S3. Стабилизатор REG1 – это стандартный пятивольтовый 7805. Выходное напряжение + 5В на выходе стабилизатора REG1 используется для питания IC1 и ЖК-модуля. Поскольку цифровой LC-метр использует так мало деталей, его очень легко собрать. Все детали, кроме переключателей S1-S3 и входных клемм Cx / Lx, смонтированы на плате, размером 125 × 58 мм. ЖК-модуль подключается к DIL-разъему 7 × 2 на одном конце платы и поддерживается на другом конце с помощью нейлоновых винтов и гаек M3. На рисунке показано расположение деталей на плате.

Проверка калибровка и настройка цифровой LC-метр.

Ваш LC-метр теперь готов к тестированию и калибровке. Сделать это, сначала подключите к устройству блок питания или щелочную батарею на 9 В, установите ползунковый переключатель S1 в положение «Емкость» и включите с помощью S3. Как только питание подано, на ЖК-дисплее должно появиться сообщение «Калибровка» на секунду или две, а затем на дисплее должно отобразиться «C = NN.N pF», где NN.N меньше 10 пФ. Если это произойдет, тогда ваш измеритель, вероятно, работает правильно, поэтому просто оставьте его на одну или две минуты, чтобы позволить тестовому генератору стабилизироваться. В это время показания емкости могут незначительно меняться на несколько десятых доли пикофарада, когда все успокаивается — это нормально. Теперь нажмите кнопку «Ноль» S2 на секунду или две и отпустите ее. Это заставляет микроконтроллер снова запускаться и перекалиброваться, поэтому вы снова кратко увидите сообщение «Калибровка», а затем «C = 0.0pF». Это указывает на то, что микроконтроллер уравновесил паразитную емкость и сбросил ее ноль.

Поиск проблем при настройке и запуске цифровой LC-метр

Если вы не получаете никаких сообщений, отображаемых на ЖК-дисплее, есть вероятность, что вы не подключили провод аккумулятора, либо поменяли полярность. Тщательно проверьте соединения питания. При включенном питании вы должны в состоянии измерить + 5В на контакте 14 IC1 относительно земли (0 В). В качестве альтернативы, если вы видите некоторые сообщения на ЖК-дисплее, но они не соответствуют описанию, пришло время проверить, что тестовый генератор измерителя работает нормально. Для этого выключите, установите перемычку с шунтом LK2 (т. е. на задней стороне платы), затем подайте питание и посмотрите на ЖК-дисплей. После сообщения «Калибровка», микроконтроллер должен отобразить восьмизначное число, которое представляет частоту генератора F1. Это должно быть примерно между 00042000 и 00058000, если ваши детали L1 и C1 находятся в пределах обычного допуска. Если значение, которое вы получаете для F1, равно «00000000», то ваш тестовый генератор не работает, и вам нужно будет выключить и искать причину. Возможные варианты включают не пропаянное соединения, плохая пайка, включающее один из компонентов генератора, или, возможно, крошечный кусочек припоя, соединяющий соседние дорожки или площадки.

Если вы видите частоту на дисплее в правильном диапазоне, запишите значение, затем выключите и переведите перемычку в положение LK1. Снова включите питание и убедитесь, что на ЖК-дисплее теперь отображается другое восьмизначное число после калибровки. Это будет F2 — т. е. частота генератора, когда конденсатор C2 подключается параллельно с C1. Поскольку оба конденсатора номинально имеют одинаковое значение, F2 должно быть очень близко к 71% от F1. Это потому, что удвоение емкости уменьшает частоту на коэффициент, равный квадратному корню из двух (т. Е. 1 / √2 = 0,707). Если ваши показания для F2 находятся далеко от 71% от F1, вам может потребоваться заменить C2 на другой конденсатор, значение которого ближе к C1. С другой стороны, если F2 точно такой же, как F1, это говорит о том, что реле RLY1 на самом деле не переключило С2 вообще. Это может быть связано с плохим паяным соединением на одном из контактов RLY1, или вы, возможно, неправильно установили его на плате. Как только вы получите сопоставимые показания для F1 и F2, ваш цифровой LC-метр будет готов для калибровки и использованию. Если у вас нет конденсатора с известным значением для выполнения собственной точной калибровки, вам придется полагаться на собственную авто калибровку прибора (которая в значительной степени зависит от точности конденсатора C2). В этом случае просто удалите все перемычки с LK1 на LK4 и установите плату прибора в корпус.

Точная настройка калибровка цифровой LC-метр

Если у вас есть конденсатор известного значения (потому что вы смогли измерить его с помощью высокоточного измерителя LCR), вы можете легко использовать его для точной настройки калибровки цифрового LC-метра. Сначала включите устройство и дайте ему поработать, а затем он проходит через последовательность «Калибровка» и «C = NN.N pF». После этого подождите минуту или две и нажмите кнопку обнуления (S2), убедившись, что на ЖК-дисплее отображается правильно обнуленное сообщение, т. е. «C = 0,0 пФ». Затем подключите конденсатор известного значения к тестовым клеммам и обратите внимание на индикатор. Он должен быть достаточно близок к значению конденсатора, но может быть несколько высоким или низким. Если показание слишком низкое, установите перемычку LK4 на задней панели и посмотрите на ЖК-дисплей. Каждые 200мс или около того показания будут увеличиваться по мере того, как микроконтроллер PIC регулирует коэффициент масштабирования измерителя в ответ на перемычку. Как только показание достигнет правильного значения, быстро снимите перемычку, чтобы завершить настройку калибровки.

И наоборот, если показания измерителя для известного конденсатора слишком высокие, выполните ту же процедуру, но с перемычкой в ​​положении LK3. Это заставит микроконтроллер уменьшать масштабный коэффициент измерителя каждый раз, когда он делает измерение, и, как и прежде, идея состоит в том, чтобы убрать перемычку LK3, как только показание достигнет правильного значения. Если вы недостаточно быстро снимаете перемычку вовремя из этих процедур калибровки, микроконтроллер будет «перерегулировать». В этом случае вам просто нужно использовать противоположную процедуру, чтобы вернуть показания к правильному значению. На самом деле, вам может потребоваться несколько раз отрегулировать калибровку взад и вперед, пока вы не убедитесь, что она правильная. Как упоминалось ранее, микроконтроллер PIC сохраняет свой масштабный коэффициент в своей EEPROM после каждого измерения во время этих процедур калибровки. Это означает, что вам нужно выполнить калибровку только один раз. Также обратите внимание, что, когда вы калибруете прибор таким образом, используя конденсатор с известным значением, он также автоматически калибруется для измерений индуктивности. Прошивка для цифровой LC-метр.

LC-метр — embedded.icu

07.09.2021 15:47, автор DiEitch

Время от времени у радиолюбителя возникает необходимость измерить индуктивность (чаще всего у неизвестного или самодельного дросселя) или ёмкость радиодетали без маркировки (или даже с маркировкой, когда необходимо узнать более точный номинал). В большинстве широкодоступных измерительных приборов (тестеров), к сожалению, нет режима измерения индуктивности (и далеко не всегда есть режим измерения ёмкости, но он встречается чаще). Тогда на помощь приходят смекалка и самодельные измерительные приборы.

Почти так же случилось и со мной, только измерить мне надо было не индуктивность, а относительную магнитную проницаемость μ  (сердечника, на котором не было никакой маркировки). Первым делом изучил интернет. И оказалось, что конструкций таких измерителей «мильон и больше». Поэтому критерием выбора для меня стала простота (ведь я его делаю для одного раза) и работоспособность (всё-таки измерение должно случиться). В итоге выбор пал на вот эту схему, к тому же на страничке было документальное подтверждение работоспособности и исходный код для Arduino.

Простая и красивая схема. Но при всём уважении к автору, он больше физик чем электронщик:

  • на D13 у Arduino Nano есть светодиод, который будет мешать кнопке;
  • у Atmega(12)8 есть встроенные резисторы Pull_Up, поэтому можно сократить количество ненужных деталей, немного изменив логику;
  • конденсатор 100p на цифровом входе, я бы опасался таких приёмов (во-первых, компаратор даёт цифровой сигнал, кроме того, у меня этот конденсатор вызывал какие-то «левые» колебательные процессы на входе D5 частотомера, пока не заменил его резистором на 7.5кОм).

Вообще, входная часть универсальна, многие найденные мной в сети LC-метры её использовали в том или ином виде. Для примера: схемы китайского LC100-A и измерителя на PIC (ни там, ни там НЕТ никакого конденсатора на 100p):

К сожалению, я не смог быстро найти в своих запасах LM311 (LM211, LM111), и вынужден был заменить её отечественным аналогом К554СА3. О как же я оказался не прав! Несмотря на «полную аналогичность» этих микросхем, они различаются (как минимум) корпусами и разводкой ножек и (как максимум) внутренней принципиальной электрической схемой (что накладывает отпечаток на схемотехнику, т.е. некоторые схемы для LM311 не будут работать на К554СА3 «в лоб», но об этом ниже).

 

Принципиальные схемы компараторов очень похожи, но всё же попытайтесь найти 5 различий.

В итоге схема моего измерителя получилась такая:

Как видно из схемы: выводы компаратора К554СА3 7 и 8 (строб/баланс и балансировка) не соединены между собой в отличие от аналогичных выводов у LM311, при их замыкании у меня наблюдалось резкое повышение потребляемого компаратором тока по питанию, и стабилизатор на Arduino не справлялся со своей задачей: плата перезагружалась.

С разомкнутыми выводами всё работает. Дисплея 1602 у меня тоже под рукой не оказалось, использовал безо всяких проблем 2004. Выводы Arduino у меня использованы немного иначе,  как мне было удобно. Монтаж сделал на макетной плате. Не очень аккуратно, но зато быстро. 

Полевые испытания измерителя. После калибровки.

Дроссель на 68мкГн (норма):

Дроссель на 3.3мкГн (немного завышает):

Также были измерены дроссели на 100мкГн, 120мкГн, 2.2 мкГн, 1мГн — результаты очень даже неплохие (чаще на завышение), хотя я использовал резонансный конденсатор на 2200пФ +/- 10% и не замерил его ёмкость предварительно, а потом лень было выпаивать (читателю же рекомендую измерить предварительно ёмкость или выбрать конденсатор с допуском +/-1%, если получится).

А вот главные измерения, ради которых я это всё затеял. Кольцо типоразмера К45х28х12 из материала М2000НМ1-36 ОЖО.707.062ТУ и 10 витков провода диаметром 1мм:

И расчёт в программе testring (пакета all in one) от Starichok показывает немного завышенные параметры u=2424 (это связано с погрешностью измерений и сравнительно малым количеством витков на исследуемом кольце):

И неизвестное кольцо К45х28х8:

И его расчёт в программе:

Учитывая, что результат расчётов почти тот же (учитывая все погрешности), я полагаю, что «неизвестное» кольцо из того же материала, что и предыдущее (кроме того, одинаковые с предыдущим кольцом цвет, шероховатость, а также, слова продавца подтверждают этот факт).

Файлы для тех, кто захочет повторить проект.

Спасибо за внимание, когда-нибудь я расскажу, для чего мне потребовались эти кольца из феррита.

PS: раз уж я собрал этот измеритель, решил заодно узнать и магнитную проницаемость сердечника (склейки из двух колец размером 43.6х28х20.4) предположительно из альсифера ТЧ60П (одна вертикальная чёрная полоса на каждом кольце), который мог в общем-то легко оказаться и пермаллоевым.

Справочные данные:

Собственно, измерение (на нижнем кольце справа виден чёрный штрих маркировки):

Учитывая погрешность моего измерителя (в сторону завышения):

Что коррелирует с параметрами ТЧ60П (конечно, это мог быть и ТЧ90, но маркировка на кольцах чёрная, а не синяя), а для мо-пермаллоя МП140, магнитная проницаемость маловата. Ещё один аргумент в пользу альсифера — вертикальные, а не горизонтальные полосы маркировки (у пермаллоя это будет либо горизонтальная полоса либо точка).

Для себя же я сделал один вывод, что если я хочу дальше пользоваться сделанным измерителем LC, то нужно всё-таки выпаять и замерить»эталонный конденсатор» С1, либо поставить точный.

LC Метр Прибор для измерения емкости и индуктивности на PIC16F628A — Electronics Blog

Автор: yriy | 28.01.2015

Сделал как то себе этот крайне полезный и не заменимый прибор, из-за острой необходимости в измерении емкости и индуктивности. Обладает на удивление очень хорошей точностью измерения при этом схема довольно простая базовым компонентом которой является микроконтроллер PIC16F628A.

 

Схема:

 

Как видно, основные компоненты схемы это PIC16F628A, знакосинтезирующий дисплей (можно использовать 3 типа дисплея 16х01 16х02 08х02), линейный стабилизатор LM7805, кварцевый резонатор на 4 Мгц, реле на 5В в DIP корпусе, двух секционный переключатель (для переключения режимов измерения L или C).

Прошивки для микроконтроллера:

Скачать

Печатная плата:

 Файл печатной платы в формате sprint layout: скачать

 

Исходная плата разведена под реле в DIP корпусе.

У меня такого не нашлось и я использовал что было, старое компактное как раз подходящее по размерам реле. В качестве танталовых конденсаторов использовал совковые танталовые. Переключатель режима измерения, выключатель питания и кнопку калибровки использовал, снятые когда то со старых совковых осциллографов.

 

Провода измерительные:

Должны быть как можно короче.

 

 

Во время сборки и настройки руководствовался вот этой инструкцией:


Соберите плату, установите 7 перемычек. Установите в первую очередь перемычки под PIC и под реле и две перемычки рядом с контактами для дисплея.

Используйте танталовые конденсаторы  (в генераторе) — 2 шт.
10мкф.
Два конденсатора  1000пФ должны быть полиэстеровые или лучше (прим. допуск не более 1%).

Рекомендуется использовать дисплей с подсветкой (прим. ограничительный резистор 50-100Ом на схеме не указан контакты 15, 16).

Установите плату в корпус. Соединение  между плату и дисплей по вашему желанию можно припаять, или сделать используя  разъем. Провода вокруг переключателя L/C сделайте как можно короткими и жесткими (прим. для уменьшения  «наводок»  и для правильной компенсации измерений особенно для  заземленного конца  L).

Кварц следует использовать 4.000MHz, нельзя использовать 4.1, 4.3 и т.п.

 

Проверка и калибровка:

  1. Проверьте установку деталей на плате.
  2. Проверьте установку всех перемычек на плате.
  3. Проверьте правильность установки PIC, диодов и 7805.
  4. Не забудьте – «прошить» PIC до установки в LC — метр.
  5. Осторожно включите питание. Если есть возможность , используйте регулируемый источник питания в первый раз.
    Измерять ток при увеличении напряжения. Ток должен быть не более 20мА. Образец потреблял ток 8мА. Если ничего не видно на дисплее покрутите переменный резистор  регулировки контраста. На дисплее должно быть написано «Calibrating», затем  C=0.0pF (или  С= +/- 10пФ).
  6. Подождите несколько минут («warm-up»), затем нажмите кнопку  «zero» (Reset) для повторной калибровки. На дисплее должно быть написано C=0.0pF.
  7. Подключите  «калибровочный» конденсатор. На дисплее LC – метра  увидите показания (с  +/- 10% ошибкой).
  8. Для увеличения показаний емкости замкните перемычку «4» см. картинку ниже (прим. 7 ножка PIC). Для уменьшения показаний емкости, замкните перемычку «3» (прим. 6 ножка PIC) см. картинку ниже. Когда значение емкости будет совпадать с «калибровочным» удалите перемычку. PIC запомнит калибровку. Вы можете повторять калибровку множество раз (до  10,000,000).
  9. Если есть проблемы с измерениями, вы можете с помощью перемычек  «1» и «2» проверить частоту генератора. Подсоедините  перемычку «2» (прим. 8 ножка PIC)  проверьте частоту «F1» генератора. Должно быть  00050000 +/- 10%. Если показания будут слишком большие  (near 00065535), прибор выходит в режим  «переполнение» и показывает ошибку «overflow» . Если показание слишком низкие  (ниже 00040000), вы потеряете точность измерения. Подсоедините перемычку  «1» (прим. 9 ножка PIC)   для проверки калибровки  частоты «F2». Должно быть около  71% +/- 5% от  «F1» которые вы получили подсоединяя перемычку «2».
  10. Для получения максимально точных показаний можно регулировать  L   до получения  F1 около 00060000. Предпочтительней устанавливать «L»  = 82 мкГн  на схеме  100мкГн (вы можете не купить 82мкГн 😉 ).
  11. Если на дисплее  00000000 для  F1 или F2, проверьте монтаж около переключателя  L/C —  это означает, что  генератор не работает.
  12. Функция калибровки индуктивности  автоматически калибруется , когда происходит калибровка емкости. (прим. калибровка происходят в момент срабатывания реле когда замыкаются  L иC в приборе).

 

Тестовые перемычки

  1. Проверка F2
  2. Проверка F1
  3. Уменьшение C
  4. Увеличение C

 

Как проводить измерения:

Режим измерения емкости:

  1. Включаем прибор, ждем пока загрузится
  2. Переводим переключатель выбора режима измерения в положение «C»
  3. Нажимаем кнопку «Zero»
  4. Появляется надпись «Setting! .tunngu.» ждем пока не появится «C = 0.00pF»
  5. Все

 

Режим измерения индуктивности:

  1. Включаем прибор, ждем пока загрузится
  2. Переводим переключатель выбора режима измерения в положение «L»
  3. Замыкаем измерительные провода
  4. Нажимаем кнопку «Zero»
  5. Появляется надпись «Setting! .tunngu.» ждем пока не появится «L = 0.00uH»
  6. все

 

Ну вроде все, вопросы и замечания оставляйте в комментариях под статьей.

Lc meter

Shimano Tekota LC Meter — тяговая катушка для троллинговой рыбалки с передаточным числом 4. Ударопрочный цельнолитой алюминиевый корпус повышенной жесткости Hagane Body обеспечивает надежную работу и большую эффективность внутреннего механизма. Все детали механизма изготовлены из алюминия методом холодной ковки под высоким давлением по технологии Cold Forged Aluminium Gear. Катушка имеет специальную систему Clicker System, благодаря которой активизируется щелчковый сигнализатор при поклевке рыбы, тем самым увеличивая натяжение на свободной шпуле.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • LC-метр Mastech MY6243
  • MY-6243 — LC-метр
  • Цифровой LC-метр MASTECH
  • Высокоточный LC-метр MLC500
  • LC-метр — схема и инструкция
  • Высокоточный LC-метр MLC500
  • MY-6243 — LC-метр
  • 4284A Precision LCR Meter, 20 Hz to 1 MHz

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Inductor and capacitor meter — LC meter

LC-метр Mastech MY6243


Регистрация Войти. Отличная новость! Если вы решили приобрести товар по запросу lc meter, то вы находитесь в нужном месте. AliExpress — это платформа для онлайн-шопинга, где для вас представлены тысячи товаров самых разных категорий.

С AliExpress вы всегда можете быть уверены, что найдете нужные вам вещи, будь то дорогостоящие изделия или небольшие покупки. Наша база пополняется каждый день, поэтому мы предлагаем широкий выбор продукции самых разных категорий. Наши поставщики — как известные торговые марки, так и независимые продавцы — гарантируют быструю доставку и надежность, а также удобные и безопасные способы оплаты.

Удобный поиск помогает находить не только нужные товары, но и похожие продукты и возможные комплектующие. Вместе с этим вы получаете самые лучшие цены в сети, выгодную доставку и возможность забрать товар в ближайшей удобной для вас точке. Иногда выбрать товар среди всех возможных предложений оказывается непросто. Мы позаботились о вашем удобстве и создали удобную систему сравнения. С AliExpress вы легко можете сопоставить цены и воспользоваться наиболее выгодным предложением.

Мы также будем рады сообщить вам о начале специальных акций, а также о купонах на скидку. Если у вас возникнут сомнения, вы всегда можете ознакомиться с отзывами покупателей и сравнить рейтинг магазинов. Мы высоко ценим мнение клиентов, поэтому под каждым товаром вы найдете комментарии тех, кто уже сделал покупку. Одним словом, вам больше не нужно слепо доверять — вы можете просто положиться на опыт других покупателей. Для новичков в AliExpress мы раскроем секрет, как получить самые выгодные предложения на нашем сайте.

Перед тем как нажать кнопку «Купить сейчас», проверьте наличие купонов на скидку. Это могут быть купоны AliExpress или же купоны магазинов-сотрудников. Также вы можете получить купоны, выигрывая в нашей игре в приложении AliExpress app.

Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести lc meter по самой выгодной цене. AliExpress — это передовые технологии, новейшие тенденции и самые обсуждаемые бренды, а также отличное качество, цена и сервис.

Онлайн-покупки стало делать еще проще и надежней. Экономьте время и деньги без ущерба качеству. Помощь Служба поддержки Споры и жалобы Сообщить о нарушении авторских прав. Защита Покупателя. Доставка в. Мои желания. Мой профиль Добро пожаловать на AliExpress. Все категории. Похожие запросы: bmw rgs lc bmw rgs приключения lc r gs lc gs lc bmw gs lc.

Горячие предложения в lc meter: лучшие онлайн-предложения и скидки с реальными отзывами клиентов. Google Play App Store. Все права защищены. Приложения AliExpress Покупайте в любом месте, в любое время! Сканируйте или нажмите, чтобы скачать.


MY-6243 — LC-метр

Как вы помните, в электронике индуктивность обозначается буквой L, а емкость буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр — это прибор для измерения значений индуктивности и емкости. На фото он выглядит примерно вот так:. Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра. Вот у нас четыре испытуемых конденсатора.

LC Meter. Наткнулся на очень интереный приборчик! Есть ли у кого нибудь перевод прошивка такого чуда! Может кто-то видел на.

Цифровой LC-метр MASTECH

Поиск новых сообщений в разделах Все новые сообщения Компьютерный форум Электроника и самоделки Софт и программы Общетематический. А это рекомендации автора по настройке: После сборки LC метра прибор запускается с первого включения. Для однострочного LCD индикатора необходимо замкнуть джампер J1. Для двухстрочного, типа — оставить разомкнутым. Подстроечным резистором 10К нужно отрегулировать контрасность LCD дисплея. Чем ближе движок резистора к «земле», тем выше контрасность дисплея. Частота на экране LCD должна быть в районе кГц значение отображается без одного знака в младшем разряде, например —

Высокоточный LC-метр MLC500

Новый клиент? Начинать здесь. Помощь Cвязаться с нами Центр поддержки. Мои заказы. Все категории.

LC-метр нужен для измерения индуктивности катушек и ёмкости конденсаторов. Цифровые LC-метры предназначены для измерения индуктивности и емкости с непосредственным выводом измеренного значения на ЖК-дисплей.

LC-метр — схема и инструкция

Тема раздела Самодельная электроника, компьютерные программы в категории Общие вопросы ; Наткнулся на очень интереный приборчик! Есть ли у кого нибудь перевод прошивка такого чуда! Может кто-то видел на других сайтах Правила форума. Правила Расширенный поиск. Показано с 1 по 12 из

Высокоточный LC-метр MLC500

Руководствуясь разработкой от товарища okt Выставить фьюзы не могу, два Преобразование двоичного числа в десятичное. Написал функцию для перевода пришедшего двоичного числа в десятичное и вывода его на Смотрю в Платане цены между ними

Здравствуйте Уважаемые. Завалялся у меня микроконтроллер PIC16F84a ( делал на ней часы-пропеллер от Валерия и со временем.

MY-6243 — LC-метр

Вот еще один образец лабораторного оборудования — LC метр. Данный режим измерения, особенно замер индуктивности L практически невозможно найти в дешевых заводских мультиметрах. Схема данного LС метра на микроконтроллере была взята с сайта www.

4284A Precision LCR Meter, 20 Hz to 1 MHz

Войти через. На AliExpress мы предлагаем тысячи разновидностей продукции всех брендов и спецификаций, на любой вкус и размер. Если вы хотите купить lc метр и подобные товары, мы предлагаем вам 1, позиций на выбор, среди которых вы обязательно найдете варианты на свой вкус. Кроме того, если вы ищите lc метр, мы также порекомендуем вам похожие товары, например tcxre метр , excel метр , используйте счетчик , az метр , дюймовый мини цифровой вольтметр , ppm метр чистоты , локальной сети метр , самолет метр , плотность, цифровой прибор для измерения уровня. Приходите к нам на AliExpress, у нас вы найдете все! Защита Покупателя.

Нижний Новгород,. Схема проезда.

Регистрация Войти. Отличная новость! Если вы решили приобрести товар по запросу lc meter, то вы находитесь в нужном месте. AliExpress — это платформа для онлайн-шопинга, где для вас представлены тысячи товаров самых разных категорий. С AliExpress вы всегда можете быть уверены, что найдете нужные вам вещи, будь то дорогостоящие изделия или небольшие покупки.

Сделал как то себе этот крайне полезный и не заменимый прибор, из-за острой необходимости в измерении емкости и индуктивности. Обладает на удивление очень хорошей точностью измерения при этом схема довольно простая базовым компонентом которой является микроконтроллер PIC16FA. Файл печатной платы в формате sprint layout: скачать.


Самодельный LC-метр, измерительная приставка к мультиметру

Схема самодельной измерительной приставки LC-метра для мультиметра, собрана на транзисторах и микросхемах. Эта статья продолжает тему расширения возможностей популярных мультиметров серии 83x.

Малый потребляемый приставкой ток позволяет питать её от внутреннего стабилизатора АЦП мультиметра. С помощью этой приставки можно измерять индуктивность катушек и дросселей, ёмкость конденсаторов без выпаивания их из платы.

Опубликованные на страницах Радио конструкции измерительных приставок к мультиметрам помимо различия схемных решений и методов измерений того или иного параметра различны ещё и по способности работать от собственного источника питания и без него, используя стабилизатор напряжения АЦП мультиметра.

Приставки, питаемые от стабилизатора АЦП мультиметра, по мнению автора, более удобны в эксплуатации, особенно «вне дома». В случае необходимости их можно питать и от внешнего источника напряжением 3 В, например, от двух гальванических элементов.

Конечно, встаёт вопрос о потребляемом такой приставкой токе, который не должен превышать нескольких миллиампер, но применение современной элементной базы в сочетании с оптимальной схемотехникой решает эту задачу.

Впрочем, вопрос о потребляемом токе всегда был и будет актуален, особенно для измерительных приборов c автономным питанием, когда продолжительность работы от автономного источника зачастую определяет выбор прибора.

При разработке LC-метра основное внимание было уделено не только минимизации потребляемого тока, но и возможности измерения индуктивности катушек и дросселей, ёмкости конденсаторов без выпаивания их из платы.

Такую возможность следует всегда учитывать при разработке подобных измерительных приборов. Можно привести немало примеров, когда радиолюбители в своих конструкциях, к сожалению, не обращают на это внимания.

Если, например, измерять ёмкость конденсатора методом зарядки стабильным током, то уже при напряжении на конденсаторе более 0,3.. .0,4 В без выпайки его из платы достоверно определить ёмкость зачастую невозможно.

Принцип работы LC-метра не нов [1, 2], он основан на вычислении квадрата измеренного периода собственных колебаний в резонансном LC-контуре, который связан с параметрами его элементов соотношениями (формула):

Из этой формулы следует, что измеряемая индуктивность линейно связана с квадратом периода колебаний при неизменной ёмкости в контуре.

Очевидно, что той же линейной зависимостью связана и измеряемая ёмкость при неизменной индуктивности, и для измерений индуктивности или ёмкости достаточно преобразовать период колебаний в удобную величину.

Из приведённой выше формулы видно, что при неизменной ёмкости 25330 пФ или индуктивности 25,33 мГн для мультиметров серии 83х минимальная дискретность измерения — 0,1 мкГн и 0,1 пФ в интервалах 0…200 мкГн и 0…200 пФ соответственно, а частота колебаний при измеряемой индуктивности 1 мкГн равна 1 МГц.

Приставка содержит измерительный генератор, частота которого определяется LC-контуром и в зависимости от рода измерений — индуктивностью, подключённой к входным гнёздам катушки, или ёмкостью конденсатора, узел стабилизации выходного напряжения генератора, формирователь импульсов, делители частоты для расширения интервалов измерений и преобразователь периода повторения импульсов в напряжение, пропорциональное его квадрату, которое измеряет мультиметр.

Основные технические характеристики

  • Пределы измерения индуктивности . …..200 мкГн; 2 мГн; 20 мГн;200 мГн; 2 Гн; 20 Гн;
  • Пределы измерения ёмкости ………200 пФ; 2 нФ; 20 нФ; 0,2 мкФ; 2 мкФ; 20 мкФ;
  • Погрешность измерения на первых четырёх пределах от 0,1 предельного значения и выше, не более, % ….3;
  • Погрешность измерения на пределах 2 мкФ и 2 Гн, не более, % ……….10;
  • Погрешность измерения на пределах 20 мкФ и 20 Гн, не более, % …….20;
  • Максимальный потребляемый ток, не более, мА ……3.

Погрешность измерения индуктивности на пределах 2 и 20 Гн зависит от собственной ёмкости катушки, её активного сопротивления, остаточной намагниченности магнитопровода, а ёмкости на пределах 2 и 20 мкФ — от активного сопротивления катушки в LC-контуре и ЭПС (ESR) измеряемого конденсатора.

Принципиальная схема

Схема приставки приведена на рис. 1. В положении «Lx» переключателя SA1 измеряют индуктивность катушки, подключённой к гнёздам XS1, XS2, параллельно которой подключён конденсатор С1, а в положении «Cx» — ёмкость конденсатора, параллельно которому подключена катушка индуктивности L1.

Рис. 1. Схема LC-метра для мультиметра, самодельной измерительной приставки.

На транзисторах VT1, VT2 собран измерительный генератор синусоидального напряжения, частота которого, как уже сказано выше, определяется элементами LC-контура. Это усилитель, охваченный положительной обратной связью (ПОС).

Первая ступень усилителя собрана по схеме с общим коллектором (эмиттерный повторитель), она обладает большим входным сопротивлением и малым выходным, а вторая — по схеме с общей базой (Об) — обладает малым входным и большим выходным сопротивлением.

Тем самым достигнуто хорошее согласование при замыкании выхода второй с входом первой. Обе ступени неинвертирующие, поэтому такое соединение охватывает усилитель стопроцентной ПОС, которая в сочетании с высоким входным сопротивлением эмиттерного повторителя и выходным каскада с ОБ обеспечивает работу генератора на резонансной частоте LC-контура в широком интервале частот.

Рассмотрим работу LC-метра с подключённой к гнёздам XS1, XS2 «Lx, Cx» катушкой индуктивности или конденсатором. Напряжение с выхода генератора поступает на усилитель с высоким входным сопротивлением, собранный на транзисторе VT3, который усиливает его в пять раз, что необходимо для нормальной работы узла стабилизации выходного напряжения генератора. Узел стабилизации собран на диодах VD1, VD2, конденсаторах С3, С5 и транзисторе VT4.

Он поддерживает выходное напряжение генератора на неизменном уровне около 100 мВ эфф., при котором можно проводить измерения без выпаивания элементов из платы, а также повышает устойчивость колебаний генератора на этом уровне. Выходное напряжение усилителя, выпрямленное диодами VD1, VD2 и сглаженное конденсатором С5, поступает на базу транзистора VT4.

При амплитуде напряжения на выходе генератора менее 150 мВ этот транзистор открыт базовым током, протекающим через резистор R7, и на генератор подаётся полное напряжение питания +3 В (такое напряжение необходимо подать на генератор для его надёжного запуска, а также при измерении индуктивности 1.3 мкГн).

Если при измерении амплитуда напряжения генератора станет больше 150 мВ, на выходе выпрямителя появится напряжение закрывающей транзистор VT4 полярности.

Его коллекторный ток уменьшится, что приведёт к уменьшению напряжения питания генератора и восстановлению амплитуды его выходного напряжения до заданного уровня. В противном случае происходит обратный процесс.

Выходное напряжение усилителя на транзисторе VT3 через цепь С4, С6, R8 поступает на формирователь импульсов, собранный на транзисторах VT5 и VT6 по схеме триггера Шмитта с эмит-терной связью. На его выходе формируются прямоугольные импульсы с частотой генератора, малым временем спада (около 50 нс) и размахом, равным напряжению питания.

Такое время спада необходимо для нормальной работы десятичных счётчиков DD1-DD3. Резистор R8 обеспечивает устойчивую работу триггера Шмитта на низких частотах. Каждый из счётчиков DD1 — DD3 делит частоту сигнала на 10. Выходные сигналы счётчиков поступают на переключатель пределов измерений SA2.

С подвижного контакта переключателя в зависимости от выбранного предела измерения «х1», «х102», «х104» импульсные сигналы прямоугольной формы Uи (рис. 2,а) поступают на преобразователь «период-напряжение», собранный на ОУ DA1.1, полевых транзисторах VT7-VT9 и конденсаторе С8.

С приходом очередного импульса сигнала длительностью 0,5Т транзистор VT7 на это время закрывается. Напряжение с резистивного делителя R13R14 (около 2,5 В) поступает на неинвертирующий вход ОУ DA 1.1. На этом ОУ и транзисторе VT9 собран источник стабильного тока (ИТ).

Ток ИТ 140 мкА задан параллельным включением резисторов R16 и R17 при замкнутых контактах выключателя SA3 (положение «х1») и в десять раз меньше — 14 мкА — резистором R16 при разомкнутых (положение «х10»).

Рис. 2. Импульсные сигналы прямоугольной формы.

В момент прихода импульса длительностью 0,5T транзистор VT8 через дифференцирующую цепь С7R15 открывается на 5.7 мкс, разряжая за это время конденсатор С8, после чего закрывается и начинается зарядка конденсатора С8 стабильным током от ИТ (рис. 2,б).

По окончании импульса транзистор VT7 открывается, замыкая резистор R13, и ток ИТ становится равным нулю. В течение следующего интервала 0,5T напряжение U1 на конденсаторе С8 остаётся до прихода следующего импульса неизменным и равным:

Из этого выражения следует, что напряжение на заряженном конденсаторе С8 пропорционально периоду Т поступающих импульсов. При этом напряжению 2 В соответствует максимальное значение измеряемого параметра на каждом пределе измерения.

К конденсатору подключён вход буферного усилителя на ОУ DA1.2 с единичным коэффициентом усиления, входной ток которого ничтожно мал (единицы пикоампер) и не влияет на разрядку (и зарядку) конденсатора С8.

С выхода буферного усилителя оно поступает на следующий преобразователь — «напряжение-ток» на ОУ DA2.1. На этом ОУ и резисторах R18-R21 собран ещё один ИТ (ИТ2).

Ток этого ИТ определяется входным напряжением, поступающим на левый по схеме вывод резистора R18, и его сопротивлением, а знак — от того, какой из резисторов (в нашем случае это R18 или R20) включён входным. ИТ нагружен на конденсатор С9.

Во время действия входного импульса длительностью 0,5Т транзистор VT10 открыт и напряжение U2 на конденсаторе С9 равно нулю (рис. 2,в).

По окончании импульса транзистор закрывается и начинается зарядка конденсатора постоянным током от напряжения, поступающего на резистор R18 с буферного усилителя на ОУ DA1.2.

Как видно из диаграммы (рис. 2,в), напряжение на конденсаторе линейно возрастает в виде «пилы» до появления через время 0,5Т следующего импульса. К моменту его появления напряжение на конденсаторе достигнет значения (формула):

где К1, К2 — постоянные коэффициенты; К2 = 1/(2 x R18 x С9).

Из этого выражения следует, что амплитуда напряжения на конденсаторе С9 пропорциональна квадрату периода поступающих импульсов, т. е. линейно зависит от измеряемой индуктивности или ёмкости.

Такое преобразование «в квадрат периода» логически понятно и без приведённого выражения, поскольку напряжение на конденсаторе С9 зависит линейно одновременно как от периода, так и от напряжения на входе ИТ, также зависящего линейно от периода.

При этом напряжению U2max, равному 2 В, соответствует максимальное значение измеряемого параметра на каждом пределе измерения. К конденсатору С9 подключён вход буферного усилителя на ОУ DA2.2. С его выхода напряжение пилообразной формы, уменьшенное до необходимого уровня делителем R22R23, поступает на вход «VОм mA» мультиметра (разъём XP2).

Встроенная интегрирующая RC-цепь мультиметра, подключённая к входу АЦП (постоянная времени 0,1 c), и внешняя — R22C12 сглаживают импульсы пилообразной формы до среднего за период значения, которое равно четверти амплитудного.

Так, при амплитуде «пилы» на разъёме XP2 «VОм mA» 0,8 В напряжение на входе АЦП мультиметра равно 200 мВ, что соответствует верхней границе измерения постоянного напряжения на пределе 200 мВ.

Детали и печатная плата

Приставка собрана на плате из фольгированного с двух сторон стеклотекстолита. Чертёж печатной платы показан на рис. 3, а расположение на ней элементов — на рис. 4. Фотографии печатной платы представлены на рис. 5, 6. Штырь ХР1 «NPNc» — подходящий от разъёма.

Рис. 3. Печатная плата для устройства.

Рис. 4. Печатная плата для устройства — расположение деталей.

Штыри ХР2 «VОм mA» и ХР3 «СОМ» — от вышедших из строя измерительных щупов для мультиметра. Входные гнёзда XS1, XS2 — клеммник винтовой 350-02-021-12 серии 350 фирмы DINKLE. Переключатели движковые: SA1 — SS12D07; SA2, SA3 — серии MSS, MS, IS, например, MSS-23D19 (MS-23D18) и MSS-22D18 (MS-22D16) соответственно.

Катушка L1 — самодельная, содержит приблизительно (уточняется при налаживании) 160 витков провода ПЭВ-2 0,2, намотанных в четырёх секциях по 40 витков на кольцевом магнитопроводе типоразмера 10x6x4,5 из феррита 2000НМ1, 2000НМ3 или N48 (EPCOS).

Ферриты этих марок имеют низкий температурный коэффициент магнитной проницаемости. Использование ферритов других марок, например N87, приведёт к увеличению погрешности измерения ёмкости при изменении температуры уже на 5…10 оС.

Конденсаторы С1, С8 и С9 — плёночные импортные выводные на напряжение 63 В (например, WIMA, EPCOS). Отклонение ёмкости конденсаторов С8, С9 должно быть не более 5 %. Остальные — для поверхностного монтажа: С2, С10, С11 — типоразмера 0805; С4, С6, С7 — 1206; оксидные С3, С5, С12 — тан-таловые В. Все резисторы типоразмера 1206.

Резисторы R13, R14, R16-R21 следует применить с допуском не более 1 %, причём резисторы R18, R20 и R19, R21 отобрать мультиметром с как можно близкими сопротивлениями в каждой паре. Зачастую — для отбора достаточно ленточной упаковки из 10.20 резисторов ряда Е24 пятипроцентного класса точности.

Транзисторы VT1 -VT5 должны иметь коэффициент передачи тока не менее 500, VT6 — от 50 до 200. Транзисторы BSS84 заменимы на IRLML6302, а IRLML2402 — на FDV303N.

При иной замене следует учесть, что пороговое напряжение транзисторов должно быть не более 2 В, сопротивление открытого канала — не более 0,5 Ом, а входная ёмкость — не более 200 пФ при напряжении сток-исток 1 В. Микромощные ОУ AD8542ARZ заменимы, например, МСР602 или отечественными КФ1446УД4А.

Последние желательно отобрать по напряжению смещения нуля не более 2 мВ для уменьшения погрешности измерения, когда его результат не превышает 10 % от установленного предела.

Десятичные счётчики 74HC4017D высокоскоростной логики допустимо заменить аналогичными из серии 4000В фирмы NXP (PHILIPS) — HEF4017В. Применять аналогичные счётчики других фирм, тем более отечественные К561ИЕ8, не следует.

При напряжении питания 3 В входная частота 1 МГц с измерительного генератора для таких счётчиков слишком велика, а длительность спада импульса на их входе (50 нс) — мала. Они могут такой сигнал «не почувствовать».

Выводы конденсаторов С8, С9, идущие к общему проводу, пропаивают с двух сторон печатной платы. Аналогично пропаивают выводы переключателя SA3 и вывод, идущий от подвижного контакта SA2, а также вилки ХР1-ХР3. Причём XP2 и XP3 крепят пайкой в первую очередь, а затем уже «по месту» сверлят отверстие и впаивают вилку ХР1.

В отверстия площадок около истока транзистора VT10 и резистора R14 вставляют отрезки лужёного провода и пропаивают их с двух сторон. Перед монтажом у микросхем DD2, DD3 вывод 4 следует отогнуть или удалить.

SA2 SA3 Предел измерения
x1 x1 200 мкГн 200 пФ
x1 x10 2 мГн 2 нФ
x10^2 x1 20 мГн 20 нФ
x10^2 x10 0,2 Гн 0,2 мкФ
x10^4 x1 2 Гн 2 мкФ
x10^4 x10 20 Гн 20 мкФ

При работе с LC-метром переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе «200mV». Пределы измерений Lc-метра, соответствующие положениям переключателей SA2, SA3, приведены в таблице.

Калибровку LC-метра проводят в зависимости от наличия необходимых приборов и квалификации. В простейшем случае понадобятся катушка с точно известной индуктивностью, значение которой близко к соответствующему пределу измерения, и такой же конденсатор с измеренной ёмкостью.

Для исключения погрешности от входной ёмкости LC-метра ёмкость конденсатора должна быть не менее 1800 пФ (например, 1800 пФ, 0,018 мкФ, 0,18 мкФ).

Приставку сначала подключают к автономному источнику питания напряжением 3 В и измеряют потребляемый ток, который не должен превышать 3 мА, а затем подключают к мультиметру. Далее устанавливают переключатель SA1 в положение «Lx» и подключают к гнёздам XS1, XS2 «Lx, Cx» катушку с известной индуктивностью.

Переключатели SA2 и SA3 устанавливают на соответствующий предел и добиваются показаний на индикаторе, численно равными индуктивности (запятую индикатора не учитывают), подключая при необходимости параллельно конденсатору С1 дополнительный ёмкостью до 3300 пФ.

У конденсаторов С1, С8, С9 на печатной плате предусмотрены площадки для распайки дополнительных типоразмера 0805 для поверхностного монтажа.

Возможна более точная корректировка показаний изменением в небольших пределах сопротивления резистора R22 или R23. Аналогично калибруют LC-метр при измерении ёмкости, но соответствующие показания на индикаторе устанавливают, изменяя число витков катушки L1.

Измеряя ёмкость приставкой, необходимо учитывать её входную ёмкость, которая в авторском образце равна 41,1 пФ. Это значение отображает индикатор мультиметра, если установить переключатель SA1 в положение «Сх», а SA2 и SA3 — в положение «x1». При изменении топологии печатной платы соединения выводов конденсаторов С8 и С9 с выводами транзисторов VT9 и VT10 должны быть выполнены отдельными проводниками.

Рис. 5. Фото готовой приставки LC-метра.

Приставку можно использовать как генератор фиксированных частот синусоидальной и прямоугольной формы. Синусоидальный сигнал напряжением 0,1 В снимают с эмиттера транзистора VT3, прямоугольный амплитудой 3 В — с подвижного контакта переключателя SA2. Нужные частоты получают, подключая к входу приставки конденсаторы соответствующей ёмкости в положении «Cx» переключателя SA1. На 4-й с. обложки показана работа LC-метра с мультиметром.

С. Глибин, г. Москва. Р-08-2014.

Литература:

  1. Универсальный LC-генератор. — Радио, 1979, № 5, с. 58.
  2. L-метр с линейной шкалой. — Радио, 1984, № 5, с. 58, 61.

LC метр малых величин | AlexGyver Community

ТехнарьКто
★★★★★✩✩