Site Loader

Содержание

Ксеноновые лампы.Виды и устройство.Работа и цветовая температура

Технология применения ксенона для освещения возникла несколько лет назад. Сегодня она уже достаточно популярна, и занимает значительную часть рынка. Ксеноновые лампы являются искусственным прибором освещения, в которых основным источником светового потока является не спираль, а электрическая дуга, возникающая в стеклянной колбе с газом, называемым ксеноном. Такие лампы способны светить очень ярким белым светом, который по своему спектру аналогичен дневному свету.

Конструктивные особенности

Лампа состоит из стеклянной колбы, вольфрамовых электродов и общего корпуса. Из колбы выкачан воздух, и ее объем заполнен специальным газом – ксеноном. У некоторых моделей имеется вспомогательный разжигающий электрод, например, у ламп вспышек.

Электроды предназначены для обеспечения прохождения электрического тока через газовую среду. Для того, чтобы газ начал светиться, требуется высокая мощность энергии, которая способна накопиться в конденсаторе, соединенном параллельно посредством резисторов. Эта энергия преобразуется в импульс высокого напряжения с помощью мощного повышающего трансформатора. Он разряжает конденсатор, тем самым пропускает через лампу большие токи за короткое время.

Колба из кварцевого стекла газоразрядной лампы изготавливается в виде прямой или согнутой трубки в виде буквы «U», спирали, или окружности (для расположения лампы вокруг объектива фотокамеры для получения фотографии без теней). В продаже можно найти лампу с колбой из сапфирового стекла. Разные виды стекол обеспечивают разный цвет свечения. Сапфир придает более чистый и яркий свет, а кварцевое стекло хуже пропускает поток света.

Электроды лампы впаиваются в трубку и соединяются с конденсатором, имеющим заряд высокого напряжения, достигающего 2000 вольт, в зависимости от состава газа и длины стеклянной трубки.

Третий дополнительный электрод имеется не во всех моделях ламп. Он называется разжигающим и предназначен для начальной ионизации газов, запускающей процесс разряда в лампе. В лампах вспышках обычно в качестве дополнительного электрода применяют рефлектор света.

Как работают ксеноновые лампы

Вспышка света возникает при пропускании через газ мощного импульса электрического тока, и ионизации, которая требуется для снижения электрического сопротивления газа, и более легкого протекания большого тока через газовое пространство лампы.

Начальная ионизация обеспечивается специальным трансформатором. Высоковольтный кратковременный импульс, подведенный на разжигающий электрод, образует первые ионы газа. В результате электрический ток начинает проходить через газ, от чего возбуждаются атомы ксенона. Это побуждает электроны переходить на орбиты, обладающие более высокой энергией. После возвращения электронов на свои прежние орбиты, они излучают фотоны, являющиеся разницей энергии этих орбит.

Давление газа в лампе может различаться в зависимости от величины лампы, и может быть от 0,01 до 0,1 атмосферы.

Разновидности
Ксеноновые лампы делятся на несколько видов по конструкции и сфере применения:
  • Шаровые.
  • Трубчатые.
  • Керамические.

Шаровые ксеноновые лампы стали наиболее популярными из всех видов. Они используются в автомобилях для обеспечения его передним светом фар. Их устройство состоит из небольшой колбы, наполненной ксеноном. Электроды в лампе расположены на очень близком расстоянии друг от друга.

Керамические ксеноновые лампы применяются в фармацевтическом производстве. Их особенностью является использование керамической колбы и отверстия в ней для прохождения ультрафиолетового излучения. Такой свет применяется в медицине для лечения грибковых болезней головы и кожи.

Трубчатые ксеноновые лампы являются устройствами для создания освещения в жилых зданиях и помещениях. Электроды в них находятся на большом удалении между собой, поэтому для их функционирования необходим балласт. Такие лампы применяются для внешнего освещения складов, вокзалов и других общественных или промышленных объектов.

В зависимости от сферы применения ламп, они могут иметь цоколи разных исполнений, которые изображены на рисунке.

Цветовая температура

Основным параметром любых ксеноновых ламп считается цветовая температура светового потока. Этот условный параметр характеризует интенсивность и спектр светового излучения, и измеряется в кельвинах.

Существует несколько интервалов цветовой температуры:
  • От 3200 до 3500 кельвин. Свет лампы с такой цветовой температурой подобен свету галогенной лампы и имеет желтоватый оттенок, отличается высокой интенсивностью освещения, достигающей 1500 люмен. В основных автомобильных фарах такого света будет недостаточно, поэтому их применяют в противотуманных фарах.
  • От 4000 до 5000 кельвин. Световое излучение в этом диапазоне имеет нейтральный оттенок и наименьшие визуальные цветовые искажения. Такое излучение обладает повышенной интенсивностью освещения, более 3000 люмен. Такие качества позволяют использовать лампы для основного освещения автомобиля в основных фарах. Такие ксеноновые лампы включены в основную комплектацию новых автомобилей.
  • От 5000 до 6000 кельвин. Повышение цветовой температуры более 5000 К приводит к возрастанию декоративного эффекта и снижению практической пользы. Такие лампы образуют белое освещение, что создает оригинальный эффект, но уменьшает интенсивность освещения, и снижается восприятие света глазами водителя: Предметы видны в черно-белом цвете, детали скрадываются. В некоторых зарубежных странах использование ксеноновых ламп с цветовой температурой более 5000 кельвин запрещено.
  • От 6000 до 12000 кельвин. Монтаж таких ксеноновых ламп выполняется только из расчета создать некоторое впечатление, а на практике ничего хорошего от такого ксенона не будет. У таких ламп интенсивность света снижается до 2000 люмен, при движении на автомобиле в темное время водитель видит объекты в черно-белом цвете и плохо их различает. В торговых точках такие лампы уже не продаются, так как они считаются недостаточно эффективными.
Достоинства
  • Повышенные параметры светоотдачи и яркости. Ксеноновые лампы обладают светоотдачей в несколько раз больше, по сравнению с галогенными лампами. Поэтому такие лампы стали использоваться значительно чаще в автомобильных противотуманных фарах для освещения ночной дороги. Они способны обеспечить идеальное освещение даже в самых темных местах.
  • Длительный срок службы обеспечивается отсутствием нити накаливания, в отличие от обычных ламп или галогенных моделей. Они также могут применяться в экстремальных случаях, что является важным достоинством. В среднем такие газоразрядные лампы на автомобиле способны служить до 200 тысяч км пробега.
  • Небольшой расход электрической энергии. Для функционирования лампы требуется мощность не больше 30 ватт, что позволяет продлить срок службы аккумуляторной батареи. Нагрузка ксеноновых ламп на бортовой компьютер в автомобиле также незначительная.
  • Естественный цвет светового потока автомобильных фар. Галогенные лампы, также часто используемые в фарах автомобилей, создают желтоватый свет, который непривычен для человека, и иногда искажает объекты. В отличие от них, ксеноновые фары обеспечивают белый свет, повышающий безопасность движения в темное время.
  • Повышенные показатели КПД. У обычной лампы накаливания этот параметр всего 30%, так как основная часть энергии расходуется на выделение тепла. Ксеноновая лампа излучает холодный свет, что означает незначительное нагревание приборов освещения. Большая часть энергии этих ламп направлена на освещение.
Недостатки

Высокая стоимость ламп относится к их недостаткам. Но это со временем окупается за счет длительного срока эксплуатации, экономии на отсутствии ремонта и редкой замены ламп.

Замена ксеноновых ламп доставляет некоторый дискомфорт. Рабочее давление лампы очень высоко, и при ее разрушении осколки лампы разлетаются на большое расстояние, повреждая предметы и объекты, находящиеся на пути. Поэтому чаще всего замена таких ламп должна выполняться только квалифицированными специалистами, имеющими при себе защитные средства в виде костюма и очков.

Советы по выбору

Подбор ксеноновых ламп зависит от конструктивных особенностей фар автомобиля, или прибора освещения. Если для фар предусмотрены лампы с одной нитью накаливания, то подойдут обычные газоразрядные лампы. Если в фары вставлялись двухнитевые лампы, то придется ставить биксеноновые лампы.

Они имеют в своей конструкции металлическую электромагнитную шторку, которая закрывает часть стеклянной колбы, чтобы обеспечивать переключение света с дальнего на ближний, и наоборот. При установке ксеноновых ламп на автомобиль часто приходится менять рефлекторы фар. Обычный рефлектор рассеивает свет, а для нормальной работы ксенона свет нужно фокусировать. Если рефлекторы не заменить, то вы будете ослеплять встречных водителей, что может привести к аварийной ситуации на ночной дороге.

К подбору завода изготовителя ксеноновых ламп нужно отнестись с большой ответственностью, так как от качества лампочек непосредственно зависит ваша безопасность во время движения, а также безопасность окружающих людей. Если лампа при движении внезапно потухнет, это может привести к непредсказуемым последствиям.

Гарантией качества ламп может послужить популярный бренд и наличие всего комплекта документов, которыми подтверждается качество товара и его оригинальность. Не следует приобретать дешевые ксеноновые лампы, если вам предлагают скидку и навязчиво рекламируют изделие. Качественные товары не могут стоить дешево.

Похожие темы:

Принцип работы ксеноновых ламп

Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.

Конструкция ксеноновой автомобильной лампы

Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.

Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.

Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.

Принцип работы ксеноновых ламп

Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.

  • Этап 1. Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
  • Этап 2. Активизация электрической дуги.
  • Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
  • Этап 4.
    Проходящий ток через газ возбуждает атомы ксенона.
  • Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
  • Этап 6. Затем электроны возвращаются к первоначальным орбитам и при этом образуют энергию, выраженную в форме фотона, а это и обеспечивает выдачу насыщенного и интенсивного света.

Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.

Спектр ксеноновых излучателей

Как и многие другие газы, благодарённый ксенон также имеет спектры.  Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.

Цветность лампы очень важна и измеряется она в Кельвинах:

3000 Кельвинов Насыщенный желтый свет, идеальный для использования в ПТФ.
4300 Кельвинов Теплый белый свет, который максимально схож с солнечным, эффективен для использования в головной оптике.
5000 Кельвинов Насыщенно белоснежный свет, разрешенный для использования в головной оптике автомобилей.
6000 Кельвинов Белоснежный свет, имеющий небольшой оттенок голубого цвета, что стильно смотрится в головной оптике автомобилей.
7000 Кельвинов Голубой свет, который не используются для повседневной езды, поскольку обеспечивают низкую освещенность дороги.
8000 Кельвинов Синий цвет, также используемый в целях тюнинга автомобиля для шоу-каров.

Стандартная цветность ксенона, используемая на наших дорогах:


  • Цветность стандартного ксенона составляет 4300 Кельвинов. Это самый оптимальный тепло-белый свет, который необходим для качественного освещения дорожного полотна. Данный спектр обеспечивает освещение дороги, обочины. Не рассеивается и не кристаллизируется, что важно в плохих метеорологических условиях при дожде или же мокром асфальте.
  • Ксенон на 5000 Кельвинов также часто используется водителями, и обладает достаточно высокой эффективностью, хотя интенсивность света и освещенность дороги немного снижена, по сравнению со стандартным бело-теплым свечением в 4300 кельвинов. Такие лампы используются для ночных поездок, но не имеют максимального эффекта при сильном дожде или же туманности.
  • Ксенон на 6000 Кельвинов очень редко используется на наших дорогах, поскольку голубой – это спектр приближенный к синему, а поэтому он не обеспечивает качественное освещение дорожного полотна ни ночью, ни при погоде. Его яркость максимально снижена, по сравнению с предыдущими цветностями, что не может в полной мере гарантировать качественную и насыщенную видимость дороги для водителя.

Ксеноновые лампы: особенности использования

Технология использования ксенона для обеспечения освещения появилась несколько лет назад, но в данный момент она занимает достаточно существенный сегмент рынка. Ксеноновые лампы для авто являются идеальным вариантом, благодаря надежности и длительному сроку эксплуатации.

Что это такое

Ксеноновые автомобильные лампы – это газоразрядный источник света, который обеспечивает очень яркое свечение, близкое к естественному дневному. Особенностью работы является наличие в колбе с электрической дугой газа ксенона. В такой схеме нет необходимости использовать нить накаливания, которая легко может перегореть вследствие изменения напряжения.

Фото — свечение

Для работы HID-лампы используется смесь инертных газов, которые при пропускании электрической энергии начинают излучать свет. К ксенону добавлены также пары ртути, которые обеспечивают работу источника света под высоким давлением.

От состава смеси зависит цвет света. Например, сам ксенон светится ярким белым, в то время как смесь со ртутными парами издает более холодное, голубоватое свечение. Поэтому варианты со смесью газов в основном используются в медицине – они отлично подходят для стерилизации помещения и озонирования.

Достоинства ксеноновых ламп:

  1. Долговечность работы. Отсутствие нити накаливания делает такие светильники более долговечными, нежели обычные. К тому же, они могут использоваться в экстремальных условиях работы, что также является весомым преимуществом. В среднем, замена источника света с ксеноновой смесью производится после 100 000 километров, но в большинстве случаев этот показатель сильно занижен, и лампы служат до 200 000;
  2. Высокие показатели яркости и светоотдачи. Ксеноновые модели имеют светоотдачу в 2,5 раз выше, чем галогеновые. Поэтому именно они применяются для обеспечения наилучшей видимости дороги ночью. Такие светильники часто называют противотуманными, т. к. даже на самых затененных участках они могут обеспечить практически идеальное освещение; Фото — сравнение ксеноновых и галогеновых фар
  3. Естественная температура ближнего света. Галогеновые лампы, которые часто используются для автомобильных фар, излучают желтоватое свечение, которое непривычно человеческому глазу и может несколько искажать видимость. Пи этом ксенон светится при горении белым, что повышает безопасность водителя и пешехода;
  4. Низкое потребление электрической энергии. Для работы лампы используется не более 30 Ватт энергии, что помогает сэкономить аккумулятор. Также нужно отметить низкую нагрузку на бортовой компьютер при работе;
  5. Высокие показатели КПД. У стандартной лампы накаливания КПД равняется 30 %. Большая часть поступающей энергии преобразуется в тепло, но ксенон излучает холодное свечение. Эта характеристика говорит не только о цвете света, но и нагревании осветительного прибора. Более половину поступающей мощности направлено именно на обеспечение освещения.

К недостаткам можно отнести высокую стоимость светильника, но она окупается экономией на ремонте и долговечности устройства. Сейчас наиболее популярны модели Филипс (Philips), они считаются самыми качественными ксеноновыми лампами.

Фото — лампа филипс

Небольшой дискомфорт доставляет замена такого светильника. Учитывая, что давление, при котором работает лампа, превышает показатели 25 атмосфер, во время аварийной ситуации её осколки могут разлететься на огромное расстояние, причиняя вред на своем пути. Поэтому в большинстве случаев замена таких источников света выполняется только специалистами, у которых есть для таких целей специальные защитные очки и костюмы.

Конструкция и принцип работы

Ксеноновая модель осветительного прибора состоит из стеклянной колбы, выполненной из ударопрочного материала и ториевовольфрамовых электродов. Колба производится в большинстве случаев из кварцевого стекла, которое выдерживает высокое давление, образующееся в конструкции во время работы. Но на рынке также можно найти модели из более дорогого сапфирового. При работе колб с разным стеклом видна разница, сапфир обеспечивает более чистый свет, яркий, в то время как кварц обладает меньшей пропускной способностью.

Фото — принцип работы

Электроды выполнены из вольфрама, который позволяет обеспечить между контактами достаточно сильную дугу. Для повышения эффективности они покрыты специальным напылением, в основном это торий или молибден. Также в электроды встроены металлические пластины, усиливающие дугу. Сами электроды выполнены в форме конуса, что уменьшает время зажигания. В среднем горение ксенона начинается спустя пару миллисекунд после начала поступления энергии на контакты.

Во время включения лампы, плазма возле катода начинает излучать свечение. Ток на двух электродах, расположенных на небольшом расстоянии способствует образованию электрической дуги, которая нагревает газоразрядную смесь.

Видео: сравнение LED ламп и Ксенона

Использование

Ксеноновые газоразрядные лампы применяются не только для автомобиля, у них достаточно широкий спектр использования. В зависимости от конструкции они бывают:

  1. Шаровые;
  2. Керамические;
  3. Трубчатые.

Ксеноновые шаровые получили наибольшее распространение, именно они применяются для фар. Их конструкция представляет собой маленькую колбу, которая наполнена ксеноном. Электроды находятся на очень маленьком расстоянии.

Фото — круглые модели

Керамические используются в фармацевтической промышленности. Их особенностью является не только применение керамической колбы, но и наличие в ней отверстия для ультрафиолетового света. Такое свечение используется в терапевтических целях, в частности, для обнаружения грибковых заболеваний кожи или покровов головы.

Фото — керамические

Трубчатые представляют собой устройства для обеспечения света в жилых помещениях. У них электроды расположены на достаточно большом расстоянии друг от друга, поэтому для работы требуется определенный балласт. Дроссельная схема подобного плана используется для обеспечения освещенности на больших площадях, часто это вокзалы, склады и прочие производственные или общественные учреждения.

Фото — трубчатые

Также в зависимости от типа использования, ксеноновые лампы могут иметь разные цоколи (к примеру, для автомобиля – H8 4300K, h5 5000K, также есть варианты H7, h4, HB4 и Н11).

Фото — цоколи

Технические характеристики

В зависимости от типа и конструкции ламп могут изменяться требования к параметрам электрической сети. Предлагаем рассмотреть наиболее популярные модели и их характеристики:

Лампы ксеноновые трубчатого типа (цоколь D1S и D2S), марка MTF и Philips Original Plus:

MTF Light Active Night (ночные МТФ)

Яркость, Лм3200
Мощность, Вт35
Номинальное напряжение, В8
Температура свечения, К6000
Расстояние между электродами, мм4
Долговечность, ч2000

Филипс Ориджинал:

Температура, К6500
Мощность, Вт35
Яркость, Лм3400
Долговечность, ч3000
Расстояние между электродами, мм4,2

Купить ксеноновые газоразрядные лампы можно в любом городе стран СНГ (Москва, СПб и прочих), цена зависит от типа и параметров устройства. Рекомендуем изучать каталог известных компаний: Филипс, Галакси и других, т. к. они предоставляют гарантию на свои модели.

Виды и принцип работы ксеноновых ламп

Ксеноновые лампы – источники искусственного света. Излучения происходит за счет дугового разряда, возникающего между электродами устройства. Конструктивно ксеноновая лампа — это трубчатая колба, спираль или шар из обычного или кварцевого стекла. Высокие температуры и давление внутри ламп под силу выдержать только данным материалам. К основанию трубки (с каждого конца) прикреплены вольфрамовые электроды. Внутри лампы вакуум, заполненный ксеноном. Кроме газа ксенона в колбе присутствуют соли других металлов (например, пары ртути). Малый размер светящейся области ксеноновой лампы позволяет создать мощный поток света, точно сфокусированный на определенную область освещения.
 

Существует несколько категорий ксеноновых ламп:

  • лампы с короткой дугой;
  • устройства с длинной дугой;
  • лампы-вспышки.

 

Для светотехники автомобилей используют ксеноновые лампы длительной работы, в которых электроды разнесены дальше по корпусу. За счет этого формируется длинная дуга, для розжига которой требуется балласт меньшего размера. Для транспортных средств важно иметь компактные элементы системы освещение, монтирование которых не вызовет массу неудобств.

 

Принцип работы ксеноновой лампы:
 

Низковольтная система автомобиля не может зажечь и обеспечить бесперебойную работу ксеноновой лампы. Для этого устанавливаются модифицированные балласты. Они подают мощный импульс на электроды лампы. 20КВ способствуют ионизации газа внутри лампы и формированию дугового разряда. Газ проводит ток, за счет чего излучает свет определенного цвета. Для постоянного поддержания дуги свечения необходим импульс гораздо меньшей амплитуды и мощности. Время выхода лампы в рабочее состояние зависит от ее мощности, колеблется между несколькими миллисекундами и 5-6сек. Основной поток света формируется в области катода, спектр свечения примерно равномерен по всей зоне видимого света. Алгоритм действия лампы таков: электроды, впаянные в корпус колбы, получают высоковольтный импульс от смежного конденсатора. Напряжение зависит от состава смеси газов, наполняющих лампу, и от длины ее колбы. В некоторых моделях ксенона для начальной ионизации газа используется третий электрод. Он представляет собой ленту металла вдоль трубки и служит для запуска разряда через ксеноновую лампу.


Конструктивные элементы системы ксенона дают свет, близкий спектрально к дневному освещению. Ксеноновые лампы излучают разные оттенки свечения, в зависимости от цветовой температуры. От данного показателя зависит яркость и мощность светового потока. Наиболее оптимальные лампы ксенона имеют температуру свет 4300-5000К. С уменьшением и увеличением данного показателя яркость незначительно падает, меняется цвет светового луча. Ксенон в 8000К светит красиво синим цветом, но мало эффективен в условиях плохой погоды. Более комфортное для человеческого восприятия свечение ксенона до 5000К, этот диапазон наиболее близок к дневному свету.

 

Неотъемлемый атрибут фары большинства авто – рефлектор. Он помогает рассеять пучок света, сформированный ксеноновой лампой. Чтобы свет не стал причиной аварии, а только способствовал безопасности, нужно правильно отрегулировать положение фар, настроить ближний/дальний свет. Ксенон может слепить встречных водителей, создавать дискомфорт участникам движения. При монтировании ксеноновых ламп стоит позаботиться об установке системы автоматической регулировки фар (угла их наклона) и фароомывателей.

 

Маркировки ксеноновых ламп

Чтобы правильно выбрать ксеноновую лампу, стоит научиться читать маркировку на ней. Как правило, сначала идет фирма производитель, далее указывается цоколь лампы (D2S, Н1), мощность. В зависимости от конструктивного элемента установки (цоколя), ксеноновые лампы бывают нескольких серий:

  • Н (h2, h4, h5, H8, Н7, h21, h20, h37(880 / 881). Такие лампы работают от блоков розжига мощностью 35-55Вт. Провода питания балласта идут в комплекте с лампами. Ксеноновые лампы этой серии имеют разъемы AMP или KET, в зависимости от блоков розжига. Неувязку с разъемами можно решить с помощью переходников KET-AMP. Лампы, их температуру свечения, подбирают в зависимости от функциональных особенностей фар. Например, для противотуманок больше подойдут лампы Н3, поскольку они малогабаритны. Лампа Н11 встречается в противотуманках японских авто, h37(880 / 881) – в транспортных средствах корейских производителей; лампы Н4 используются в авто с совмещенной оптикой, где дальний и ближний свет — одна лампа. Цоколь Н7 устанавливают в ближний свет, h2 может устанавливаться, как в ближний, так и в дальний свет автомобиля, а также применяются в биксеноновых линзах пятого поколения G5.

  • D (D1R, D1S, D2R, D2S, D3S, D4S, D4R). Наиболее распространены такие лампы от компаний Osram и Philips. Они устанавливаются, как правило, в ближний свет фар. Им свойственна одна цветовая температура – 4300К. Для установки ламп с большей температурой свечения стоит прибегнуть к китайским аналогам, но они могут быть несовместимы со штатными блоками розжига. Решить проблему конфликта оборудования поможет замена заводских балластов на обычные с адаптерами. Этот вариант не подойдет только для ксенона на основе цоколя D1S, в котором лампа совмещена с балластом. Поломка внутри блока ведет к замене всего комплекта, повреждение лампы влечет к затратам на балласт. Лампа D1R имеет специальное напыление, которое устраняет паразитное свечение, ксеноновые лампы D2Sустанавливается в линзу, D2R тоже имеет оптическое напыление. Лампа с цоколем D4S не содержит ртуть, как все остальные, устанавливается только в линзу системы освещения автомобилей Lexus и Toyota;

  • HB (HB2(9004), HB3(9005), HB4(9006), HB5(9007)). Конструктивных особенностей данные лампы не имеют. Их функционирование, как и цветовая температура свечения, аналогичны лампам с цоколем Н. Редко применяются HB5(9007) и HB2(9004). Ксенон с цоколем HB4(9006) используют в противотуманках и в ближнем свете, как и HB3(9005), но последнюю модель чаще используют в качестве дальнего света.

Что такое ксенон и ксеноновые лампы?

В последнее время на дорогах всего мира появилось совершенно новое, качественное освещение, которое обеспечивает большую видимость и безопасность для водителей на дороге. Речь идет о ксеноне, а именно о лампочках, о которых мы вам и расскажем в данном материале.

Что такое ксенон?

Ксенон – это химический элемент таблицы Д.И. Менделеева. Ксенон – благородный газ, который не имеет запаха, вкуса и цвета. Открыт был химический элемент в 1898 году, но его применение было реализовано намного позже.

На сегодняшний день, ксеноновый газ применяется во многих сферах, в том числе и для производства газоразрядных ламп, используемых в автомобильном мире.


Поездка в прошлое: как появились ксеноновые лампы?

Автомобильное освещение появилось практически сразу с появлением данного типа передвижения. Развитие автомобильного освещения происходило в несколько этапов, и этот процесс не стоит на одном месте до сих пор.

  • Этап 1. Изначально были созданы пропановые лампы, которые были не только не эффективны, но и неудобны в применении.

  • Этап 2. Затем, были созданы лампы накаливания, которые обеспечивали больше света, и были намного удобней предыдущих. Поэтому, длительное время они  являлись одним типом источника, используемого для освещения в автомобилях.
  • Этап 3. После этого, были придуманы галогеновые источники света, которые обеспечивали качественное освещение, как при плохих погодных условиях, так и в ночь. Очень долго, именно такие лампы позволяли водителям выезжать в ночное время суток и при плохих погодных условиях. Но, с бурным развитием автомобилей, такого света стало недостаточно, а поэтому возникла потребность в открытии нового источника.

  • Этап 4. Ксеноновые источники света впервые появлялись в 1992 году. Это были оригинальные ксеноновые лампочки, выпущенные компанией Philips. Они имели цоколь D2S и ставились в прожекторную оптику автомобилей. Такие лампочки изначально устанавливались исключительно на дорогостоящие, даже элитные модели транспортных средств, отчего стоимость автомобилей возрастала еще больше. Затем же, стоимость на такие источники света немного снизилась, но все же и на текущее время ими комплектуются более дорогостоящие модели транспортных средств.

Дополнительное оборудование ксенона

Ксеноновые лампы, в отличие от всех других, которые использовались для головной оптики автомобиля, нуждаются в дополнительном оборудовании, как обязательном, так и сопутствующем.

Обязательное дополнительное оборудование:

Блоки розжига – специальные устройства, которые необходимы для активизации горения лампы. Без них ксеноновые лампы не обеспечивали бы свечения, а поэтому они и являются обязательными.

Омыватели фар – это специальные приборы, которые ставятся под оптику автомобиля на бампер. Они позволят всегда содержать стекло фар в чистоте. Устройства обеспечивают выпуск определенного количества жидкости под большим давлением со специальным очистителем.

Омыватели необходимы, поскольку даже малейшие частички пыли или же грязи на стекле автомобиля могут привести к снижению яркости и появлению точечного свечения.

Автокорректоры фар – это электронные приборы, позволяющие сделать свет «правильным». Устройства обеспечивают регулировку положения фар относительно загруженности кузова, или же его положения к дороге.

То есть, если вы поворачиваете, поднимаетесь вверх или же спускаетесь вниз — автокорректор настраивает положение фар таким образом, чтобы свет попадал только на дорогу, а не ослеплял водителей встречного транспорта.

Сопутствующее дополнительное оборудование:

Биксеноновые линзы – это устройства, которые обеспечивают сфокусированный, целенаправленный свет и однородно распространяют его по всему дорожному полотну. Такие приборы позволяют сделать свет «правильным», они не допускают засветов или же ослеплений водителей встречного транспорта.

Биксеноновые линзы обеспечивают и ближний, и дальний режимы света, благодаря специальной конструкции – магнита и шторки. Обычно используются на одиночной оптике автомобиля.

Моно-линзы – это такие же устройства, как и вышеописанные, но обеспечивающие исключительно один режим света, например, ближний. Используются, зачастую, в противотуманных фарах, а реже в головной оптике двойного типа.


Принцип работы ксеноновых ламп

Ксеноновые лампы – это газоразрядные источники света, обеспечивающие высокую яркость светового потока, которая гарантирует безопасность для водителей на дороге в ночь и при плохих метеорологических условиях. Лампы представляют собой колбу, где находится пары ртути и смесь инертных газов с преобладанием ксенона.

В колбе также расположены два электрода, между которыми при помощи блока розжига, а именно подачи мощного импульса под напряжением 25000 В, образуется электрическая дуга, электромагнитное поле. Активизация горения ксенонового газа обеспечивается, благодаря ионизации молекул газа и их движению. После того, как блок розжига обеспечил подачу тока под большим напряжением и свечение лампы активизировалось, необходима постоянная подача тока 85 В, который поддерживает горение и не допускает того, чтобы лампа потухла. Это основной принцип работы ксенонового источника света, который позволит вам получить высокую видимость в разные условия эксплуатации.


Преимущества ксеноновых ламп

Ксеноновые лампы, по сравнению с другими источниками для автомобильной головной оптики, обладают рядом неоспоримых преимуществ, которые объясняют такую популярность и востребованность в настоящее время. Для того, чтобы понять явные преимущества ксеноновых источников света, мы сравнили все их достоинства с галогеновыми лампами.

1. Высокая яркость

Ксеноновые источники света обладают самой высокой световой отдачей, а поэтому гарантируют:

  • Хорошую видимость
  • Повышенную безопасность на дороге

По сравнению с предыдущими источниками света, даже с галогеном, который нынче также используется водителями, лампы ксенонового типа обеспечивают в разы большую яркость.

Ксенон 3200-4500 Люмен
Галоген 1550 Люмен

2. Лучшая цветовая температура

Ксеноновые лампочки обеспечивают свет, максимально приближенный по цветовому спектру к дневному. Это обеспечивает хорошую видимость дорожного полотна, а также не сказывается на глазах водителя, которые устают при длительной поездке с включенными фарами. Лампы данного типа выдают намного белее свет, в отличие от галогена, который лучше освещает дорожное полотно. Измеряется цветовая температура в Кельвинах (К).

Ксенон 4300 К, 5000 К, 6000 К – используемые на сегодняшнее время.
7000 К, 8000 К, 10000 К, 12000 К, 30000 К – для шоу-каров, запрещены для повседневного использования.
Галоген 3200 К

 

3. Длительный рабочий ресурс

Ксеноновые лампы отличаются от галогеновых тем, что обладают максимально длительным сроком использования. Это обеспечивается не только свойством таких ламп, но и их кардинально отличительной конструкцией от галогена. В колбе ксеноновых ламп не присутствует хрупкая нить накала, которая при малейших вибрациях автомобиля или же сотрясениях — рвется.

Ксенон 3000-4000 часов/ 3-4 года/ 100000 км пробега с включенным светом фар
Галоген 500-1000 часов (возможно 1500 часов)

Приведенные параметры соответствуют ежедневному использованию ламп на протяжении 2-3-х часов поездок с включенным светом фар.

4. Больше света – меньше энергопотребления

Ксеноновые источники света, несмотря на то, что обеспечивают в разы больше яркости и насыщенности светового потока, отличаются минимальным потреблением энергии. Это не сказывается на увеличении расхода топлива, а также на износе генератора.

Ксенон 35 Вт
Галоген 55 Вт, 70 Вт

5. Меньше выделяется тепло

Ксеноновые лампы, в отличие от галогеновых, при работе практически не выделяют тепло, а только свет. Галогеновые лампы при работе сильно нагреваются, а поэтому большая часть энергии уходит на тепло, а не на свет, что разительно отличает их от ксенона. Таким образом, ксенон можно использовать даже в пластиковых фарах, поскольку их температура нагрева никоем образом не скажется на их порче.

Ксенон 10% — тепло, 90% — свет
Галоген 40-50% — тепло, 60-50% — свет

Несмотря на высокие показатели, а также множество значимых преимуществ, все же ксеноновые лампы до сих пор совсем не вытеснили галоген.


Недостатки ксеноновых ламп

Как и многое другое оборудование, ксеноновые лампы, в противоречие множеству преимуществ, все же имеют некоторые недостатки. О них обязательно нужно знать, перед тем как сделать выбор в пользу одного или же другого типа автомобильного освещения. Стоит отметить, что все недостатки, которые можно выделить относительно ксеноновых ламп возникают не из-за плохого качества оборудования, а по причинам неправильного монтажа, использования.

1. Влияние высокой яркости при неправильном монтаже.

Поскольку ксеноновые лампочки обладают большей яркостью, то они могут ослеплять водителей встречного транспорта.

Внимание!
НО! Ослепление встречки происходит только в том случае, если ксеноновые лампы были неправильно установлены в оптику автомобилей, и при этом не настроены!

Решение: чтобы не допускать такой проблемы, которая может влиять на снижение безопасности на дороге, — обязательно при установке таких ламп необходимо не только сразу отрегулировать их положение, но и использовать автокорректоры фар, которые самостоятельно сделают свет «правильным» относительно положения кузова машины к дороге.


2. Высокая стоимость всей ксеноновой системы света.

Поскольку в ксеноновую систему света входят не только лампочки, но и блоки розжига, омыватели и автокорректоры фар, а также и биксеноновые линзы, то такое оборудование стоит намного дороже, если сравнивать его с галогеном.

Ксенон – это высокая яркость, качественный дневной свет, минимальные потребления энергии автомобиля, а также повышенная видимость и безопасность для водителя на дороге! Ксенон – лучший тип света в настоящее время для использования при непогоде и в ночь. 

Ксеноновая дуговая лампа — это… Что такое Ксеноновая дуговая лампа?

Ксеноновая дуговая лампа — источник искусственного света, в котором светится электрическая дуга в колбе, заполненной ксеноном. Дает яркий белый свет, близкий по спектру к дневному.

Ксеноновые лампы можно разделить на следующие категории:

Лампа состоит из колбы из обычного или кварцевого стекла с вольфрамовыми электродами с каждого конца. Колба вакуммируется и затем заполняется ксеноном. Ксеноновые лампы-вспышки имеют третий поджигающий электрод, опоясывающий колбу.

История и применение

100 Вт ксеноново-ртутная короткодуговая лампа Osram в рефлекторе

Ксеноновая лампа с короткой дугой была изобретена в 1940-х в Германии и представлена в 1951 году компанией Osram. Лампа нашла широкое применение в кинопроекторах, откуда вытеснила преимущественно угольные дуговые лампы. Лампа дает яркий белый свет, близкий к дневному спектру, но имеет достаточно невысокий КПД. На сегодняшний день практически во всех пленочных и цифровых кинопроекторах используются ксеноновые лампы мощностью от 900 Вт до 12 кВт. Лампы в проекторах IMAX могут достигать мощности в 15 кВт в одной лампе.

Конструкция лампы

15 kW лампа для IMAX. Видны отверстия для подачи охлаждающей жидкости.

Во всех современных ксеноновых лампах используется колба из кварцевого стекла с электродами из вольфрама, легированного торием. Кварцевое стекло — это единственный экономически приемлемый оптически прозрачный материал, который выдерживает высокое давление (25 атм в колбе ламп для IMAX), и температуру. Для специальных задач применяют изготовление колбы лампы из сапфира, это расширяет спектральный диапазон излучения в сторону коротковолнового ультрафиолета также приводит к увеличению срока службы лампы. Легирование электродов торием сильно увеличивает эмиссию ими электронов. Так как коэффициент теплового расширения кварцевого стекла и вольфрама различаются, вольфрамовые электроды вварены в полосы из чистого молибдена или инвара, которые вплавлены в колбу. В ксеноновой лампе анод при работе очень сильно нагревается потоком электронов, поэтому лампы большой мощности нередко имеют жидкостное охлаждение.

3 кВт лампа в пластиковом защитном транспортировочном чехле

Для повышения эффективности лампы, ксенон находится в колбе под высоким давлением (до 30 атм), что накладывает особые требования по безопасности. При повреждении лампы осколки могут разлететься с огромной скоростью. Обычно лампа транспортируется в специальном пластиковом контейнере, который снимается с лампы только после установки лампы на место и надевается на лампу при её демонтаже. При работе лампы колба подвергается значительным перепадам температуры, в результате чего к концу срока службы колба становится более хрупкой. Из соображений безопасности производители ксеноновых дуговых ламп рекомендуют использовать защитные очки при обслуживании лампы. При замене ламп IMAX рекомендуется надевать защитный костюм.

Принцип работы

В ксеноновой лампе основной поток света излучается плазмой возле катода. Светящаяся область имеет форму конуса, причём яркость её свечения падает по мере удаления от катода по экспоненте. Спектр ксеноновой лампы приблизительно равномерный по всей области видимого света, близкий к дневному свету. В лампах высокого давления могут быть несколько пиков вблизи инфракрасного диапазона, примерно 850—900 нм, которые могут составлять до 10 % всего излучения по мощности.

Существуют также ртутно-ксеноновые лампы, в которых кроме ксенона в колбе находятся пары ртути. В них светящиеся области есть как возле катода, так и возле анода. Они излучают голубовато-белый свет с сильным выходом ультрафиолета, что позволяет использовать их для физиотерапевтических целей, стерилизации и озонирования.

Благодаря малым размерам светящейся области, ксеноновые лампы могут использоваться как точечный источник света, позволяющий производить достаточно точную фокусировку, а хороший спектр обуславливает широкое применение в кино- и фотосъёмке. Ксеноновые лампы также используются в климатических камерах — установках, моделирующих солнечное излучение для испытания материалов на светостойкость.

Варианты исполнения

Короткодуговые лампы (Шаровые лампы)

Наиболее распространены короткодуговые лампы. В них электроды расположены на небольшом расстоянии, а колба имеет шарообразную, или близкую к шарообразной форму.

Керамические лампы

Лампа Cermax для видеопроекторов

Ксеноновые короткодуговые лампы могут выпускаться в керамической оболочке со встроенным рефлектором. Благодаря этому лампа получается более безопасной, так как из стекла сделано только небольшое окно, через которое выходит свет, а также не требуется юстировка при установке и замене. В такой лампе может быть окно, как пропускающее ультрафиолетовое излучение, так и непрозрачное для него. Рефлекторы могут быть как параболическими (для получения параллельного светового потока) так и эллиптическими (для сфокусированного)[1].

Длиннодуговые лампы (Трубчатые лампы)

По конструкции длиннодуговые лампы отличаются от короткодуговых тем, что электроды дальше разнесены друг относительно друга, а колба имеет форму трубки. Ксеноновые лампы с длинной дугой требуют балласта меньших размеров, а в некоторых случаях могут использоваться без балласта. Такие лампы нередко устанавливаются в рефлектор в виде параболического цилиндра и используются для освещения больших открытых пространств (на железнодорожных станциях, заводах, складских комплексах и т. п.), а также для моделирования солнечного излучения, например при тестировании солнечных батарей, проверке материалов на светостойкость и т. д.

Требования к питанию

Блок питания ксеноновой лампы, мощностью 1 кВт без крышки

Ксеноновая лампа с короткой дугой имеет отрицательный температурный коэффициент. Для поджига дуги требуется зажигающий импульс 15-30 кВ[2], а иногда и до 50 кВ. В рабочем режиме требуется точная регулировка напряжения и тока, так как по мере прогрева лампы её сопротивление значительно уменьшается, и кроме того, возможно появление колебаний плазмы. При питании выпрямленным током необходимо, чтобы уровень пульсаций не превышал 10-12 %, так как колебания напряжения ускоряют износ электродов. Существуют разновидности ксеноновых ламп для переменного тока. Лампы с длинной дугой (например, отечественная ДКсТ) не столь требовательны к качеству питания и могут использоваться без балласта, требуя лишь пускателя.

Применение

Ксеноновые лампы чаще всего применяются в проекторах и в сценическом освещении, так как имеют очень хорошую цветопередачу. Благодаря малому размеру излучающей области они нашли применение в оптических приборах.

Начиная с 1991 года широкое распространение ртутно-ксеноновые лампы нашли в автомобильных фарах. Точнее, в автомобильных лампах основной световой поток формируют ртуть, соли натрия и скандия, а в атмосфере ксенона разряд происходит только на время запуска, до испарения других компонентов. Поэтому их стоит скорее относить к металлогалогенным лампам, однако при этом возникла бы путаница в названиях, так как в автомобильной светотехнике применяются также галогенные лампы накаливания. Стоит помнить, что при установке ксеноновых ламп необходимо также установить систему автоматической регулировки угла наклона фар и фароомыватели, во избежание ослепления встречных водителей.

Примечания

Ссылки

Что такое ксенон — плюсы и минусы ксеноновых ламп

Что сделала компания Phillips в 1992 году? Она разработала и применила первую ксеноновую лампу в фаре. Прошло 26 лет, технология успела усовершенствоваться и завоевать рынок. На сегодняшний день ксеноновые лампы пользуются популярностью у автолюбителей, не только в странах СНГ. Это заслуга конечно же производителя — Phillips. Однако, из за популярности продукта рынок пополнился другими именитыми брендами, например – Brevia, Solar. И так давайте разберемся, что такое ксенон, как устроена ксеноновая лампа, ее преимущества и недостатки. Стоит ли вообще тратить на нее деньги, на самом деле?

Принцип работы ксеноновой лампы

Ксеноновая лампа устроена так: колба заполнена ксеноном и другими инертными газами. Внутри находятся два электрода, которые противоположны друг другу. При зажигании между двумя этими электродами появляется электрическая дуга, которая и дает свечение.

Ксеноновые фары ставят заводским комплектом на линзовую оптику. Она наиболее эффективно рассеивает свет и не слепит встречных водителей. Автолюбители ставят ксенон и на рефлекторные фары, однако тут есть нюансы. Такая оптика не предназначена для ксенона. Поэтому их нужно «подгонять» под ксенон и делать корректировку, чтобы пучок света правильно рассеивался, а лучше устанавливать в линзу.

Если, вы интересуетесь автомобильными лампами — статья в тему, про выбор светодиодных ламп.

Блок розжига

Чтобы разжечь ксенон, нужно высоковольтное напряжение, которого нет в штатном аккумуляторе. Для этого в комплекте к лампам идет блок розжига. Он зажигает лампы, поддерживает работу и выключает их. Также этот блок предохраняет лампы от перенапряжения.

Слева направо: блок четвертого поколения, далее блоки пятого поколения с обманкой и без обманки соответственно


Блоки бывают трех поколений. Третье, называемое «кирпичами» (ballast standart) имеют напряжение от 9 до 18 . Четвертое поколение имеют встроенное реле контроля напряжения и зажигает лампы самостоятельно, если они гаснут (super slim ballast), так же отличаются компактными размерами. Мощность – от 6 до 32 Вт, разжигают лампы меньше, чем за секунду. Подходят под автомобили с напряжением 12-24 Вт. Пятое поколение, имеют самый компактный блок и усовершенствованную технологию работы. Блок не только управляет лампами, а и поддерживает процесс работы, с учетом внешней среды. Устанавливаются как на легковые, так и на грузовые автомобили с напряжением от 12 до 24 Вт.

Какие бывают ксеноновые лампы?

Ксенон устанавливают во весь головной свет: ближний, дальний и противотуманный. Есть разновидность ксеноновых ламп – биксенон, соединяющий в себе ближний и дальний свет. Соответственно, для каждого вида и разъема своя маркировка.

Цоколь

Маркировка

H

                            h2, h4, h5, H7, H8, h21, h23, h37/2

D

                            D1S, D1R, D2S, D2R, D3S, D4S

HB

                            HB3(9005), HB4 (9006)


Цоколь с маркировкой D устанавливается в ближний свет. Цветовая температура от 4300К до 6000К. Лампа с цоколем D1S объединяет в себе блок розжига и цоколь в одну систему. Это упрощает процесс монтажа лампы, вам не нужно дополнительно искать место для блока розжига. D1R сделаны со специальным антибликовым напылением. D2S также имеют антибликовое напыление и предназначены для линзовой оптики «европейцев», а D4S – для линз «японцев».

Цоколи с маркировкой H устанавливают в ближний свет. Для противотуманок обычно берут h4, реже h2, H8 или h21. Маркировка h5 означает, что это биксеноновая лампа, где соединен ближний и дальний свет. Цоколя с обозначением H имеют цветовую температуру от 4300 до 6000К. В этот диапазон входят такие цвета, как – желто-белый, белый и холодно-белый.

Цоколя HB мало чем отличаются от H. Они чаще устанавливаются в дальний и противотуманный свет. HB3 – для ПТФ, HB4 – для дальнего. В целом, необходимо понимать, что на разные автомобили ставятся разные цоколя ламп. Подбробней про это мы разбирали в статье ниже.

Внешний вид лампочки по соответствующему цоколю

Статья по теме: Что такое цоколя автоламп их маркировка и обозначения. Чек лист как правильно подобрать лампу на авто

Плюсы и минусы ксенона

Ксеноновые лампы имеют ряд преимуществ перед галогенным. Рассмотрим подробно каждый пункт.

✔️Яркость и угол обзора

Ксенон светит ярко, в среднем 1500 — 2000 Люменов. Также у него больше угол обзора. За счет того, что луч концентрируется и не рассеивается по сторонам (при соблюдении всех требований и правильной установке), вы видите больше, дальше и лучше каждую яму на дороге. Это повышает вашу безопасность и реакцию на опасность в ночное время суток.

✔️Срок службы

В среднем ксеноновые лампы работают два-три года. Поэтому вам не нужно часто менять лампочки. Это экономия времени и денег. Зависит данное свойтсво от качества внутренних компонентов ксеноновых ламп.

✔️Конструкция

Иногда лампа неожиданно перестает работать. С ксеноном такого не происходит. Блок розжига контролирует напряжение в работе и не нагружает бортовую сеть. Лампы почти не нагреваются, что увеличивает срок работы. Отсутствие нити накаливания делает ксенон неуязвимым к вибрации и дорожной тряске.

Недостатки у ксенона тоже имеются. Среди них:

❌Установка. Да, вам придется либо ехать на СТО, либо монтировать их в гараже. На этой стадии могут возникнуть проблемы при установке. Мы писали уже, как установить ксенон в гараже.

Также, после установки, лампы надо откорректировать. Если неправильно это сделать, то вы будете слепить встречный транспорт. Лучшим вариантом будет, если вы поставите ксенон не в штатную оптику – устанавливают ксенон в линзу.

Статья в тему: Установка ксенона — Все за и против

❌Оптика

Ксенон нужно ставить на линзовую оптику, рефлекторная не особо для этого подходит. Конечно, можно «пошаманить» и сделать из рефлекторной – линзовую. Однако, это стоит денег и времени. Если вы рискнете просто поставить ксенон в рефлекторную оптику, то получите некачественное освещение и много негатива со стороны встречного траснпорта.

Заключение

Мы разобрались с назначением, видами, преимуществами и недостатками ксеноновых ламп. Теперь вы знаете – значимость появления ксеноновой технологии в автосвете, какими параметрами ламп необходимо руководствоваться, перед покупкой и стоит ли обращать свое внимание на этот продукт.

Было полезно, ставь 5 звезд и делись с друзьями. До скорых встреч.

Ксеноновая лампа — обзор

7.4 ИЗЛУЧЕНИЕ: ПОДАЧА, МОНИТОРИНГ И КОНТРОЛЬ

Система доставки и контроля излучения в современном устройстве с ксеноновой лампой состоит из лампы, светомонитора и микропроцессора. На рисунке 7.30 показана ксеноновая лампа с комплектом фильтров. Лампа на рис. 7.30 — это лампа с водяным охлаждением, которая широко используется в Weather-Ometer. Обычно в устройстве используется одна или несколько ламп (например, Xenotest Beta LM использует 3 лампы). Лампы также могут охлаждаться воздухом, как в Xenotest.

Рисунок 7.30. Ксеноновая лампа с фильтрами.

Предоставлено Atlas Material Testing Solutions.

На рис. 7.31 показана лампа, собранная внутри камеры. Справа виден конический элемент светового монитора. Прежде чем попасть на фотоприемник, свет проходит через фильтр. Используются несколько типов радиационных фильтров, включая 340, 300-400, 420 нм и контроль люкс. В зависимости от выбора фильтра прибор управляется определенной длиной волны или ее диапазоном.В Северной Америке более популярен контроль прибора на длине волны 340 нм, в отличие от Европы, где наиболее часто используется диапазон 300-400 нм. Фотодетектор измеряет энергию входящего излучения и отправляет сигнал на микропроцессор, который выполняет необходимые настройки регулятора мощности.

Рисунок 7.31. Ксеноновая лампа вмонтирована в камеру и световой монитор.

Предоставлено Atlas Material Testing Solutions.

В Xenotest, который оснащен мультисенсором (рис. 7.32), УФ-излучение измеряется на длине волны 300-400 нм.Мультисенсор устанавливается непосредственно на штативе для образцов (рис. 7.33). В небольших настольных устройствах, таких как Suntest, освещенность измеряется датчиком освещенности, называемым XenoCal, который можно вручную регулировать с помощью ручки управления. XenoCal измеряет освещенность либо в УФ (300–400 нм), либо в глобальном (300–800 нм) диапазоне. Данные измерений можно отправить на компьютер.

Рисунок 7.32. Мультисенсор Xenosensiv (XSV) для измерения УФ.

Предоставлено Atlas Material Testing Solutions.

Рисунок 7.33. Xenosensiv (XSV) установлен на штативе с открытыми образцами в Xenotest Beta LM.

Предоставлено Atlas Material Testing Solutions.

Плановая ротация и замена люминесцентных ламп являются наиболее распространенной практикой при обслуживании люминесцентных устройств. Технически возможно использовать балласт (стартер и устройство ограничения тока), который обеспечивает переменную мощность для регулировки освещенности, но это сокращает срок службы лампы и требует ламп, для которых спектр излучения не изменяется при изменении входной мощности.Добавление таких функций изменяет концепцию этих устройств, которые были разработаны как недорогие устройства для проверки. Теперь некоторые флуоресцентные устройства оснащены измерителем освещенности, например, солнечной освещенностью глаза, производимой Q-Lab (модели QUV / se и QUV / spray). Аналогичный УФ-контроллер также используется в настольной ксеноновой дуге Q-Lab (Q-Sun Xe-1) и автономной ксеноновой дуге (Q-Sun Xe-2 и Q-Sun Xe-3). Атлас UVTest Fluorescent обеспечивает контроль температуры и калибратор освещенности. Освещенность регулируется диммирующим балластом.

Равномерность распределения света — важный фактор в получении воспроизводимых результатов. Устройства с вращающейся стойкой, измерения в реальном времени, контроля освещенности — самые надежные и точные инструменты. 27 Благодаря высокой воспроизводимости данные могут быть получены быстрее, для этого требуется меньше копий образцов, а также снижаются затраты на тестирование. 27

Разработана технология калибровки погодного оборудования, которая позволяет проводить калибровку, мониторинг и контроль полного спектра. 28 В случае калибровки устанавливается калибровочная лампа, погодное оборудование работает на фиксированном уровне мощности, собирается и сохраняется полный спектр распределения мощности, данные сравниваются с результатами аналогичного испытания на эталонном оборудовании, определяя коэффициент отклика системы, используемый для калибровки погодоустойчивого устройства клиента. Мониторинг прибора выполняется аналогично. 28

Часто радиацию необходимо контролировать на открытом воздухе, чтобы избежать чрезмерного воздействия излучения на поверхность или чрезмерного повреждения некоторых чувствительных материалов или продуктов.Одно изобретение 29 касается мониторинга излучения для предотвращения чрезмерного облучения кожи человека. Он действует на основе изменения цвета разлагаемого под действием УФ-излучения вещества, которое используется в составе одежды. 29 Индикаторное устройство было разработано для определения степени старения пластмассового предмета, такого как защитная каска. 30 Индикаторное устройство, включающее разлагаемый пигмент, крепится к защитной каске и помогает определять временной интервал в соответствии с законодательством или другими нормативными актами. 30

Интернет-кампус ZEISS Microscopy | Ксеноновые дуговые лампы

Введение

Ксеноновые и ртутные плазменные лампы с короткой дугой демонстрируют наивысшую яркость и яркость среди всех постоянно работающих источников света и очень близки к идеальной модели точечного источника света. В отличие от ртутных и металлогалогенных источников освещения, ксеноновая дуговая лампа отличается тем, что дает в значительной степени непрерывный и однородный спектр во всей видимой области спектра.Поскольку профиль излучения ксеноновой лампы имеет цветовую температуру приблизительно 6000 K (близкую к температуре солнечного света) и не имеет заметных линий излучения, этот источник освещения более предпочтителен, чем ртутные дуговые лампы, для многих применений в количественной флуоресцентной микроскопии. Фактически, в сине-зеленой (от 440 до 540 нанометров) и красной (от 685 до 700 нанометров) областях спектра ксеноновая дуговая лампа мощностью 75 Вт ярче, чем сопоставимая ртутная дуговая лампа мощностью 100 Вт ( HBO, 100). Подобно ртутным лампам, ксеноновые дуговые лампы обычно обозначаются с использованием зарегистрированного товарного знака как лампы XBO ( X для Xe или ксенон; B — символ яркости; O — для принудительного охлаждения) и были представлен научному сообществу в конце 1940-х гг.Популярная XBO 75 (75-ваттная ксеноновая дуговая лампа) более стабильна и имеет более длительный срок службы, чем аналогичная ртутная лампа HBO 100, но излучение видимого света составляет лишь около 25 процентов от общего светового потока, причем большая часть энергия попадает в менее полезную инфракрасную область спектра. Примерно 70 процентов выходной мощности ксеноновой дуговой лампы происходит на длинах волн более 700 нанометров, в то время как менее 5 процентов выходной мощности приходится на длины волн менее 400 нанометров. Чрезвычайно высокое давление ксеноновых ламп во время работы (от 40 до 60 атмосфер) расширяет спектральные линии, обеспечивая гораздо более равномерное распределение возбуждения флуорофоров по сравнению с узкими и дискретными линиями излучения ртутных ламп.Таким образом, ксеноновая дуговая лампа больше подходит для строгих применений, требующих одновременного возбуждения нескольких флуорофоров в широком диапазоне длин волн в аналитической флуоресцентной микроскопии.

Хотя ксеноновые лампы производят широкополосное, почти непрерывное излучение, имеющее цветовую температуру, приближающуюся к солнечному свету в видимых длинах волн (часто называемое белым светом ), они действительно демонстрируют сложный линейчатый спектр в области от 750 до 1000 нанометров в ближнем диапазоне. инфракрасный спектр (см. рисунок 1).Кроме того, несколько линий с более низкой энергией существуют около 475 нанометров в видимой области. Между 400 и 700 нанометрами примерно 85 процентов всей энергии, излучаемой ксеноновой лампой, приходится на континуум, тогда как около 15 процентов приходится на линейчатый спектр. Спектральный выход (цветовая температура) ксеноновой лампы не изменяется по мере старения устройства (даже до конечной точки срока службы), и, в отличие от ртутных дуговых ламп, полный профиль излучения возникает мгновенно после зажигания.Выходная мощность ксеноновой лампы остается линейной в зависимости от приложенного тока и может регулироваться для специализированных приложений. Кроме того, спектральная яркость не изменяется при изменении тока лампы. Типичная лампа XBO 75 излучает световой поток примерно 15 люмен на ватт, но лампе требуется несколько минут после зажигания для достижения максимальной светоотдачи из-за того, что давление газа ксенона внутри лампы продолжает расти, пока не достигнет конечной рабочей температуры. и достигает теплового равновесия.

Максимальное распределение яркости рядом с катодом в области дуги ксеноновой лампы XBO 75 (часто называемой горячей точкой или плазменным шаром ) составляет приблизительно 0,3 x 0,5 миллиметра и может учитываться для всех практических целей. в оптической микроскопии — точечный источник света, который будет производить коллимированные пучки высокой интенсивности при правильном направлении через систему конденсирующих линз в фонаре. В большинстве применений флуоресцентной микроскопии свет, собранный от дуги ксеноновой лампы, отображается на точечном отверстии или задней апертуре объектива.Типичная контурная карта лампы XBO 75 показана на рисунке 2 (a), а распределение силы светового потока для той же лампы — на рисунке 2 (b). На контурной карте яркость дуги наиболее интенсивна на кончике катода и быстро спадает около анода. Картина интенсивности потока (рис. 2 (b)) по большей части демонстрирует превосходную симметрию вращения вокруг лампы, но затеняется электродами в областях, окружающих ноль и 180 на карте, где интенсивность резко падает.В ксеноновых дуговых лампах общий выход лампы составляет более 1000 нанометров в спектральной полосе, причем плазменная дуга и электроды составляют примерно половину общего излучения на каждый. Значительный вклад электродов обусловлен их большой площадью поверхности и высокими температурами. Большая часть излучения с более низкой длиной волны (фактически, видимый свет) исходит от плазменной дуги, тогда как электроды составляют большую часть инфракрасного излучения (более 700 нанометров). Диаграммы силы света и излучения, создаваемые дуговыми лампами, являются критическими элементами для инженеров при разработке оптики и стратегии охлаждения систем распределения света для приложений в оптической микроскопии.

Оптическая мощность ксеноновых (XBO) дуговых ламп

Комплект фильтров Возбуждение
Фильтр
Ширина полосы (нм)
Дихроматический
Зеркало
Отсечка (нм)
Мощность
мВт / см 2
DAPI (49) 1 365/10 395 LP 5.6
CFP (47) 1 436/25 455 LP 25,0
GFP / FITC (38) 1 470/40 495 LP 52,8
YFP (S-2427A) 2 500/24 ​​ 520 LP 35.4
TRITC (20) 1 546/12 560 LP 12,2
TRITC (S-A-OMF) 2 543/22 562 LP 31,9
Красный Техас (4040B) 2 562/40 595 LP 54.4
mCherry (64HE) 1 587/25 605 LP 27,9
Cy5 (50) 1 640/30 660 LP 22,1

1 Фильтры ZEISS 2 Фильтры Semrock
Стол 1

В таблице 1 представлены значения выходной оптической мощности типичного 75-ваттного источника света XBO после прохождения через оптическую цепь микроскопа и выбранные наборы флуоресцентных фильтров.Мощность (в милливатт / см 2 ) измерялась в фокальной плоскости объектива микроскопа (40-кратный сухой флюорит, числовая апертура = 0,85) с помощью радиометра на основе фотодиода. Для проецирования света через объектив в датчик радиометра использовалось либо зеркало с коэффициентом отражения более 95% от 350 до 800 нанометров, либо стандартный набор флуоресцентных фильтров. Потери пропускания света в системе освещения микроскопа могут варьироваться от 50 до 99 процентов входной мощности, в зависимости от механизма связи с источником света и количества фильтров, зеркал, призм и линз в оптической цепи.Например, для типичного инвертированного микроскопа исследовательского уровня, соединенного с лампой XBO на входном отверстии эпи-осветителя, менее 70 процентов света, выходящего из системы коллекторных линз, доступно для возбуждения флуорофоров, расположенных в фокусе объектива. самолет.

Ориентация ксеноновой лампы имеет решающее значение для правильной работы и долговечности. В тех лампах, которые предназначены для работы в вертикальном положении (до угла отклонения от оси 30), анод расположен вверху, а катод — внизу, внизу лампы.Эта конфигурация осесимметрична и обеспечивает отличные характеристики дуги. Напротив, лампы, предназначенные для работы в горизонтальном положении (хотя они также могут работать и в вертикальном положении), создают дуги, требующие стабилизации, чтобы уменьшить преждевременный и ускоренный износ электродов. Горизонтальная работа лампы не обладает симметрией, присущей вертикальной работе лампы, хотя такая ориентация требуется в некоторых конструкциях ламп. Стабилизация дуги в горизонтальных лампах легче всего достигается с помощью магнитов в форме стержней, установленных параллельно оси лампы непосредственно под колпаком.Магнитное поле тянет дугу вниз, повышая стабильность, которую можно точно настроить, изменяя расстояние между магнитом и огибающей. Изменение положения лампы путем поворота на 180 градусов в период полураспада лампы позволяет осаждению испаренного электродного материала более равномерно распределяться по внутренним стенкам оболочки. Следует отметить, что разумным выбором является использование вертикальной ориентации ксеноновых ламп, когда это возможно, в конфигурациях флуоресцентной микроскопии.

Срок службы ксеноновой дуговой лампы в первую очередь определяется уменьшением светового потока, которое происходит в результате испарения вольфрама, который со временем откладывается на внутренней стенке колбы. Распад кончика катода и эффекты соляризации ультрафиолетового излучения на кварцевой оболочке также способствуют старению лампы, а также стабильности. Частые воспламенения лампы ускоряют износ электрода и приводят к преждевременному почернению оболочки. Затемнение постепенно снижает светоотдачу и сдвигает спектральные характеристики в сторону более низкой цветовой температуры.Почернение лампы, которое увеличивает рабочую температуру оболочки из-за поглощения энергии излучаемого света, происходит медленно на ранних стадиях срока службы лампы, но быстро увеличивается на более поздних стадиях. К другим факторам, отрицательно влияющим на срок службы ксеноновой лампы, относятся перегрев, низкий ток, пульсации источника питания, неправильное положение горения, чрезмерный ток и неравномерное почернение оболочки. Средний срок службы лампы (рассчитанный производителями) основан на продолжительности горения приблизительно 30 минут для каждого случая воспламенения.Ксеноновая дуговая лампа, конструкция Ксеноновые дуговые лампы

изготавливаются со сферической или эллипсоидальной оболочкой из плавленого кварца, одного из немногих оптически прозрачных материалов, способных выдерживать чрезмерные тепловые нагрузки и высокое внутреннее давление, оказываемое на материалы, используемые при производстве этих ламп. Для большинства применений в оптической микроскопии кварцевый сплав, используемый в ксеноновых лампах, обычно легирован соединениями церия или диоксидом титана для поглощения ультрафиолетовых волн, которые служат для образования озона во время работы.Типичный плавленый кварц пропускает свет с длинами волн до 180 нанометров, тогда как легирование стекла ограничивает излучение лампы длинами волн выше 220 нанометров. Ксеноновые лампы, оборудованные для работы без озона, часто обозначаются кодом OFR для обозначения их класса. Подобно процессу изготовления ртутных ламп, кварц, используемый для колб ксеноновой лампы, изготавливается из высококачественных трубок, которые аккуратно формуются на токарном станке в готовую колбу с помощью технологий расширения воздуха.Во время работы колба лампы может нагреваться до температур от 500 до 700 ° C, что требует жестких производственных допусков для минимизации риска взрыва.

Анодные и катодные электроды в ксеноновых дуговых лампах изготавливаются из кованого вольфрама или специальных вольфрамовых сплавов, легированных оксидом тория или соединениями бария, для уменьшения работы выхода и повышения эффективности электронной эмиссии. При производстве ксеноновых дуговых ламп используются только самые чистые сорта вольфрама.Высококачественный вольфрам имеет очень низкое давление пара и гарантирует, что электроды ксеноновой лампы способны выдерживать чрезвычайно высокие температуры дуги (более 2000 ° C для анода), возникающие во время работы, и помогает минимизировать накопление отложений на оболочке. Из-за сложности обработки электродов из вольфрама таких сортов высокой чистоты на протяжении всего процесса требуются керамические инструменты, чтобы избежать попадания загрязняющих веществ. После изготовления катод припаивается к молибденовому стержню или пластине для поддержки, но стержень анода состоит из твердого вольфрама, поскольку он подвергается гораздо более высоким температурам из-за постоянной бомбардировки электронами, испускаемыми катодом.Оба электрода проходят ультразвуковую очистку и термообработку для удаления остатков смазки и загрязнений перед тем, как вставить их в колбу лампы.

Конструкции катодов ксеноновой лампы уделялось значительное внимание, направленное на повышение стабильности дуги во время работы. В обычных лампах с вольфрамовыми электродами, легированными торием, точка излучения дуги на катоде периодически смещается из-за локализованных изменений эмиссии электронов с поверхности, явление, известное как отклонение дуги (см. Рисунок 3 (а)).Этот артефакт, который усиливается по мере износа наконечника, приводит к мгновенным колебаниям яркости лампы, называемым вспышкой , когда дуга перемещается в новую область на катоде (рис. 3 (b)). Флаттер дуги описывает быстрое боковое смещение столба дуги конвекционными токами, возникающими при нагревании газообразного ксенона дугой и охлаждении внутренними стенками оболочки (рис. 3 (c)). Кроме того, острые концы катодов, легированных торием, имеют тенденцию к более быстрому износу по сравнению с катодами, изготовленными из современных сплавов на основе оксидов редкоземельных металлов.Лампы с усовершенствованной катодной технологией часто называют сверхтихими и продемонстрировали высокую кратковременную стабильность дуги менее половины процента, а также сниженную скорость дрейфа менее 0,05 процента за час работы. Долгосрочный анализ работы катода с высокими характеристиками показывает, что износ значительно снижается, а смещение точки дуги в течение среднего срока службы лампы практически исключается. В результате после первоначального совмещения сверхтихой ксеноновой лампы с другими элементами оптической системы микроскопа, как правило, нет необходимости повторно регулировать положение в течение всего срока службы лампы.

На этапах герметизации сборки лампы катод и анод прикрепляются к полоскам очень тонкой молибденовой ленты с помощью ступенчатого уплотнения, которое компенсирует разницу теплового расширения между кварцевой трубкой и стержнями металлических электродов. Функциональное уплотнение создается путем термического сжатия кварцевой трубки с молибденовой фольгой в токарном станке, помещенном под вакуум для предотвращения окисления. Высокие температуры сжатия позволяют расплавленному кварцу сжиматься вокруг молибденовой фольги, образуя газонепроницаемое уплотнение.После герметизации электродов в корпусе кварцевой лампы и отжига сборки для снятия напряжения в оболочку загружается газообразный ксенон высокой чистоты (99,999%) под давлением 10 атмосфер через заправочную трубку, прикрепленную к колбе оболочки. Затем лампу охлаждают жидким азотом для затвердевания газообразного ксенона и снимают заправочную трубку, чтобы полностью запечатать оболочку. После возврата к комнатной температуре готовая лампа находится под давлением, так как ксенон возвращается в газообразное состояние.

Заключительный этап процесса сборки ксеноновой лампы состоит из добавления никелированных латунных выводов, называемых наконечниками , или оснований , , к каждому концу лампы.Наконечники, которые должны выдерживать температуру до 300 ° C, служат двойной функции, действуя как электрические соединения с источником питания, а также как механическая опора для точной фиксации лампы в правильном оптическом положении внутри фонарного светильника. Многие конструкции наконечников включают гибкий выводной провод внутри основания, который соединяется с герметизированными электродами, чтобы исключить возможность выхода лампы из строя из-за напряжения или деформации между валом электрода и латунным наконечником. Наконечники крепятся к запаянным концам кварцевого конверта с помощью угольно-графитовой ленты или термостойкого клея.Ксеноновые лампы и блоки питания

Конструкция светильников для ксеноновых дуговых ламп имеет решающее значение для долговечности и рабочих характеристик лампы. Важнейшим из конструктивных соображений является тот факт, что эти лампы работают при чрезвычайно высоком внутреннем давлении (обычно 50+ атмосфер), поэтому при выборе строительных материалов следует учитывать возможность взрыва. Поскольку дуговые лампы расширяются из-за чрезмерного нагрева, выделяемого во время работы, только один конец лампы должен быть жестко зажат в корпусе; другой конец можно закрепить гибкой металлической полосой или накрыть радиатором и привязать к соответствующему внутреннему электрическому зажиму с помощью кабеля (см. рисунок 4).Ксеноновые лампы должны иметь достаточное охлаждение, чтобы ксеноновые лампы могли работать при температуре ниже 750 ° C на поверхности оболочки и ниже 250 ° C в кабельных наконечниках. Чрезмерные температуры быстро приводят к окислению выводов электродов, ускоряют износ оболочки и повышают вероятность преждевременного выхода лампы из строя. В случае ламп малой мощности (менее 250 Вт) обычно достаточно конвекционного охлаждения в хорошо вентилируемом светильнике, но для ламп более высокой мощности часто требуется охлаждающий вентилятор.Высокие триггерные напряжения (от 20 до 30 киловольт), необходимые для зажигания ксеноновых ламп, требуют использования высококачественных изоляционных материалов в сборке электропроводки светильника, а кабель питания должен выдерживать напряжения, превышающие 30 киловольт. Кроме того, кабель питания должен быть как можно короче, разобщен и размещен вдали от рамы микроскопа и других металлических инструментов (таких как компьютеры, контроллеры фильтров и цифровые камеры) в непосредственной близости.

Большинство высокоэффективных ксеноновых ламп имеют внутреннее отражающее зеркало, соединенное с системой линз выходного коллектора, которая производит коллимированный световой пучок высокой интенсивности. Конструкции коллекционных отражателей варьируются от простых вогнутых зеркал до сложных эллиптических, сферических, асферических и параболических геометрий, которые более эффективно организуют и направляют излучение лампы на линзу коллектора, а затем через микроскоп. Использование конического отражателя, изготовленного методом гальванопластики, позволяет достичь номинальной эффективности улавливания до 85 процентов, что является значительным улучшением по сравнению с обычными системами обратного отражателя, эффективность которых составляет от 10 до 20 процентов.Специализированные отражатели можно легко сконструировать с помощью простых методов трассировки лучей. Покрытия на всех зеркалах-накопителях должны быть дихроичными, чтобы пропускать инфракрасные (тепловые) волны. Ксеноновые лампы также выигрывают от наличия фильтров, блокирующих инфракрасное излучение, таких как стеклянный фильтр Schott BG38 или BG39 и / или зеркало горячего или холодного (в зависимости от передаваемых или отраженных длин волн) для ослабления или блокирования длин волн инфракрасного излучения и защиты образец (живые клетки) от избыточного тепла.Кроме того, твердотельные детекторы в электронных камерах, особенно в устройствах формирования изображения ПЗС, также особенно чувствительны к инфракрасному свету, который может затуманивать изображение, если соответствующие фильтры не вставлены в световой тракт.

Ксеноновые лампы

обычно имеют стандартную конфигурацию с дуговой лампой, расположенной в фокусе линзы коллектора, так что волновые фронты, выходящие из источника, собираются и грубо коллимируются, чтобы выйти из фонаря в виде параллельного пучка (Рисунок 4).Отражатель также размещается на той же оси, что и лампа и коллектор, чтобы обеспечить возможность создания перевернутого виртуального изображения дуги рядом с лампой. Свет от отраженного виртуального изображения также собирается коллекторной линзой, что увеличивает мощность освещения. Вторая система линз (называемая конденсирующей линзой ), расположенная в осветителе микроскопа, необходима для фокусировки параллельных лучей, выходящих из фонаря, в задней фокальной плоскости объектива. Как правило, фокусное расстояние системы конденсирующих линз намного больше фокусного расстояния коллектора, что приводит к проецированию увеличенного изображения дуги на заднюю фокальную плоскость объектива.Конечный результат — то, что свет, выходящий из передней линзы объектива и движущийся к образцу, примерно параллелен, чтобы обеспечить равномерное освещение поля зрения. Обратите внимание, что во время юстировки лампы свет, собираемый отражателем-собирателем, не должен напрямую фокусироваться на стенках оболочки лампы (около дуги), чтобы избежать прямого нагрева колбы собственным светом излучения. Это приведет к перегреву лампы. Вместо этого расположите виртуальное изображение дуги с одной или другой стороны лампы.

Одним из основных требований к использованию ксеноновой дуговой лампы для количественной флуоресцентной микроскопии является то, что выходное излучение должно быть стабильным. Сила излучения ксеноновой лампы на выходе приблизительно пропорциональна току, протекающему через лампу. Таким образом, для обеспечения максимальной стабильности источник питания должен быть тщательно спроектирован. Источники питания дуговых ламп также должны иметь пусковое устройство для зажигания лампы. На рисунке 5 представлена ​​принципиальная схема типичного стабилизированного источника питания для ксеноновой дуговой лампы.В дополнение к питанию лампы от источника стабильного постоянного тока ( DC ), источник питания также заряжен для поддержания катода при оптимальной рабочей температуре с использованием определенного уровня тока. Схема стабилизации источника питания ксеноновой дуговой лампы, в зависимости от конструкции, может стабилизировать напряжение, ток или общую мощность (напряжение x ток). Если напряжение стабилизировано, сила тока (и яркость лампы) будет медленно уменьшаться по мере разрушения электродов. Напротив, если ток стабилизирован, лампа будет продолжать излучать на постоянном уровне до тех пор, пока электроды не достигнут критической точки износа, когда лампа не сможет зажечься.С другой стороны, поскольку для поддержания постоянного тока требуется увеличение напряжения, мощность, передаваемая на дугу, медленно увеличивается по мере износа электродов, что может привести к перегреву и возможности взрыва. В источниках питания, которые стабилизируют общий уровень мощности, светоотдача будет медленно падать вместе с током, поскольку напряжение, необходимое для поддержания дуги, увеличивается.

Когда дуговые лампы холодные (фактически, при комнатной температуре), они действуют как электрические изоляторы, и газообразный ксенон, окружающий электроды, должен быть сначала ионизирован для инициализации и образования дуги.В большинстве конструкций источников питания зажигание осуществляется с помощью всплесков высокого напряжения (от 30 до 40 киловольт) от вспомогательной цепи, которая вызывает разряд между электродами. Специализированную схему часто называют триггером или запальным устройством , потому что она подает кратковременный высокочастотный импульс к ламповой нагрузке через индуктивную связь (см. Рисунок 5). После установления дуги ее необходимо поддерживать с помощью постоянного источника тока от основного источника питания, величина которого зависит от параметров лампы.Типичная лампа XBO мощностью 75 Вт работает при напряжении 15 вольт и токе от 5 до 6 ампер, но эти цифры зависят от производителя и увеличиваются с увеличением мощности лампы. Обратите внимание, что лампа XBO работает при значительно более высоком токе, чем можно было бы ожидать при относительно низком напряжении, которое определяется размером дугового промежутка, давлением ксенона и рекомендуемой рабочей температурой. Пульсации тока от источника питания должны быть сведены к минимуму, чтобы обеспечить длительный срок службы дуговых ламп. Таким образом, качество постоянного тока, используемого для питания лампы, должно быть высоким, а пульсации должны быть менее 10 процентов (размах) для ксеноновых ламп мощностью до 3000 Вт.

Специализированные ксеноновые лампы, производимые производителями послепродажного обслуживания, часто включают опции выбора длины волны и соединяют выход с оптическим волокном или жидким световодом для реле с оптической системой микроскопа для высокоэффективного освещения в выбранных областях спектра. Примеры включают Lambda LS (инструмент Саттера), который включает в себя ксеноновую лампу, холодное параболическое зеркало и источник питания в едином корпусе, который соединен с жидкостным световодом.Lambda LS может вмещать внутреннее колесо фильтра, фильтрующие вставки и второе колесо фильтра, установленное снаружи. Более продвинутое и быстрое устройство от Sutter, DG-4, может обеспечивать скорость переключения длины волны в диапазоне 1-2 миллисекунды, используя конструкцию двойного гальванометра в сочетании со стандартными интерференционными фильтрами. Свет от ксеноновой дуговой лампы фокусируется на первом гальванометре, который направляет его на интерференционный фильтр путем отражения от параболического зеркала. Отфильтрованный свет затем проходит через второе параболическое зеркало и гальванометр перед попаданием в жидкий световод.Холодное зеркало, расположенное перед световодом, предотвращает попадание инфракрасного излучения на оптическую систему микроскопа. Другие производители также производят аналогичные осветители с ксеноновым питанием, многие из которых имеют функцию выбора длины волны и световые заслонки.

Как работают ксеноновые лампы и лампы-вспышки

Как работают ксеноновые лампы и лампы-вспышки — Объясните это Рекламное объявление

Криса Вудфорда. Последнее обновление: 1 июня 2021 г.

У вас может быть всего доля секунды, чтобы поймать жизненно важный фотография, а что, если это слишком темно, чтобы увидеть? Лампы-вспышки, заправленные газом под названием ксенон , являются отвечать. Нажмите кнопку на камере, подождите несколько секунд, пока вспышка для зарядки, нажмите кнопку спуска затвора, чтобы сделать снимок и — ТРЕЩАЙСЯ! — у вас внезапно появляется весь необходимый свет. Вы также найдете ксеноновые лампы питание кинопроекторов, маяков и сверхъярких автомобильных фар. Что такое ксеноновые лампы и как они работают? Это примеры того, что мы называем дуговые лампы, и они работают совсем не так, как обычные лампы.Давайте посмотрим поближе!

Фото: Маячная лампа: требуется очень яркий свет, чтобы выбросить луч на много миль в море, даже с помощью мощной линзы Френеля (концентрические круги, которые вы можете видеть на заднем плане). Вот почему многие маяки питаются от сверхъярких ксеноновых ламп. Фото Гэри Николса любезно предоставлено ВМС США.

Как работают дуговые лампы?

Все лампы излучают свет, но не все работают одинаково. Лампы накаливания (наши традиционные светильники для дома) излучают свет, пропуская электричество через тонкую металлическую нить (проволоку), поэтому она сильно нагревается и горит ярко.Люминесцентные лампы очень разные: они пропускают электричество через газ, чтобы сделать невидимый ультрафиолетовый свет, который преобразуется в свет, который мы можем видеть (видимый свет), когда он проходит через белое внутреннее покрытие стеклянной трубки лампы, заставляя ее ярко светиться (или флуоресценция).

Фото: прикрепление ксеноновой лампы-вспышки к плавающему маркеру. Фото Джермейна М. Раллифорда любезно предоставлено ВМС США.

Как и неоновые лампы, ксеноновые лампы являются примерами дуговые лампы .Дуговая лампа немного похожа на небольшую вспышку молнии, возникающую при очень контролируемом условия внутри стеклянной трубки заполнен газом под очень низким или очень высоким давлением (в зависимости от типа лампы). На двух концах трубки есть металлические контакты, называемые электродами, подключаемые к источнику высокого напряжения.

Откуда свет? При включении питания газ атомы внезапно оказываются под невероятной электрической силой и разделить на более мелкие части.Это называется ионизацией (или ионизацией газа). Сломанные части атомов (положительно заряженные ионов, и отрицательно заряженные электроны) затем падают внутрь. в противоположных направлениях вдоль трубки, при этом электроны устремляются к положительному электроду, а ионы — в обратном направлении, образуя электрический ток. Заряженные ионы врезаются в нейтральные атомы и в электроды, испускание энергии в виде вспышки света, называемой дугой который эффективно преодолевает зазор между электродами — как молния.Это пример электрического разряда, поэтому лампы его еще называют. Газоразрядные лампы . Больше света излучают сами электроды, которые при этом становятся невероятно горячими и ярко горят. Обычно температура превышает 3000 ° C или 5400 ° F, поэтому электроды обычно изготавливаются из вольфрама, металла с самой высокой температурой плавления (приблизительно 3400 ° C или 6200 ° F).

Цвет света зависит от атомной структуры используемого газа (мы объясняем это более подробно в нашей статье о неоновых лампах).В неоновой лампе излучаемый свет красный; в ртутной лампе — более холодный и голубой свет; в ксеноновой лампе это намного более белый свет, чем естественный дневной свет (солнечный свет). В ртутно-ксеноновых лампах ксенон и ртуть работают вместе, обеспечивая более равномерное освещение. световой спектр в более широком диапазоне длин волн.


Иллюстрация: Как три разных типа дуговых ламп производят свет трех разных цветов (модели длин волн). Ртуть излучает более синий свет (более короткие длины волн) и немного невидимого ультрафиолета, в то время как ксенон дает более естественный и даже видимый свет (и довольно много невидимого инфракрасного).Как и следовало ожидать, ртутно-ксеноновые лампы представляют собой компромисс, сбалансированный в более широком диапазоне длин волн.

Кто изобрел дуговые лампы?

Фото: Базовая концепция дуговой лампы. Электрический разряд проходит между двумя угольными электродами, испуская свет.

Строго говоря, мы используем термин дуговая лампа для обозначения одного, определенного типа дуговая лампа с угольными электродами и воздухом между ними. До того, как Эдисон, Свон и их современники усовершенствовали лампы накаливания, такие дуговые лампы были действительно единственным типом электрического света в наличии.Они были изобретены в 1807 году (примерно за 70 лет до того, как Эдисон усовершенствовал свою лампу) британским химиком. Сэр Хэмфри Дэви (1778–1829).

Дэви обнаружил, что он может зажечь электрический свет, подключив два угольных электрода (немного похожих на карандаши) к высоковольтному источнику питания. Первоначально он держал электроды касающимися друг друга. Постепенно, раздвигая их, он обнаружил дугообразный луч света, перекрывающий промежуток между ними — отсюда и название «дуговые» лампы. Дуговые лампы были не очень практичными: они требовали сильный электрический ток заставлял их работать, а высокая температура дуги быстро сожгла угольные электроды в воздух.«Огромный» электрический ток — это не преувеличение: Дэви пришлось использовать батарею с 2000 отдельными элементами, чтобы получить дугу в 10 см (4 дюйма).

Современные лампы накаливания, появившиеся в результате двух усовершенствований дуговых ламп. Воздушный зазор был заменен на нить накала, поэтому можно использовать более низкие напряжения и токи. Вся лампа также была запечатана внутри стеклянной колбы, наполненной благородным газ, чтобы нить накала не сгорела в кислороде воздуха. Благодаря этому лампа прослужила намного дольше.

Рекламные ссылки

Какие бывают ксеноновые лампы?

Ксеноновые лампы

бывают двух разных типов: постоянно светящиеся и мигающие.

Ксеноновые лампы-вспышки

Фото: вот очень маленькая ксеноновая лампа-вспышка внутри цифрового камера. Черный и красный провода соединяют два электрода на противоположных концах лампы с большим электролитическим проводом. конденсатор (это черный цилиндр, который вы можете увидеть в верхнем левом углу фотографии). Объектив камеры — это черный кружок под вспышкой.

В ксеноновых фотовспышках свет буквально представляет собой вспышку: он длится все, что угодно от микросекунда (одна миллионная секунды) примерно до двадцатой секунды (нет никакой реальной необходимости в том, чтобы он длился дольше, так как это занимает столько времени, чтобы сделать снимок) и это примерно в 10–100 раз ярче, чем свет от обычной лампы накаливания.Один из способов получить такую ​​яркую вспышку — использовать источник питания очень высокого напряжения, но это обычно не доступно в таком маленьком и портативном устройстве, как фотоаппарат. Вместо этого в камерах используется большой конденсатор (устройство для временного хранения электроэнергии). Его задача — создать высоковольтный заряд, достаточно большой, чтобы произвести разряд в лампе-вспышке, используя только маленькие батарейки низкого напряжения камеры. На это нужно время — вот почему вам часто приходится ждать несколько секунд, чтобы сделать снимок со вспышкой. Как только сработала вспышка, ксенон в трубке возвращается. в исходное непроводящее состояние.Если вы хотите сделать еще одну фотографию со вспышкой, вам нужно подождать, пока конденсатор снова зарядится, чтобы весь процесс можно было повторить.

Лампы-вспышки, которые работают таким образом, были изобретены в 1931 году американским инженером-электриком и фотографом Гарольдом Э. Эдгертоном (1903–1990), которому в 1944 году был выдан патент США 2 358 796 на эту идею. В этом патенте он объяснил, как возникает высокое напряжение:

«… вызывает ионизацию газа в лампе-вспышке, создание проводящего пути через вспышку лампа, позволяющая [конденсатору] разрядиться через это.Возникающая высоковольтная пусковая искра через фонарик даст очень яркая вспышка с очень короткой выдержкой продолжительность. Время, прошедшее между закрытием кнопочный переключатель и вспышка света от лампы-вспышки очень кратко. Следовательно, возможно произвести эту очень яркую вспышку света в любой желаемый момент для фотографировать. Когда [конденсатор] полностью разряжен, лампа-вспышка гаснет, и цикл готов к повторению ».


Иллюстрация: Как работала лампа-вспышка Гарольда Эдгертона.Для простоты я только что выбрал здесь несколько ключевых компонентов. Стеклянная лампа (красная, слева, 92) окружена полированным отражателем, чтобы сосредоточить свет на предмете, который вы фотографируете (серый, слева, 25). Он содержит ксеноновую лампу-вспышку (желтый, 18), активируемую электродами (зеленый, 94), срабатывающую от вакуумной лампы (фиолетовый, 1) и питающуюся от конденсатора (синий, средний, 11), о чем предположил Эдгертон. 28 мкФ заряжены примерно до 2000 вольт. Лампа-вспышка может питаться либо от традиционной розетки (бирюзовый, справа, 71), либо от переносного аккумулятора (темно-зеленый, внизу, 69).Они подаются на трансформатор (оранжевый, 45), который вырабатывает высокое напряжение, необходимое для зарядки конденсатора. Лампа может включаться автоматически затвором камеры (серый, левый, 66) или вручную нажатием кнопки справа (51). Иллюстрация из патента США 2 358 796: фотография со вспышкой, сделанная Гарольдом Эдгертоном, любезно предоставлена ​​Управлением по патентам и товарным знакам США.

Ксеноновые лампы прочие

Другие виды ксеноновых ламп больше похожи на неоновые лампы. и постоянно излучают меньшее количество света.Вместо того, чтобы пройти огромное количество электричества через газ очень короткое время для производства внезапная «дуга» света, они используют меньшее, более стабильное напряжение, чтобы производят постоянный разряд яркого света. Лампы для кинопроекторов и маяковые лампы работать таким образом.

Ксеноновые фары HID

Xenon HID (высокоинтенсивный разряд) в фарах используются относительно небольшие лампы с крошечным дуговым зазором между электродами (всего 2 мм или 0,1 дюйма). Изобретенные Philips в начале 1990-х годов, они утверждают, что «на 50 процентов больше света на дороге». производят как более белый, так и более яркий свет, чем стандартные фары.HID-фонари также более эффективны, производя больше света от лампочки с меньшей мощностью. Поскольку они меньше, они позволяют дизайнерам больше гибкости при стилизации передняя часть автомобиля более аэродинамична, что может привести к гораздо большей экономии топлива. Что касается недостатков, они действительно излучают ультрафиолетовое излучение, и им нужны встроенные фильтры, чтобы предотвратить это. повреждение компонентов лампы. Как и люминесцентные лампы, HID-лампы также нуждаются в устройстве. называется балласт , компактная электронная схема, обеспечивающая высокий пуск напряжение для создания начальной дуги в лампе, затем регулирует ток до после этого поддерживайте постоянную яркость дуги.

К сожалению, яркие фары, которые подходят вам, могут не так хорошо работать с другими водителями, если они вызывают ослепление и блики. Вот почему СПРЯТАННЫЕ фонари разрешены не во всех странах / штатах. В некоторых странах они легальны только если они установлены правильно (например, как «оригинальное оборудование» производителем автомобиля), не дооснащены (как дополнительный комплект), и если они «самовыравнивающиеся» (что означает, что они автоматически регулируются для компенсации неровностей, чтобы они продолжали указывать на дорогу).


Изображение: Типичная ксеноновая HID фара, разработанная General Electric в начале 1990-х годов. 1) Трубка из кварца или плавленого кварца; 2,3) суженные части трубки, полученные нагреванием и поверхностным натяжением; 4,5) стержневидные вольфрамовые электроды; 6,7) Молибденовые свинцы. Трубка содержит смесь ртути, галогенидов металлов и газообразного ксенона, а зазор между электродами составляет примерно 2–3 мм. Изображение, любезно предоставленное Управлением по патентам и товарным знакам США, из патента США 5,121,034: Акустический резонанс работы ксенон-металлогалогенных ламп.

Что вообще такое ксенон?

Иллюстрация: Периодическая таблица химических элементов, показывающая положение ксенона. Обратите внимание, как все закончилось справа с благородными газами и ближе к нижней части группы 18. Это говорит о том, что атомы ксенона относительно тяжелые, вот почему ксенон тяжелее воздуха.

Вы слышали о неоне? Ксенон аналогичный. Гелий, неон, аргон, криптон, ксенон и радон — химические элементы из части Периодическая таблица, которую мы называем благородными газами (когда-то назывались «инертными газами», потому что они на самом деле не так хорошо реагируют с другими элементами).Если вы вспомните школьную химию, благородные газы — это элементы. в крайнем правом столбце.

На что похож ксенон? У него нет цвета, вкуса или запаха, но он присутствует в воздухе вокруг нас в крошечных мельчайших подробностях. количества — примерно одна молекула ксенона на каждые 20 миллионов молекул других газов. Ксенон атомы имеют атомный номер 54 (намного тяжелее, чем атомы кислорода или азота), поэтому газообразный ксенон примерно в 4½ раза тяжелее воздуха: если вы ищете ксенон, смотрите ближе к земле! Ксенон — это газ на Земле, потому что он плавится примерно при −111 ° C (−168 ° F) и кипит при −107 ° C (−161 ° F).

Кто открыл ксенон?

Большинство благородных газов, включая ксенон, были обнаружены шотландским химиком. Сэр Уильям Рамзи (1852–1916), получивший Нобелевскую премию по химии в 1904 году за свою работу. В соответствии с Шведская королевская академия наук, присудившая премию:

«Открытие совершенно новой группы элементов, из которых ни один представитель не был известен с какой-либо достоверностью, является чем-то совершенно уникальным в истории химии, поскольку по сути является достижением в науке особого значения.Тем более примечательным является этот прогресс, когда мы вспоминаем, что все эти элементы являются компонентами атмосферы Земли, и что, хотя они, очевидно, настолько доступны для научных исследований, они так долго сбивали с толку выдающихся ученых … »

Цитата из выступления профессора Я.Э. Седерблома, президента Шведской королевской академии наук, 10 декабря 1904 года.


Фото: экспериментальная ксеноновая газоразрядная трубка, использованная сэром Уильямом Рамзи.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Фото: «Хммм, может, ксенон все-таки не такой уж безреактивный?» Это то, что химики Джон Мальм, Генри Селиг и Говард Клаассен из Аргоннской национальной лаборатории, завершившейся в октябре 1962 года, когда они успешно получили эти сверкающие квадратные кристаллы тетрафторида ксенона — первого простого искусственного соединения ксенона, когда-либо произведенного. Одной из любимых шуток Мальма было то, что химики развешивали свои лабораторные халаты в тот день, когда кто-нибудь обнаруживал твердое соединение благородного газа — именно этого он и его коллеги добились.Фотография любезно предоставлена ​​Аргоннской национальной лабораторией, опубликована на Flickr. под лицензией Creative Commons.

Узнать больше

  • Ксенон: факты и цифры из периодической таблицы онлайн Королевского химического общества.
  • Xenon: вводный видеоролик Школы химии Ноттингемского университета, посвященный Нил Бартлетт, химик-новатор, который показал, что благородные газы обладают большей реакционной способностью, чем когда-то считалось возможным.
  • Записная книжка сэра Уильяма Рамзи: Как невинно выглядящая лабораторная тетрадь помогла изменить наш мир.
Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для читателей постарше
  • Галогены и благородные газы Моники Халка и Брайана Нордстрома. Информационная база / Факты в файле, 2010. Обзор на 157 страницах, подходящий для подростков и взрослых. Включает короткую (10-страничную) главу о криптоне и ксеноне.
  • Химические достижения: человеческое лицо химических наук Мэри Эллен Боуден. Фонд химического наследия, 1997 г.Человеческие истории, лежащие в основе великих химических открытий, включая работу Уильяма Рамзи по благородным газам.
Для младших читателей
  • Благородные газы Адама Фурганга. Rosen Group, 2010. Простое 48-страничное руководство по гелию, неону, аргону, криптону, ксенону и радону для детей 9–12 лет.
  • Благородные газы Йенса Томаса. Benchmark Books, 2002. Более короткая книга, описывающая свойства благородных газов, способы их получения и их использование в освещении, медицине и других областях.

Статьи

Патенты

  • Патент США 5,884,104: Компактная вспышка для камеры Скотта Б. Чейза и Карла Ф. Лейдига, Eastman Kodak Co, 16 марта 1999 г. Типичная вспышка от современной камеры.
  • Патент США 5,121,034: Акустический резонанс работы ксенон-металлогалогенных ламп, Гэри Р. Аллен и др., General Electric, 9 июня 1992 г. Ранний патент, охватывающий HID в автомобильных фарах.
  • Патент США 4
  • 7: Цепь балласта для металлогалогенной лампы Джозефа М.Эллисон и др., General Electric, 27 февраля 1990 г. Это тесно связанный патент, в котором исследуется конструкция балласта.
  • Патент США 2 358 796: Фотография со вспышкой, сделанная Гарольдом Юджином Эдгертоном, 26 сентября 1944 г. Оригинальный патент Эдгертона на вспышку.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2009/2021) Ксеноновые лампы и дуговые лампы. Получено с https://www.explainthatstuff.com/how-xenon-lamps-work.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Руководство по выбору ламп | Октябрь 2010 г.

Трэвис Игучи, Самир Патель и Маридел Ларес, Hamamatsu Corp.


По мере продолжения «зеленой» эволюции светоизлучающие диоды (светодиоды) заменяют традиционные источники света во многих приложениях. Однако для приложений, требующих диапазонов длин волн, которым не может соответствовать монохроматический выход светодиода, дуговые разрядные лампы по-прежнему являются более подходящим выбором.Лампы охватывают более широкий диапазон длин волн, и их главная особенность — это высокоинтенсивное излучение в УФ-диапазоне, которое не покрывается современными светодиодами. В этой статье мы обсуждаем основные свойства различных типов ламп — ксеноновых (Xe), ртутно-ксеноновых (HgXe) и дейтериевых (D2) ламп непрерывного действия и ксеноновых импульсных ламп — и их примеры применения, чтобы помочь вам сделать осознанный решение при выборе светильников.

Важные параметры при выборе лампы


Рисунок 1: Спектральные диапазоны различных типов ламп.

При выборе лампы важно учитывать длину волны, интенсивность света, уровень стабильности и ожидаемый срок службы, необходимые для ее применения. Требуемый диапазон длин волн часто сужает выбор ламп. Некоторые лампы покрывают небольшую часть электромагнитного спектра, в то время как другие покрывают более широкий диапазон (рис. 1). Например, дейтериевые лампы излучают волны ультрафиолетового (УФ) диапазона, в то время как ксеноновые и ртутно-ксеноновые лампы излучают от УФ до инфракрасных (ИК) длин волн.

Интенсивность света — еще одна важная характеристика, которую следует учитывать, независимо от того, нужен ли непрерывный или импульсный свет.Интенсивность лампы в основном пропорциональна входной мощности. Чем выше входная мощность, тем выше интенсивность. Однако импульсные источники света, такие как ксеноновые лампы-вспышки, могут обеспечивать очень интенсивный световой поток в течение нескольких микросекунд, что примерно в 1000 раз выше, чем у ламп непрерывного режима. Это делает импульсное освещение подходящим для приложений, требующих высокой выходной мощности в течение короткого времени.

Стабильность выхода лампы — очень важный параметр, поскольку он влияет на точность и надежность измерения.Несколько факторов влияют на стабильность лампы. Температура, характеристики источника питания, конструкция корпуса и положение внутри дуги влияют на стабильность ксеноновой, ртутно-ксеноновой и дейтериевой ламп. Напряжение разряда лампы, рабочая частота, главный разрядный конденсатор и положение в дуге влияют на стабильность ксеноновой лампы-вспышки.

Срок службы лампы влияет на техническое обслуживание и эксплуатационные расходы оборудования, в котором она установлена. Использование лампы с более длительным сроком службы снижает затраты на техническое обслуживание и время, затрачиваемое на замену и юстировку ламп.

Ксеноновые и ртутно-ксеноновые лампы

Ксеноновые и ртутно-ксеноновые лампы имеют катодный и анодный электроды, обращенные друг к другу в стеклянной колбе, заполненной газом. Ксеноновые лампы содержат газообразный ксенон высокой чистоты, а ртутно-ксеноновые лампы содержат смесь газообразного ксенона и ртути. Эти лампы излучают дуговым разрядом.

Ксеноновые лампы излучают широкий спектр от УФ до ИК (185–2000 нм), аналогичный солнечному свету. Они обладают высокой выходной мощностью, высокой стабильностью и длительным сроком службы. Например, ксеноновые лампы Hamamatsu мощностью 75 и 150 Вт (серии L10725 и L11033) имеют гарантированный срок службы 2000 и 3000 часов соответственно.Ксеноновые лампы являются подходящими источниками света для имитаторов солнечного излучения, спектрометров, систем контроля пластин, микроскопов и других устройств.

Ртутно-ксеноновые лампы излучают широкий спектр от УФ до ИК (185–2000 нм) с резкими пиками в УФ и видимой областях, соответствующих спектральным линиям ртути. Острые пики излучения делают ртутно-ксеноновые лампы более подходящими, чем ксеноновые лампы, для применений, требующих высокой интенсивности в УФ-диапазоне, таких как УФ-отверждение. Другие особенности ртутно-ксеноновых ламп включают высокую выходную мощность, высокую стабильность и длительный срок службы.Они являются подходящими источниками света для систем контроля пластин, систем измерения толщины пленки, микроскопов, УФ-отверждения и других приложений.


Рисунок 2: Сравнение катодной эрозии.

При использовании ксеноновых или ртутно-ксеноновых ламп следует помнить о некоторых моментах, включая время прогрева, характеристики источника питания и эрозию катода. После включения лампы требуется период прогрева продолжительностью несколько минут для достижения максимальной светоотдачи, поскольку давление газа внутри колбы должно сначала достичь равновесия.

Эти лампы работают от источника постоянного тока и требуют очень стабильного основного и триггерного источников питания для обеспечения стабильной работы лампы. Основной источник питания должен быть стабильным для обеспечения оптимального тока лампы и поддержания оптимальной температуры катода. Если температура катода слишком низкая, катод разбрызгивается и сокращает срок службы лампы. Если слишком высоко, катод испаряется слишком быстро.

Эрозия катода вызывает беспокойство, поскольку она вызывает колебания и постепенное смещение точки дуги со временем работы, влияя на стабильность лампы.Однако улучшенные электродные материалы практически устраняют эту проблему. Например, в ксеноновых и ртутно-ксеноновых лампах Hamamatsu используется специальный катодный материал, который приводит к незначительной эрозии даже после 1000 часов работы, в отличие от обычных ламп без этой технологии (рис. 2).

Дейтериевые лампы

Дейтериевые лампы содержат газообразный дейтерий и излучают ультрафиолетовый свет; диапазон длин волн зависит от материала стекла лампы. Лампы излучают только в одном направлении, в отличие от ксеноновых и ртутно-ксеноновых ламп, которые излучают во всех направлениях.Они широко используются в спектрометрах, ВЭЖХ (высокоэффективной жидкостной хроматографии), анализаторах окружающей среды и других приложениях. Для приложений, требующих длин волн вакуумного УФ (ВУФ), доступны дейтериевые лампы с длиной волны излучения до 115 нм. Например, источник ВУФ-света S2D2 (L10706) компании Hamamatsu может быть установлен и работать в условиях пониженного давления для ВУФ-спектроскопии, фотоионизации и других приложений.

Ключевой характеристикой дейтериевых ламп является их превосходная стабильность по сравнению с другими типами ламп (рис. 3).Например, дейтериевые лампы Hamamatsu показывают очень небольшие колебания мощности от лампы к лампе, а отдельные лампы имеют низкие значения флуктуации (кратковременная стабильность) и дрейфа (долговременная стабильность). Например, модуль дейтериевой лампы S2D2 компании Hamamatsu (серия L10671) демонстрирует типичное колебание 0,005% (от пика до пика) и максимальное значение дрейфа ± 0,25% / час. Такая стабильность обеспечивается керамической структурой электрода, которая обеспечивает стабильность лампы даже при колебаниях окружающей температуры. Дейтериевые лампы также имеют долгий срок службы и высокую яркость, и их разрабатывают, чтобы они стали еще ярче.Например, новые лампы Hamamatsu X2D2 имеют в два раза большую яркость, чем обычные дейтериевые лампы. Использование лампы высокой яркости помогает прибору иметь высокое разрешение и высокую пропускную способность.


Рисунок 3: Сравнение значений колебаний (мера краткосрочной стабильности) различных типов ламп от Hamamatsu. Чем меньше значение, тем стабильнее лампа.

При использовании дейтериевых ламп следует помнить о некоторых аспектах, включая характеристики источника питания, периоды прогрева и размер диафрагмы.Как и ксеноновые и ртутно-ксеноновые лампы, дейтериевые лампы нуждаются в очень стабильном источнике питания для обеспечения оптимального тока и поддержания оптимальной температуры лампы. Им также необходим период прогрева, чтобы лампа достигла теплового равновесия.

Еще один аспект, который следует учитывать, — это размер диафрагмы. Размер апертуры дейтериевой лампы влияет на интенсивность светового потока, но существует компромисс между размером апертуры и сложностью юстировки. Дейтериевые лампы с малым размером апертуры (например, 0,5 мм) ярче, чем лампы с большей апертурой (например,1,0 мм), но их сложнее выровнять в оптической системе.
Ксеноновые лампы-вспышки

Ксеноновые лампы-вспышки — это компактные импульсные источники света, излучающие от УФ до ИК (160–2000 нм). Они подходят для многих приложений, включая медицинский анализ, анализ окружающей среды, биологические исследования и автоматизацию производства. По сравнению с лампами постоянного режима они выделяют меньше тепла и не повреждают образцы. Также они не требуют периода прогрева; они готовы к использованию при включении.Однако они обладают меньшей стабильностью, чем другие лампы.


Рис. 4. Формы импульсов ксеноновой вспышки на различных основных разрядных конденсаторах.

При использовании ксеноновой лампы-вспышки следует помнить о некоторых моментах. Для работы ксеноновой лампы-вспышки требуется триггерный разъем и источник питания. Доступны простые в использовании модули, которые объединяют все три элемента, такие как серии Hamamatsu L9455 и L11035. Во-вторых, необходимо использовать экранирование для предотвращения электрических помех.

Третий момент, о котором следует помнить, — это то, что конденсатор источника питания влияет на выходную интенсивность и длительность импульса лампы-вспышки (рис. 4).Чем больше конденсатор, тем выше интенсивность. Из-за разницы в электрической емкости конденсаторов конденсатор большего размера также генерирует более длинную форму импульса вспышки. Примеры применения

Лампы используются во многих областях, включая медицину, промышленность, аналитику и другие. Примеры применения и подходящие лампы обсуждаются ниже.

Применение в медицине

В области медицины лампы используются в таких инструментах, как эндоскопы и анализаторы крови. Для эндоскопов подходящим источником света является ксеноновая лампа.Его высокая выходная интенсивность достаточна для освещения просматриваемой области, а его стабильный световой поток позволяет получать четкие изображения. Для анализаторов крови подходящими источниками света являются дейтериевые лампы и ксеноновые лампы-вспышки. Они обладают высокой яркостью и долгим сроком службы, и у каждого типа есть свои преимущества и недостатки. Дейтериевая лампа имеет очень высокую стабильность, но ей требуется период прогрева от 20 до 30 минут. Ксеноновая импульсная лампа обеспечивает высокую интенсивность за короткий период времени и не выделяет столько тепла, что не влияет на образцы.Однако она намного менее стабильна, чем дейтериевая лампа.

Промышленное применение

Лампы используются в промышленных приложениях, таких как системы контроля пластин и оборудование для УФ-отверждения. Ксеноновые или ртутно-ксеноновые лампы подходят для систем контроля полупроводниковых пластин, поскольку они обладают высокой выходной мощностью, хорошей стабильностью и длительным сроком службы. Ртутно-ксеноновые лампы используются для УФ-отверждения, потому что многие УФ-отверждаемые эпоксидные смолы, клеи, покрытия и чернила сушатся с использованием УФ-излучения, соответствующего спектральным линиям ртути.

Аналитические и другие приложения

В некоторых аналитических приборах в качестве источников света используются лампы. В системах ВЭЖХ и мониторах загрязнения используются дейтериевые лампы, высокая стабильность которых помогает обеспечить высокую точность и надежность измерений. Для анализаторов цвета подходящим источником света является ксеноновая импульсная лампа. Его преимущества включают низкое тепловое воздействие на образцы и мгновенное измерение после включения.

Солнечные имитаторы используются для проверки работоспособности солнечных элементов и испытаний материалов на деградацию, а также в исследованиях в области фотохимии и фотобиологии.Поскольку излучение белого света ксеноновой лампы аналогично солнечному свету, этот тип лампы идеален в качестве источника света для имитаторов солнечного света. Лампы продолжают играть важную роль во многих приложениях, особенно когда другие типы источников света не могут соответствовать требуемому диапазону длин волн. Требования к длине волны, интенсивности света, стабильности и сроку службы определяют подходящий тип лампы.


Ксеноновые (Xe) короткодуговые лампы — Лампы и источники — Принадлежности для источников света — Источники света — Продукция

Ксеноновая (Xe) дуговая лампа

Sciencetech также предлагает полную линейку источников света с ксеноновой дуговой лампой.Полный источник света ксеноновой дуговой лампы обычно включает в себя лампу, установленную в корпусе с конденсирующей / соединительной оптикой, источник питания и все необходимые кабели и оборудование. Нажмите, чтобы узнать больше о наших источниках света для ксеноновых дуговых ламп

  • Эта лампа Xe мощностью 150 Вт рекомендуется только для модели имитатора солнечной энергии Sciencetch SS150.Это специально …

    638,00 долларов США

  • Дуговая лампа Xe мощностью 1600 Вт подходит для всех областей применения. Положения горения: вертикальные, горизонтальные Диаметр: 52.0 …

    1 620 долларов США

  • Эта конструкция корпуса лампы оптимизирована для ксеноновых дуговых ламп мощностью 300 Вт. Он оснащен быстрым параболическим отражателем fo…

    1 654 доллара США

  • Ксеноновая лампа с короткой дугой мощностью 300 Вт с колбой из плавленого кварцевого стекла.Обращаем ваше внимание на то, что данную лампу производят …

    1350 долларов США

  • Замена лампы дуговой ксеноновой лампы мощностью 3000 Вт (3 кВт).

    1 650 долларов США

  • Сменная ксеноновая лампа с короткой дугой мощностью 300 Вт.

    960 долларов США.00

  • Сменная «сверхтихая» дуговая лампа мощностью 300 Вт.

    1 103 доллара США

  • Это одна из стандартных ксеноновых ламп, рекомендованных для источника питания модели 500-500.Хотя он оценивается в …

    622 долларов США

Ксеноновая лампа с короткой дугой — Sprocket School

Ксеноновая лампа с короткой дугой — это источник света, используемый для проецирования.Свет создается электрической дугой между вольфрамовыми электродами в кварцевой оболочке, содержащей сильно сжатый газ ксенон. Большая часть света генерируется плазменным шаром, который формируется на кончике катода. Для максимальной светоотдачи лампу выставляют так, чтобы плазменный шар располагался как можно ближе к фокусной точке рефлектора. Это один из шагов, предпринятых для калибровки общего оптического выравнивания.

Раньше в ксеноновых лампах использовались лампы как вертикальной, так и горизонтальной конфигурации.Вертикальные лампы имели преимущество более длительного срока службы, но были сравнительно неэффективными и требовали вспомогательного зеркала в дополнение к основному отражателю для максимальной светоотдачи. Во всех современных ламповых домах лампа устанавливается горизонтально, ровно так, чтобы конец анода был направлен к экрану. Горизонтальные лампы имеют лучшую светоотдачу и их легче настраивать, но они имеют большую тенденцию к мерцанию, потому что поток нагретого ксенонового газа внутри оболочки тянет дугу вверх. Чтобы смягчить это, под лампой установлен магнит для стабилизации дуги. 1

Качество света, излучаемого ксеноновой лампой, очень похоже на качество естественного солнечного света.

История

Первая ксеноновая лампа была представлена ​​в Западной Германии в 1954 году. К 1969 году 50% театров в Западной Германии и 15% театров США использовали ксеноновые лампы. 2 Ксеноновые дуговые лампы стали популярными в Соединенных Штатах в 1970-х годах в рамках общеотраслевого движения к большей автоматизации. Они заменили использовавшиеся ранее гораздо более трудозатратные лампы с угольной дугой, которые должны были контролироваться и регулироваться специальным киномехаником во время каждого выступления.Ксеноновые лампы упростили дальнейшую автоматизацию, упростив операторам создание пленки до больших рулонов и пластин, что было сложно или невозможно с угольной дугой, поскольку максимальное время непрерывной работы одного проектора ограничивалось скоростью сжигания угля и максимальным ходом расстояние механизма подачи углерода. К 1980-м годам ксеноновые лампы стали почти универсальным стандартом для кинотеатров.

Использовать

Общие рекомендации

  • После зажигания лампы дуга стабилизируется через 3-5 минут.Включите лампу за несколько минут до начала воспроизведения, чтобы обеспечить хорошее качество изображения.
  • Один раз зажигание лампы вызывает такой же износ, как и ее работа в течение часа. При катушке с катушкой нельзя выключать лампы между барабанами.
  • Никогда не включайте лампу без вентиляции и дайте воздуходувке хотя бы на 10 минут остыть после выключения лампы.
  • Всегда зажигайте лампу с закрытым лозоискателем.
  • Ксеноновые лампы находятся под высоким давлением и могут взорваться.Для замены или обращения с ксеноновыми лампами требуется полное защитное снаряжение и соответствующее обучение.
  • Юстировка лампы происходит в закрытом фонарном домике и безопасна без предохранительных приспособлений. Юстировка лампы — одна из главных вещей, которой пренебрегают в проекционной кабине, и ее необходимо выполнять при каждой замене лампы.

Размеры лампы

Ксеноновые лампы

бывают разных размеров, каждая из которых предназначена для работы в определенном диапазоне мощности. Размер лампы, которая будет использоваться в данной установке, будет зависеть от требований к освещению и электрических характеристик светильника.Адаптеры могут быть установлены на анодном и катодном концах лампы, чтобы она подходила к различным моделям ламп. По мере старения лампы для достижения той же светоотдачи требуется больше энергии, поэтому потребляемая мощность должна увеличиваться в течение срока службы лампы. При выборе правильной лампы для данной установки она должна поддерживать заданную яркость в течение всего срока службы.

При использовании больших ламп необходимо принять меры для предотвращения теплового повреждения пленки. Отражатель должен быть дихроичным зеркалом и должен быть установлен теплозащитный экран для фильтрации ультрафиолетового излучения.При длине 35 мм проектор должен быть оборудован заслонкой с водяным охлаждением для ламп мощностью более 3 кВт. Регулировка нагрева еще более важна при беге на 16 мм, потому что свет фокусируется на меньшей площади поверхности. Пленка также может быть повреждена смещенной лампой, создавая горячую точку, которая пузырится (см. «Тиснение» ниже) на одной части кадра.

  • Ксеноновая лампа Ushio мощностью 1,2 кВт в щите.

  • Эта лампа была удалена по истечении срока гарантии.На катоде заметен износ.

Регулировка лампы

Всякий раз, когда устанавливается новая ксеноновая лампа, она должна быть правильно выровнена по осям X, Y и Z (по горизонтали, вертикали, оси), чтобы обеспечить равномерное освещение и правильную яркость экрана. Неправильное выравнивание лампы может привести к появлению горячих точек на экране, повреждению отражателя, линзы и даже отпечатка. Юстировку лампы следует выполнять при установке новой лампы и периодически после этого, поскольку положение может со временем измениться.

Юстировку лампы следует выполнять при установке новой лампы. Выравнивание лампы также следует проверять, если вы видите горячие точки или тени на экране, или если вы обнаружили тиснение или ожоги на отпечатках, которые вы сделали. Если вы переключаетесь между разными толщинами пленки на одном и том же проекторе, положение отражателя следует отрегулировать для достижения правильного рабочего расстояния между фокусной точкой отражателя и диафрагмой. В большинстве двухформатных фонарей есть тумблер для этой регулировки.

Большинство фонарей имеют механическую регулировку для изменения положения катодного конца, в то время как анодный конец поддерживается стойкой или ярмом с регулируемой высотой. Высота анода обычно может быть установлена ​​во время первоначальной установки, при этом при каждой замене лампы регулируется только конец катода. Если вы отцентрируете катодный конец, будет очевидно, что положение анода неправильное, потому что лампа не будет прямой.

Тень анодного узла, видимая на экране во время юстировки лампы после снятия линзы. Фото: Кэтрин Гринлиф

Во время юстировки вы увидите на экране следующее: Тень анодного узла на конце лампы — это темный круг, сразу окруженный видимой плазмой (электронная дуга). Его окружает световой круг, собираемый рефлектором и отражающийся на экране. Эта область включает в себя большую часть того, что мы видим, и должна казаться ярко-белой и, по существу, даже по яркости после завершения выравнивания.

Шаги регулировки лампы

1.Включите вытяжку, убедитесь, что лозоискатель в домике закрыт. Прежде чем зажигать лампу, всегда закрывайте лозоискатель в домике. Зажигание лампы при выключенном двигателе и открытом лозоискателе может привести к расплавлению створок затвора и переключающего лозоискателя, а также к трещине линзы.

2. Снимите линзу (пользователям Kinoton следует снимать конек, чтобы не повредить его при нагревании). Включите лампу. Запустите двигатель и откройте лозоискатель.

3. Произведите осевую регулировку («фокус» на оси Z), пока не увидите круг с небольшим количеством плазмы по краям анодной тени (люди называют это «глазом»).

4. Отрегулируйте горизонтальность и вертикаль до тех пор, пока не получите как можно более симметричный круг.

5. Отрегулируйте осевое выравнивание, чтобы снова сфокусировать плазму, пока не получите плотный симметричный круг, свободный от света (плазмы), колеблющегося вокруг анодной тени.

6. Вставьте объектив (обычно лучше всего подходит CinemaScope, так как вам нужна самая большая диафрагма). После того, как вы снова установите объектив, убедитесь, что экран равномерно освещен. Когда объектив установлен, тени исчезнут, а в центре экрана появится горячая точка.Сфокусируйте лампу (выполняя точную настройку осей X и Y по мере необходимости) до тех пор, пока не исчезнут тени по углам и освещение не станет равномерным по всему экрану. Вы хотите, чтобы он был ярким, плоским и центрированным, без горячих точек! Переход с проектора 1 на проектор 2. Вы хотите, чтобы они выглядели как можно более похожими.

7. Возможно, вы захотите точно настроить фокус лампы с установленной линзой до тех пор, пока не получите ровное освещение, а затем снова выньте линзу, чтобы проверить симметрию анодной тени.

ПРЕДУПРЕЖДЕНИЕ: Тепло от лампы может треснуть стекло линзы, когда в затворе нет пленки, поэтому лозоискатель можно открывать только на короткое время во время юстировки.Для лампы мощностью 2 кВт лозоискатель следует открывать не более чем на 30 секунд за раз, с перерывами между ними для охлаждения линзы. Для больших ламп используйте быстрые вспышки света и длительный период восстановления. Перед выполнением этих настроек проконсультируйтесь со своим специалистом по обслуживанию!

8. Наконец, снимите показания яркости с помощью измерителя яркости.

Измерение яркости

Спецификация SMPTE составляет 16fL (футовые ламберты) с равномерным освещением по всей проецируемой области без пленки в проекторе (открытые ворота).Поскольку «Плоское» соотношение сторон 1,85: 1 использует наименьшую диафрагму, оно наименее светоотражающее, в то время как диафрагма 1,33: 1 бесшумная или 2,39: 1 CinemaScope наиболее светоотдача. Вы можете разделить разницу, используя 15fL для 1.85: 1 и 17fL для Cinemascope, чтобы достичь баланса в рамках спецификаций SMPTE.

В большинстве случаев экран с фиксированной высотой будет равномерно балансировать световой поток между наименьшей апертурой (1,85: 1) и самой большой диафрагмой (обычно 2,39: 1), потому что больший световой поток от рамки CinemaScope используется для освещения большего область экрана.Однако это осложняется подвижной вертикальной маскировкой. Когда высоту экрана можно увеличить для более узких форматов, требования к освещению могут резко измениться. Стопорные кольца также можно использовать для уменьшения светоотдачи форматов с большей диафрагмой (1,33 или 1,37) для достижения необходимого баланса светоотдачи между форматами изображения.

Если вы проверяете яркость через иллюминатор с помощью измерителя, вычтите 1 ~ 2 мкл из показания. Всегда лучше снимать окончательные показания в самом зале.

Возможные проблемы

  • Если вы не можете равномерно распределить плазму с выравниванием лампы (вы заметите, что она будет казаться асимметричной даже при настройке фокуса), возможно, потребуется отрегулировать магнит стабилизации дуги квалифицированным специалистом. Если плазма распределена неравномерно, это может привести к чрезмерному мерцанию.
  • Если при снятой линзе в зоне внутри светового круга появляются темные пятна, необходимо проверить отражатель на предмет точечной коррозии, взрывов или любых других повреждений отражающего покрытия.
  • Лампа повреждена
  • Невозможно сфокусировать лампу из-за физического выравнивания лампы по отношению к проектору (неправильное «рабочее расстояние» между фокусной точкой рефлектора и диафрагмой)

Повреждение

Неправильная юстировка лампы или слишком горячие лампы могут привести к необратимому повреждению пленки.

Тиснение — это необратимая деформация, которая возникает при проецировании отпечатков с помощью ламп высокой яркости и без надлежащих поглотителей тепла.Избыточный нагрев увеличивает площадь изображения, и рамка выделяется рельефно.

Перед зажиганием лампы всегда закрывайте лозоискатель для фонаря — включение лампы при выключенном двигателе и открытом лозоискателе может привести к следующему: оплавленные створки заслонки, переключающие пластины, треснувшее стекло теплового фильтра (если установлено), расплавленная пленка или потрескавшиеся линзы. У некоторых проекторов есть заглушка, которая открывается только при запуске двигателя, а у некоторых нет.

Старение

Старение лампы с перегоревшим вольфрамом, почерневшим конверт.

Ксеноновые лампы имеют фиксированный дуговой промежуток, но со временем вольфрам катода выгорает плазмой, увеличивая расстояние между электродами и уменьшая свет, излучаемый при заданной потребляемой мощности. Сгоревший вольфрам также может откладываться на конверте, создавая черные пятна и ускоряя эффекты старения.

Ксеноновые лампы со временем теряют до 40% своей яркости из-за обратного выгорания катода. Например, лампа мощностью 2 кВт обычно теряет пару ламбертов за первые 500 часов работы.В идеале лампу следует проверять по истечении четверти срока ее службы и повышать напряжение, чтобы она соответствовала целевому световому потоку.

В качестве альтернативы, если нет специалиста, который мог бы выполнить необходимую настройку выпрямителя, можно установить лампу слегка расфокусированной, чтобы простая фокусировка лампы скорректировала падение света в течение четверти срока службы.

Симптомы старения включают:

  • Мерцание
  • Отсутствие забастовки
  • Почернение конверта
  • Деформация электродов
  • Изменение цвета на конце анода (в первую очередь, когда лампа плохо вентилируется или лампа плохо сфокусирована). ПРИМЕЧАНИЕ. Это указывает на чрезмерный нагрев на конце анода, который может вызвать нарушение герметизации анода, что приведет к преждевременному выходу лампы из строя.

Производители ламп

Защитная лампа

Пример использования защитного снаряжения при замене лампы

Ксенон в холодных ксеноновых лампах измеряет давление, примерно в 300 раз превышающее атмосферное. Газ ксенон в горячих ксеноновых лампах имеет давление примерно в 1400 раз превышающее атмосферное давление, и то и другое чрезвычайно опасно! Взрывающаяся лампа разлетит шрапнель во всех направлениях, поэтому при обращении с ксеноновыми лампами необходимо надевать защитную маску и полную защитную одежду ‘ .Некоторые производители ламп продают защитное снаряжение, также можно использовать защитную одежду, предназначенную для сварки.

В каждом кинотеатре должно быть защитное снаряжение разных размеров. Это особенно важно для перчаток, потому что неподходящие перчатки ограничат ловкость и сделают обращение с лампами более опасным.

Замена лампы должна производиться только специалистом по обслуживанию или лицом, прошедшим соответствующее обучение у специалиста по обслуживанию.

Защитное снаряжение должно включать:

  • Маска для лица — толстая маска из поликарбоната с регулируемым ремешком для головы.Ремешок с храповым механизмом предпочтительнее защелкивающегося соединителя, так как с ним будет легче работать в перчатках.
  • Куртка — Куртка из кевлара или сварочная куртка из сыромятной кожи, доходящая до талии. Куртка должна иметь кнопки или липучки.
  • Рукавицы — перчатки в стиле рукавиц, закрывающие запястья. Перчатки должны быть с подкладкой из кевлара или кожи. Кевларовые перчатки имеют тенденцию быть громоздкими и ограниченными, и могут быть проблематичными, если процедура замены лампы в вашем фонаре требует деликатного контроля мелких деталей.Для максимальной защиты под курткой следует надевать перчатки, рукава рукавицы должна находиться ниже рукава куртки. Еще лучше подойдут куртки с ремешками на липучках.
  • Штаны — сверхпрочные рабочие штаны, плотный деним или другой плотный материал, защищающий от осколков стекла. Брюки должны быть в полный рост.
  • Обувь — Кожаные рабочие ботинки идеальны. Обувь должна быть из плотного материала и закрывать щиколотки.

Никогда не открывайте светильник и не трогайте лампу, когда она горячая.Горячая лампа находится под гораздо большим давлением, чем холодная. Дайте лампе остыть не менее 10 минут, прежде чем брать ее в руки.

Перед заменой лампы подготовьте рабочее место. Поместите пустой экран или другой защитный кожух на чистую, свободную от помех поверхность с достаточным пространством для работы. Он должен быть открыт и готов к приему использованной лампы. Убедитесь, что у вас есть свободный путь к фонарному дому без препятствий и опасностей, связанных со споткнувшись.

Производители защитного снаряжения

  • 3М продает маски для лица.
  • Christie предлагает комплект безопасности лампы, который состоит из лицевой маски, куртки из кевлара и перчаток.
  • Любой поставщик сварочного оборудования может предоставить прочные кожаные куртки и перчатки.

Утилизация ксеноновых ламп

Для безопасной утилизации ксеноновой лампы необходимо сбросить давление в стеклянном сосуде или разрушить его. Некоторые специалисты по обслуживанию утилизируют использованные лампы для своих клиентов, но бывает сложно найти стороннюю компанию, которая сделает это, и многие кинотеатры вынуждены утилизировать их самостоятельно.Это должно выполняться только обученным персоналом, имеющим соответствующее защитное снаряжение.

Кроме того, катоды лампы содержат небольшое количество радиоактивного элемента тория, поэтому при их утилизации следует соблюдать местные правила.

Прежде чем рассматривать возможность утилизации ксеноновых ламп в кинотеатре, проконсультируйтесь со своим специалистом по обслуживанию и свяжитесь с производителем лампы, чтобы узнать, предлагают ли они услуги по утилизации или программу переработки.

Соображения безопасности

Независимо от того, как лампа разрушена, необходимо приложить все усилия, чтобы свести к минимуму риск для человека, работающего с лампой, и для всех, кто может находиться поблизости.Сброс давления в лампах более опасен и требует специальных инструментов, поэтому самый простой способ — уничтожить лампу путем разрушения оболочки. Это можно сделать, поместив лампу в защитный контейнер и уронив ее.

ПРЕДУПРЕЖДЕНИЕ: Если конверт разобьется, лампа взорвется. Если лампа не закрыта полностью, осколки стекла могут разлететься на значительное расстояние.

Рекомендуемые меры предосторожности:

  • Носите полную защитную экипировку: лицевую маску из поликарбоната, кожаную или кевларовую куртку и рукавицы, защитные брюки и обувь и т. Д.
  • Уничтожайте лампы в безопасной контролируемой среде. Сообщите дежурному персоналу (и всем, кто может прибыть во время утилизации) и ограничьте пешеходное движение в этом районе. Подумайте о том, чтобы запереть двери или повесить знаки, чтобы уведомить людей об опасности. Рекомендуется утилизировать лампы в нерабочее время. ЗАПРЕЩАЕТСЯ уничтожать лампы в проекционной будке.
  • Лампа должна быть заключена в защитный контейнер. Для ламп, которые поставляются с жестким баллистическим щитом, можно использовать оригинальный щит, но имейте в виду, что шрапнель будет выбрасываться из отверстий анода и катода.Для дополнительной безопасности оберните экран упаковочной лентой, чтобы предотвратить его открытие при падении. Для ламп, поставляемых в тонком листе поликарбоната или в тканевой упаковке, может быть изготовлен прочный деревянный ящик.
  • Человек, уничтожающий лампу, должен иметь физический барьер, чтобы укрыться за ним.
  • Прислушайтесь к хлопку, который означает, что лампа взорвалась. Если он не взорвался с первой попытки, будьте осторожны при приближении к лампе, чтобы бросить ее снова (относитесь к ней как к зажженному фейерверку, который не загорелся, но все же может погаснуть).
  • После утилизации лампы тщательно очистите область и удалите все осколки стекла.

Рекомендации производителя

Osram

  • Лампы Osram поставляются с опорой из пенопласта, при этом лампа обернута куском флиса, закрепленным тканевыми стяжками. Чтобы утилизировать использованные лампы, они рекомендуют обернуть их оригинальной защитной тканью, при этом ремни плотно прилегают к анодному и катодному основанию, а затем ронять их с высоты 1-2 метра. [3]

Ушио

  • Лампы Ushio поставляются с баллистическим экраном, анодный и катодный концы которого поддерживаются картонными блоками. Чтобы утилизировать использованные лампы, Ушио рекомендует вернуть лампу в ее первоначальный экран и коробку и бросить ее с высоты трех футов. [4]
  • На практике их упаковка достаточно надежна, поэтому разрушить лампу таким способом может быть очень сложно.

Ресурсы

См. Также

Список литературы

  1. Torkell Sætervadet, Расширенное руководство по проецированию: проектирование классических фильмов в современной проекционной среде (Осло: Норвежский институт кино и Международная федерация киноархивов, 2006), 41; Бернар Хаппе, изд., Руководство по презентации кинофильмов: Всеобъемлющее руководство по практике проецирования , ред. изд. (Лондон: Британский кинематограф, Общество звука и телевидения, 1979), 57.
  2. Дон В. Клопфель, изд., Руководство по кинопроекции и театральной презентации (Скарсдейл, Нью-Йорк: Общество инженеров кино и телевидения, Inc., 1969), 66-67.
  3. Osram Group, каталог ламп XBO (PDF), 11 апреля 2018 г. https://media.osram.info/im/img/osram-dam-2173907//XBO_brochure_(EN).pdf.
  4. Ushio America, Inc, «Xenon Arc Lamp Disposal,» Lamp Safety & Technical Resources, по состоянию на 11 февраля 2019 г., https://www.ushio.com/support/lamp-safety-and-technical-resources/#toggle- id-6.

Ксеноновая дуговая лампа (схема и принцип работы)

Что такое ксеноновая лампа?

A Ксеноновая дуговая лампа — газоразрядная лампа особого типа. Ксеноновые дуговые лампы излучают свет, пропуская электричество через ионизированный газообразный ксенон под высоким давлением. Он излучает яркий белый свет, который точно имитирует естественный солнечный свет, что позволяет использовать его в производстве пленок и моделирования дневного света.

Ксеноновая дуговая лампа

Конструкция ксеноновой дуговой лампы очень проста. Здесь два электрода из торированного вольфрама помещены лицом к лицу с небольшим зазором в герметичной прозрачной оболочке из плавленого кварца.

Торированный вольфрам — это вольфрам с добавлением 1–2% тория для придания дополнительной прочности дуге за счет повышения способности вольфрама к электронной эмиссии.

Плавленый кремнезем еще называют кварцем. Это некристаллическое прозрачное стекло из диоксида кремния, которое обеспечивает дополнительную прочность и практически нулевое тепловое расширение.Он выдерживает высокое давление при высоких температурах.

Колба или колба заполнены газом ксеноном под очень высоким давлением. Давление внутри баллона составляет около 30 бар.

Здесь, когда на электроды подается напряжение, в газообразном ксеноне в зазоре между электродами начинается явление газового разряда. В газе всегда есть свободные электроны. Из-за приложенного к электродам электрического поля свободные электроны ускоряются и сталкиваются с атомами ксенона.Из-за этих столкновений электроны с внешней орбиты атомов ксенона отрываются от своего положения и переходят на более высокий энергетический уровень. Атомы с электронами более высоких уровней энергии называются возбужденными атомами.

Когда в возбужденных атомах электроны возвращаются со своего более высокого энергетического уровня в свое предыдущее энергетическое состояние, дополнительная энергия выделяется в виде фотона. Длина волны энергии, излучаемой фотонами, находится в пределах видимого диапазона. Цвет света ксеноновой дуги подобен дневному свету.Из-за электростатического притяжения анода или положительных электродов свободные электроны, возникшие в результате процесса ионизации, в конечном итоге попадают на анод и возвращаются к источнику.

Из-за притяжения катода положительные ионы в конечном итоге сталкиваются с передней поверхностью катода и генерируют положительные ионы металлов, нейтральные атомы ксенона и свободные электроны.

Эти электроны называются вторично испускаемыми электронами. Эти электроны помогают продолжить процесс разряда газа.Поскольку катод дополнительно не нагревается для эмиссии электронов, катод ксеноновой дуговой лампы или ксеноновой лампы известен как холодный катод.

Применение ксеноновой дуговой лампы

Ксеноновые дуговые лампы используются для:

  • Специализированное применение в промышленности и исследованиях для имитации солнечного света
  • Прожекторы
  • Кинопроекторы в кинотеатрах
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *