Site Loader

Содержание

напряжение, сила тока и сопротивление, постоянный и переменный ток

На сегодняшней встрече мы поведем разговор об электричестве, которое стало неотъемлемой частью современной цивилизации. Электроэнергетика вторглась во все сферы нашей жизни. А присутствие в каждом доме бытовых приборов, использующих электрический ток настолько естественная и неотъемлемая часть быта, что мы принимаем это как должное.

Итак, вниманию наших читателей предлагаются основные сведения об электрическом токе.

Что такое электрический ток

Под электрическим током понимают направленное движение заряженных частиц. Вещества, содержащие достаточное количество свободных зарядов, называют проводниками. А совокупность всех устройств, соединенных между собой помощью проводов называют электрической цепью.

В повседневной жизни мы используем электричество, проходящее по металлическим проводникам. Носителями заряда в них являются свободные электроны.

Обычно они хаотично мечутся между атомами, но электрическое поле вынуждает их двигаться в определенном направлении.

Как это происходит

Поток электронов в цепи можно сравнить с потоком воды, ниспадающей с высокого уровня на низкий. Роль уровня в электрических цепях играет потенциал.

Для Протекания тока в цепи на её концах должна поддерживаться постоянная разность потенциалов, т.е. напряжение.

Его принято обозначать буквой U и измерять в вольтах (B).

Благодаря приложенному напряжению в цепи устанавливается электрическое поле, которое и придаёт электронам направленное движение. Чем больше напряжение, тем сильнее электрическое поле, а значит и интенсивность потока направленно движущихся электронов.

Скорость распространения электрического тока равна скорости установления в цепи электрического поля, т. е. 300 000 км/с, однако скорость электронов едва достигает лишь нескольких мм в секунду.

Принято считать, что ток течёт от точки с большим потенциалом, т. е. от (+) к точке с меньшим потенциалом, т. е. к (−). Напряжение в цепи поддерживается источником тока, например батарейкой. Знак (+) на её конце означает, недостаток электронов, знак (−) их избыток, поскольку электроны — носители именно отрицательного заряда. Как только цепь с источником тока становиться замкнутой, электроны устремляются от места, где их избыток, к положительному полюсу источника тока. Их путь пролегает через провода, потребители, измерительные приборы и другие элементы цепи.

Обратите внимание, направление тока противоположно направлению движения электронов.

Просто направление тока по договоренности учёных определили до того как была установлена природа тока в металлах.

Некоторые величины, характеризующие электрический ток

Сила тока. Электрический заряд, проходящий через поперечное сечение проводника за 1 сек, называют силой тока. Для её обозначения используют букву I, измеряют в амперах (A).

Сопротивление. Следующая величина, о которой необходимо знать — это сопротивление. Оно возникает из-за столкновений направленно движущихся электронов с ионами кристаллической решетки. В результате таких столкновений электроны передают ионам часть своей кинетической энергии. В результате чего проводник нагревается, а сила тока уменьшается. Сопротивление обозначается буквой R и измеряется в омах (Ом).

Сопротивление металлического проводника тем больше, чем длиннее проводник и меньше площадь его поперечного сечения. При одинаковой длине и диаметре провода наименьшим сопротивлением обладают проводники из серебра, меди, золота и алюминия. По вполне понятным причинам на практике используют провода из алюминия и меди.

Мощность. Выполняя расчёты для электрических цепей, иногда требуется определить потребляемую мощность (P).

Для этого следует силу тока, протекающую по цепи умножить на напряжение.

P=IU

Единицей измерения мощности служит ватт (Вт).

Постоянный и переменный ток

Ток, даваемый разнообразными батарейками и аккумуляторами, является постоянным. Это означает, что силу тока в такой цепи можно изменять лишь по величине, меняя различными способами её сопротивление, а его направление при этом сохраняется неизменным.

Но большинство электробытовых приборов потребляют переменный ток, т. е. ток величина и направление которого непрерывно изменяются по определенному закону.

Он вырабатывается на электростанциях, а затем через линии высоковольтных передач попадает в наши дома и на предприятия.

В большинстве стран частота изменения направления тока равна 50 Гц, т. е происходит 50 раз в секунду. При этом каждый раз сила тока постепенно нарастает, достигает максимума, затем убывает до 0. Затем этот процесс повторяется, но уже при противоположном направлении тока.

В США все приборы работают на частоте 60 Гц. Интересная ситуация сложилась в Японии. Там на одной трети страны используют переменный ток с частотой в 60 Гц, а на остальной части — 50 Гц.

Осторожно — электричество

Поражения электрическим током можно получить при использовании электробытовых приборов и от ударов молнии, поскольку человеческий организм хороший проводник тока. Нередко электротравмы получают, наступив на лежащий на земле провод или отодвинув руками отвисшие электрические провода.

Напряжение свыше 36 В считается опасным для человека. Если через тело человека пройдет ток всего лишь в 0,05 А, он может вызвать непроизвольное сокращение мышц, которое не позволит человеку самостоятельно оторваться от источника поражения.

Ток в 0,1 А смертелен.

Ещё опаснее переменный ток, поскольку оказывает более сильное воздействие на человека. Этот наш друг и помощник в ряде случаев превращается в беспощадного врага, вызывая нарушение дыхания и работу сердца, вплоть до его полной остановки. Он оставляет страшные метки на теле в виде сильнейших ожогов.

Как помочь пострадавшему? Прежде всего, отключить источник поражения. А затем уже позаботиться об оказании первой медицинской помощи.

Наше знакомство с электричеством подходит к концу. Добавим лишь несколько слов о морских обитателях, обладающих «электрическим оружием». Это некоторые виды рыб, морской угорь и скат. Самым опасным из них является морской угорь.

Не стоит подплывать к нему на расстояние менее 3 метров. Удар его не смертелен, но сознание можно потерять.

Автор: Драчёва Светлана Семёновна


Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Вы можете оставить комментарий к докладу.

Памятка «Оказание первой помощь при поражении электрическим током»

Как оказать первую помощь при поражении электрическим током

Поражение электротоком – это тот случай, когда человека обязательно нужно показать мед.работникам, даже если была грамотно оказана доврачебная помощь.

Ток может поразить внутренние органы, например, сердце или легкие, но сразу это заметно не будет, а проблемы проявятся позже. По этой же причине после сильного удара тока нужно постоянно наблюдать пострадавшего, проверять его самочувствие, при необходимости – немедленно показывать мед.персоналу.

Однако в наших силах принять меры по сохранению здоровья человека, по спасению его жизни после удара током, пока на место происшествия не прибыла скорая мед.помощь.

Алгоритм действий при оказании помощи пораженному электрическим током

Как можно быстрее вызовите мед.бригаду и приступайте к спасению человека. Лучше, если несколько человек будут заниматься этим одновременно. Алгоритм ваших действий:

1. Если это возможно – сразу отключите электроустановку, до части которой дотронулся пострадавший. Нужно как можно скорее прекратить воздействие тока на него. От того, как долго ток будет действовать, будут зависеть и последствия. Самостоятельно разжать руку или отойти, когда бьет ток, человеку может быть очень сложно или невозможно, поэтому требуется срочная посторонняя помощь.

2. Когда отключить установку нет возможности, а человек держится за край кабеля или провода, кабель можно отрубить топором или другим подобным инструментом. У топора должна быть изолированная ручка – деревянная или пластиковая. Она обязательно должна быть сухой.

3. В электроустановках до 1000 Вольт допускается применение подручных средств (все они должны быть сухими и изолированными). Чтобы оттянуть человека, можно использовать деревянные палки, доски, сухие канаты. При условии, что у пораженного сухая одежда, можно потянуть за нее. При этом нужно быть внимательными и соблюдать меры предосторожности, заботиться о собственной безопасности: не прикасаться к самому человеку, его голой коже, а также к каким-либо предметам из металла и мокрым вещам.

4. В электроустановках выше 1000 Вольт уже должны использоваться специальные инструменты и средства защиты: диэлектрические перчатки, ботинки или галоши, а также изолирующие штанги и щипцы.

Средства защиты от воздействия электрического тока

1. Под упавшего пораженного следует подложить сухую деревянную доску или фанеру.

2. Проверить наличие пульса и на запястье, и на шее.

3. Проверить зрачки: слишком широкие зрачки будут указывать на то, что кровоснабжение мозга пострадавшего сильно ухудшилось.

Далее действия зависят от того, в каком состоянии оказался человек после воздействия тока.

Оказание первой помощи при поражении электрическим током

Самые простые меры принимаются, если он в сознании. Пораженному нужно обеспечить покой. Пока вы дожидаетесь мед.помощи, уложите его как можно удобнее, укройте одеялом, постоянно проверяйте дыхание и пульс. При наличии ожогов, ушибов или переломов требуется оказание соответствующей доврачебной помощи. Если ничего подобного не обнаружено, не пытайтесь давать пострадавшему какие-то мед.препараты.

Человеку, потерявшему сознание, также нужен покой. Важно проверить, дышит ли он при этом. Необходимо уложить его на мягкую подстилку, расстегнуть на нем одежду, чтобы она не мешала дыханию, обеспечить доступ кислорода. Также меры спасения включают себя очищение рта: в его полости может скопиться кровь и слизь. До приезда мед.бригады нужно постараться согреть пострадавшего, а также следить за состоянием его дыхания.

Алгоритм действий включает в себя искусственное дыхание и непрямой массаж сердца, если пострадавший не подает признаков жизни или дышит прерывисто. Перед тем, как начать эти процедуры, как и в предыдущем случае, нужно освободить пораженного от стесняющей одежды, а также очистить его ротовую полость. Продолжать делать искусственное дыхание и массаж нужно до тех пор, пока человек не придет в себя или не приедет мед.персонал.

Электрический ток

Электрический ток образуется в веществе только при условии наличия свободных заряженных частиц. Заряд может находиться в среде изначально или же формироваться при условии содействия внешних факторов (температуры, электромагнитного поля, ионизаторов). Движение заряженных частиц хаотичны при условии отсутствия электромагнитного поля, а при подключении к двум точкам вещества, разности потенциалов превращаются в направленные — от одного вещества к другому.

Понятие, сущность и проявления электрического тока

Определение 1

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • В газах – ионы и электроны,
  • В металлах – электроны,
  • В электролитах – анионы и катионы,
  • В вакууме – электроны (при определенных условиях),
  • В полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Замечание 1

Часто используют такое определение понятия «электрический ток». Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Рисунок 1. Электрический ток — упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Классификация видов электрического тока

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока. Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов. Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжению. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Вообще работы Фарадея на разные темы, связанные с электричеством, отличаются глубиной и масштабностью. Он провел большое число опытов и выступил с огромным количеством докладов.

Кратко упомянем, что также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Электрический ток в полупроводниках — Основы электроники

  

В любом кристалле атомы расположены в определенном порядке, образуя так называемую кристаллическую решетку. Связь между отдельными атомами создается за счет электронов, слабо связанных с ядрами атомов. Такая связь получила название валентной или электронной. Именно она удерживает атомы в определенных местах кристаллической решетки.

Наиболее широкое применение в полупроводниковой технике нашли германий и кремний. Оба эти элемента имеют по четыре валентных электрона, которые и создают связи с соседними атомами. Каждый атом, например, в кристалле германия связан с четырьмя соседними атомами. Заметим, что электронную связь создают обязательно два электрона (один от данного и другой от соседнего атома). Условно электронные связи в кристалле германия можно показать так, как это сделано на рис. 1.

Рисунок 1. Условное изображение электронных связей в кристале германия.

 

При нагревании, под действием света, радиоактивного излучения и других факторов электронные связи в полупроводнике нарушаются. Если полупроводник поместить в электрическое поле, то образовавшиеся при нарушении электронных связей свободные электроны начнут перемещаться в одну сторону под действием сил поля. В полупроводнике возникнет электрический ток.

Рисунок 2. Протекание электрического тока в кристале германия.

 

Так как этот ток представляет собой, как и в металле, движение свободных электронов, то принято говорить, что полупроводник обладает электронной проводимостью.

Если из электронной связи вырван электрон, то образуется так называемая дырка. Эту дырку может заполнить электрон с соседнего атома, в котором в свою очередь образуется дырка. Дырка соседнего атома будет заполнена электроном следующего атома и т. д.

Если полупроводник находится в электрическом поле, то дырки как бы перемещаются навстречу движению электронов. В этом случае говорят, что полупроводник обладает дырочной проводимостью.

Для создания свободных носителей заряда (электронов или дырок) в полупроводник вводят примеси.

Наличие двух видов проводимости — характерная особенность полупроводников.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электрический ток в вакууме

Электрический ток в вакууме

Вакуум — пространство, свободное от вещества. В наиболее общем смысле, вакуум — это пустота. В физике и технике под вакуумом подразумевается газообразная среда при давлении в сотни раз ниже атмосферного.

Электрический ток в физике — это направленное движение носителей заряда. Вакуум — диэлектрик, и ток не может возникнуть в нем сам по себе. Условие протекания электрического тока в вакууме — наличие в нем достаточного количества свободных заряженных частиц. Например, электронов.

Термоэлектронная эмиссия

Как свободные электроны могут появиться в вакууме? Благодаря явлению термоэлектронной эмиссии, открытому Томасом Эдисоном в 1879 году.

Определение. Термоэлектронная эмиссия

Термоэлектронная эмиссия — испускание электронов из металла при его нагревании.  

Металлы являются наилучшими проводниками, так как имеют свободные электроны, которые иногда еще называют электронным газом. При нагревании металла энергия электронов (измеряется в электронвольтах) увеличивается и они могут «вырваться» из металла. Для того, чтобы вылететь из металла, электрон должен обладать энергией, превышающей работу выхода электронов для этого металла.

Aвых=E0-μ

Здесь Aвых — работа выхода, которую нужно преодолеть электрону, E0 — его энергия, μ — энергия Ферми.

 

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Термоэлектронный ток

Испущенные металлом свободные электроны образуют у поверхности металла электронное облако. Если создать в данной области электрическое поле, электроны начинают двигаться под действием сил поля. Иными совами, возникает электрический ток, называемый термоэлектронным.

Определение. Термоэлектронный ток

Термоэлектронный ток — ток, возникающий при испускании (эмиссии) электронов накаленными телами в вакуумных приборах.

Так, если в вакууме поместить две металлические пластины и создать между ними разность потенциалов и условия для термоэлектронной эмиссии, возникнет термоэлектронный ток. 

Электрический ток в вакууме широко используется в вакуумных приборах. Самый простой пример — электронная лампа, или вакуумный диод.

Вакуумный диод представляет собой баллон с откачанным воздухом, содержащий электроды: катод и анод. Электроны выбиваются из катода и летят к аноду.

Для вакуумного диода не выполняется закон Ома. При небольших значениях напряжения на аноде имеет место формула зависимости силы электрического тока от напряжения:

I=BU32

где B — коэффициент пропорциональности, который зависит от формы, расположения и размеров электродов.

При увеличении разности потенциалов между электродами сила тока будет расти. Однако, для термоэлектронного тока существует понятие тока насыщения. Это ток такой силы, при котором все электроны из электронного облака достигают другой анода. При достижении силы тока насыщения и дальнейшем росте разности потенциалов, сила тока насыщения не меняется.

Эмиссионную способность материала катода характеризует плотность тока насыщения, которая определяется по формуле Ричардсона-Дешмана:

j=1-hRiA·T2·e-qφkT.

Здесь h — постоянная Планка, hRi — усредненное значение коэффициента отражения электронов от потенциального порога, A — термоэлектрическая постоянная, равная 120,4 AК2·см2, T — температура, q — заряд электрона, qφ — работа выхода, k — постоянная Больцмана.

Задачи

Задачи к уроку 50/14

1.      Космическая ракета при старте с Земли движется вертикально вверх с ускорением a = 25 м/с2. Определите вес космонавта массой m = 100 кг. Ускорение свободного падения считать равным 10 м/с2.

2.      Парашютист, достигнув в затяжном прыжке скорости υ1 = 60 м/с, раскрыл парашют, после чего его скорость за t = 2 с уменьшилась до υ2 = 10 м/с. Чему равен вес парашютиста массой m = 70 кг во время торможения? Ускорение свободного падения считать равным 10 м/с2.

3.      Самолет, двигаясь с постоянной скоростью 720 км/ч, совершает фигуру высшего пилотажа – «мертвую петлю» – радиусом 1000 м. Чему равна перегрузка летчика в верхней точке петли? (g = 10 м/с2).

 

Задачи д/з к уроку 48/12

1.         Во сколько раз изменится сила Всемирного тяготения, если массу одного тела увеличить в 3 раза, а другого уменьшить в 9 раз?

2.         Во сколько раз изменится сила Всемирного тяготения, если расстояние между телами уменьшить в 5 раз?

3.         С каким ускорением всплывает тело массой 25 кг, если на него действует сила Архимеда 300 Н?

Задачи д/з к уроку 60  

1. Почему невозможно, из положения сидя прямо на стуле, встать на ноги, не наклонившись предварительно вперед?

2. Почему однородный прямоугольный кирпич можно положить на край стола, только если с края стола свисает не более половины длины кирпича?

3. Почему вы вынуждены отклоняться назад, когда несете в руках тяжелый груз?

Задачи д/з к уроку 58/7 

1. Какова средняя сила давления F на плечо при стрельбе из автомата, если масса пули m = 10 г, а скорость пули при вылете из канала ствола v = 300 м/с? Автомат делает 300 выстрелов в минуту.

2. Для проведения огневых испытаний жидкостный ракетный двигатель закрепили на стенде. С какой силой он действует на стенд, если скорость истечения продуктов сгорания из сопла 150 м/с, а расход топлива за 5 секунд составил 30 кг?

3. Ракета массой 1000 кг неподвижно зависла над поверхностью земли. Сколько топлива в единицу времени сжигает ракета, если скорость истечения продуктов сгорания из ракеты равна 2 км/с?

виды и применение электротока, основные понятия, движение носителей заряда, формулы

Применение электрического тока разнообразно, поскольку невозможно представить без него жизнь человечества. Следует понимать его природу возникновения, чтобы направить энергию во благо, а не во вред. Электрический ток подчиняется законам физики, которые используются для изготовления различных устройств. Для его грамотного использования нужно знать основные электрические величины.

Основные понятия

Электрическим током называется упорядоченное движение заряженных частиц, благодаря которым может порождаться электромагнитное поле. К заряженным частицам можно отнести следующие: электроны, протоны, нейтроны, дырки и ионы. В научной литературе нейтрон не имеет заряда, однако участвует в образовании электромагнитного поля.

Кроме того, некоторые не знают, почему электроток является векторной величиной. Это утверждение следует из его определения, поскольку он имеет направление. В некоторых источниках можно встретить такое определение: электроток — скорость, с которой происходит изменение зарядов элементарных частиц в определенный момент времени. Ток характеризуется силой и напряжением (разность потенциалов). Свойства, которыми обладает электроток: тепловое, механическое, химическое и создание электромагнитного поля.

Сила и тип тока

Сила тока — количество заряженных частиц, проходящих через проводник за единицу времени, равную одной секунде. Материалы по проводимости делятся на три группы: проводники, полупроводники и диэлектрики. Проводники — вещества, которые способны проводить ток, поскольку в них есть свободные электроны. Их наличие можно выяснить по таблице Д. И. Менделеева, воспользовавшись электронной конфигурацией химического элемента.

Полупроводники могут проводить поток заряженных частиц при определенных условиях.(-7) Н.

Упрощенный вариант формулировки следующий: сила электротока, при которой через площадь поперечного сечения проводника за единицу времени t проходит количество электричества Q, называется ампером. Определение записывается в виде формулы и имеет следующий вид: I = Q / t.

Бывают вспомогательные единицы измерения, к которым относят мА (0,001 А), кА (1000 А) и т. д.

Значение силы тока измеряется при помощи амперметра, который подключается в цепь последовательно. Видов электрического тока всего два: постоянный и переменный. Если ток остается постоянным или изменяется по величине, не меняя направления, то он называется постоянным.

Переменный ток изменяется по амплитудному значению и направлению протекания по какому-либо закону. Его основной характеристикой является частота. По закону изменения амплитуды их можно разделить на следующие виды: синусоидальные и несинусоидальные. Первые изменяются по гармоническому закону и его графиком является синусоида. Формула синусоидального тока включает в себя максимальное значение силовой характеристики Iм, время t и угловую частоту w = 2 * 3,1416 * f (частота тока источника питания): i = Iм * sin (w * t). Еще одной величиной, характеризующей электроток, является напряжение или разность потенциалов.

Разность потенциалов

Любое вещество состоит из атомов, состоящих из элементарных частиц. Ядро обладает положительным зарядом, а вокруг него по своим орбитам вращаются электроны, имеющие отрицательный заряд. Атомы являются нейтральными, поскольку число электронов равно количеству протонов в ядре.

При потерях электронов атомами образуется электромагнитное поле, создаваемое протонами, поскольку они стремятся вернуть недостающие отрицательно заряженные частицы. Если по какой-то причине произошел избыток электронов, то формируется электромагнитное поле с отрицательной составляющей. В первом и во втором случаях формируются положительные и отрицательные потенциалы соответственно. Различие между ними называется напряжением или разностью потенциалов.

Величина различия прямо пропорциональна значению напряжения: при увеличении разницы возрастает значение напряжения. При соединении потенциалов с различными знаками возникает электроток, который стремится устранить причину разности и вернуть атом в исходное состояние.

Электрическое напряжение — работа, совершаемая электромагнитным полем по перемещению точечного заряда. Единица измерения напряжения является вольт (В), а его значение можно измерять с помощью вольтметра. Он подключается параллельно участку или электроприбору, на котором необходимо измерить разность потенциалов. 1 В является разностью потенциалов между двумя точками с зарядом 1 Кл, при котором сила электромагнитного поля совершает работу, равную 1 Дж.

Условия получения и законы

Электроток возникает при воздействии электромагнитного поля на проводник. Но также справедливо и обратное утверждение, доказывающее возникновение электрического поля в результате протекания тока. Важными условиями его получения являются такие факторы: наличие свободных электронов и источника напряжения. Наличие носителей заряда влияет на проводимость, а напряжение является внешней силой, которая способствует «вырыванию» из кристаллической решетки этих частиц.

Проводимость веществ

Носителями заряда в металлах являются электроны. При высокой температуре проводника возникает движение атомов, некоторые из них распадаются и образуются новые свободные электроны. Заряженные частицы взаимодействует с атомами и узлами кристаллической решетки, и часть энергии превращается в тепловую. Этот процесс называется электрическим сопротивлением проводника. Оно зависит от следующих составляющих:

  • Температуры.
  • Типа вещества.
  • Длины проводника.
  • Площади поперечного сечения.

При уменьшении температуры вещества происходит снижение его сопротивления. Зависимость от типа вещества объясняется тем, что каждое вещество состоит из атомов. Они образуют между собой кристаллическую решетку, причем у каждого вещества она разная. Каждый атом имеет определенную электронную конфигурацию, а следовательно, отличается от других наличием носителей заряда.

Кроме того, потоку заряженных частиц сложнее пройти через длинный проводник с маленьким значением его площади поперечного сечения.

Проводником является и электролит или жидкость, проводящая электрический ток. Носителями заряда в жидкостях являются ионы, которые бывают положительно (анионы) и отрицательно (катионы) заряжены. Электрод с положительным потенциалом называется анодом, а с отрицательным — катодом. Перемещение происходит при подаче напряжения на электроды. Катионы перемещаются к аноду, а анионы — к катоду.

При протекании тока через электролит происходит его нагревание, в результате которого увеличивается сопротивление жидкости. Некоторые газы способны проводить электроток тоже. Носителями заряда в них являются ионы и электроны, а сам «заряженный газ» называется плазмой.

Электричество в полупроводниках подчиняется тем же законам, что и в проводниках, но есть некоторые отличия. Представлять носители заряда в них могут электроны и дырки. При уменьшении температуры сопротивление его возрастает. При внешнем воздействии на полупроводник связи в кристаллической решетке ослабевают и появляются свободные электроны, а в месте, где они были, происходит образование дырки. Однако она притягивает другой электрон, который находится рядом. Так и происходит движение дырок. Следовательно, сумма дырочного и электронного электромагнитных полей образует электроток.

Основные соотношения

Все явления подчиняются физическим законам, и электричество не является исключением. Основные соотношения зависимости одной величины от других описаны в законах, которые применяются для расчета различных схем для простых и сложных устройств. Кроме того, правила помогают избежать различных аварийных ситуаций, поскольку электричество может служить и во вред человечеству, вызывая пожары, травмы и даже смерть.

Основным законом, используемым в электротехнике, является закон Ома для участка и полной цепи. Для участка цепи он показывает зависимость силы тока I от напряжения U и электрического сопротивления R и его формулировка следующая: ток, протекающий на участке цепи, прямо пропорционален значению напряжения и обратно пропорционален сопротивлению этого участка (I = U / R).

Для полной цепи, в которой существует электродвижущая сила (e) и внутреннее сопротивление источника питания: формулировка выглядит следующим образом: ток, протекающий в полной цепи, прямо пропорционален электродвижущей силе (ЭДС) и обратно пропорционален полному сопротивлению цепи с учетом внутреннего сопротивления источника питания (i = e / (R + Rвн)).

Из этих законов можно получить следствия, которые нужны для нахождения величин напряжения, ЭДС и сопротивлений. Следствия из законов Ома:

  • R = U / I.
  • U = I * R.
  • e = i * (R + Rвн).
  • R = (e / i) — Rвн.
  • Rвн = (e / i) — R.

Электроток, при прохождении через проводник или полупроводник, совершает работу, при которой выделяется тепловая энергия. Это одно из его свойств. Ее численное значение определяется с помощью закона Джоуля-Ленца.

Закон показывает зависимость количества теплоты от величин напряжения и силы тока, а также времени протекания электротока.

Его формулировка следующая: количество теплоты Q, выделяемое током при протекании через проводник за единицу времени, прямо пропорционально зависит от напряжения и силы тока (Q = U * I * t). Следствия из этого закона следующие:

    • Q = sqr (I) * R * t.
    • Q = (sqr (U) * t) / R.
    • I = Q / (U * t).
    • I = sqrt ((Q / (R * t)).
    • U = Q / (I * t).
    • U = sqrt (Q * R * t).
    • t = Q / (U * I).
    • t = Q / (sqr (I) * R).
  • Q = P * t.
  • P = Q / t.
  • t = Q / P.

Величина Р является мощностью и вычисляется по формуле: Р = U * I. Если электрический ток в цепи не совершает механическую работу и не производит никакого действия, то все электрическая энергия преобразуется в тепловую, т. е. A = Q.

Опытным путем было установлено, что при пересечении линий электромагнитной индукции проводником замкнутого типа в нем появляется электроток. Закон о влиянии электромагнитного поля на возникновение тока называется законом Фарадея. Он гласит: отрицательное значение ЭДС электромагнитной индукции в контуре, который является замкнутым, равно изменению магнитного потока с течением времени. Из закона Фарадея следует, что при движении проводника в постоянном магнитном поле на концах первого возникает разность потенциалов. Этот принцип используется для изготовления генераторов, трансформаторов и т. д.

Таким образом, электрический ток, как все явления и процессы, подчиняется определенным законам, которые позволяют не только контролировать, но и избегать негативных последствий, связанных с его работой. Производить расчеты нужно и для экономии времени, поскольку подбор номинала какого-либо элемента схемы может привести к выходу из строя устройства.

Что такое электрический ток? Определение, единица измерения и направление тока

Определение : Электрический ток определяется как скорость протекания отрицательных зарядов проводника. Другими словами, непрерывный поток электронов в электрической цепи называется электрическим током. Проводящий материал состоит из большого количества свободных электронов, которые беспорядочно перемещаются от одного атома к другому.

Единица тока

Поскольку заряд измеряется в кулонах, а время — в секундах, единицей измерения электрического тока является кулон / сек ( C / s ) или амперы ( A ).Амперы — это единица измерения SI проводника. I — это символическое представление тока.

Таким образом, считается, что по проводу проходит ток в один ампер, когда по нему течет заряд со скоростью один кулон в секунду.

Когда к металлическому проводу прикладывается разность электрических потенциалов, свободно прикрепленные свободные электроны начинают двигаться к положительному выводу ячейки, показанной на рисунке ниже. Этот непрерывный поток электронов составляет электрический ток.Токи в проводе протекают от отрицательного вывода ячейки к положительному выводу через внешнюю цепь.

Условное направление тока

Согласно теории электронов, когда к проводнику прикладывается разность потенциалов, через цепь протекает какое-то вещество, составляющее электрический ток. Считалось, что это вещество течет от более высокого потенциала к более низкому потенциалу, то есть положительный вывод к отрицательному выводу ячейки через внешнюю цепь.

Это правило протекания тока настолько твердо установлено, что оно все еще используется. Таким образом, обычное направление протекания тока — от положительного вывода элемента к отрицательному выводу элемента через внешнюю цепь. Величина протекания тока на любом участке проводника — это скорость потока электронов, то есть заряда, протекающего в секунду.

Математически это представлено как

На основе протекания электрического заряда ток в основном подразделяется на два типа, т.е.е. переменный ток и постоянный ток. При постоянном токе заряды протекают в одном направлении, тогда как при переменном токе заряды протекают в обоих направлениях.

Что такое электрический ток? Простое объяснение

Электрический ток — это поток электрического заряда между двумя точками. Представьте, что это похоже на воду в реке, несущую энергию. Электрический заряд в электронах вызывает нагрев резисторов в лампах и электрических огнях.Он также создает магнитные поля в двигателях, индукторах и генераторах.

Есть два типа электрических токов. Первый — это постоянный ток (DC), который течет в одном направлении, как батарея. Вторые — это переменные токи (AC), периодически меняющие направление. Мы можем увеличивать и уменьшать напряжение переменного тока с помощью трансформаторов.

Изображение: Ле Рой К. Кули

Большая гибкость переменного тока означает, что мы можем эффективно транспортировать его по национальным высоковольтным сетям, а затем направлять его туда, где мы используем, на наших рабочих местах и ​​дома.

Откуда идет электрический ток

Электрический ток — это естественное явление. Мы видим это в молнии, статическом электричестве, солнечном ветре и полярных сияниях. История Бенджамина Франклина, запускающего воздушного змея с ключом на веревке в молниеносное облако, чтобы доказать, что это было электричество, вероятно, вымысел. Если бы это сработало, его сын, держащий веревку, вероятно, умер бы, потому что шел дождь.

Мы создаем электрический ток, вращая ротор в генераторе, или от солнца, используя солнечные батареи.Теоретически мы можем производить столько электроэнергии, сколько захотим, но у нас нет аккумуляторной технологии для хранения больших количеств. Следовательно, мы должны генерировать его «как раз вовремя», чтобы удовлетворить наши потребности.

Как мы контролируем поток электрического тока

Изображение: Smial

Мы можем сравнить оптимальный поток электронов через сетку с системой полива сада. Нам нужно достаточное давление, чтобы поднять всплывающие окна на лужайке. Однако, если давление будет слишком высоким, распылители тумана сломаются на клумбах.

Электрический ток такой же. Слишком мало, и лампочки загораются коричневым. Слишком много, и они взорвутся.

Наши электростанции и подстанции — это «ответвители», гарантирующие, что мы получаем необходимое количество электрического тока.

Связанные

Разница между электрическим зарядом и электрическим током

Как сделать простой генератор

Электричество, электрический ток и цепь, класс десять наука NCERT


Электрический ток и цепь

Электрический ток: Поток электрического заряда известен как электрический ток.Электрический ток передается за счет движения электронов по проводнику.

По соглашению, электрический ток течет в направлении, противоположном движению электронов.

Электрическая цепь: Электрическая цепь — это непрерывный и замкнутый путь электрического тока.

Выражение электрического тока: Электрический ток обозначается буквой «I». Электрический ток выражается скоростью протекания электрических зарядов. Скорость потока означает количество заряда, протекающего через определенную область в единицу времени.

Рис. Обычный поток электрического заряда

Если чистый электрический заряд (Q) протекает через поперечное сечение проводника за время t, то;

`текст (Электрический ток) (I) = (текст (Чистый заряд) (Q)) / (текст (Время) (t))`

Или, I = Q / t

Где, I — электрический ток, Q — чистый заряд, а t — время в секундах.

Единица измерения электрического заряда и тока СИ:

Единица измерения электрического заряда в СИ — кулон (Кл). -6` A

Амперметр: Устройство для измерения электрического тока в цепи.



Пример 1. Найдите количество электрического заряда, протекающего по цепи, если электрический прибор потребляет электрический ток силой 5 А в течение 5 минут.

Решение: Дано, электрический ток (I) = 5 А

Время (t) = 5 минут `= 5 xx 60 = 300` с

Электрический заряд (Q) =?

Мы знаем; `I = Q / t`

Или, `Q = I xx t`

Или, `Q = 5 A xx 300 s = 1500 C`

Пример 2: Если в течение 1 часа через нить накала лампы пропускается ток силой 2 ампера, найдите количество электрического заряда, протекающего через цепь.

Решение: Учитывая, электрический ток (I) = 2 A

Время (t) = 1 час `= 1 xx 60 xx 60 с = 3600 с`

Электрический заряд (Q) =?

Мы знаем, что `Q = I xx t`

Следовательно, `Q = 2 A xx 3600 s = 7200 C`


Пример 3: За сколько времени протечет 6000 кулонов электрического заряда, если через электродвигатель будет протекать электрический ток силой 10 А?

Решение: Учитывая, электрический заряд (Q) = 6000 C

Электрический ток (I) = 10 А

Время (t) =?

Мы знаем; `I = Q / t`

Или, `t = Q / I`

Или, `t = (6000 C) / (10 A) = 600 с`

Или, t = 10 мин

Пример 4: Если электрический заряд 900 C протекает через электрическую лампочку в течение получаса, найдите электрический ток, потребляемый нитью накала.

Решение: Учитывая, электрический заряд (Q) = 900 C

Время (t) = Полчаса = 30 м `= 30 xx 60 = 1800 с`

Электрический ток (I) =?

Мы знаем; `I = Q / t`

Или, `I = (900 C) / (1800 с) = 0,5 A`

Пример 5: Если электрический заряд 15000 C протекает через электрический утюг в течение 5 минут, найдите электрический ток, потребляемый нитью электрического утюга.

Решение: Учитывая, электрический заряд (Q) = 1500 C

Время (t) = 5 м `= 5 xx 60 = 300 с`

Электрический ток (I) =?

Мы знаем; `I = Q / t`

Или, `I = (1500 C) / (300 с) = 5 A`


Принципы электричества | Energizer

Эти основные принципы электричества лежат в основе электрических устройств, используемых в вашем доме и школе, таких как цифровые камеры, стереосистемы, фонарики, калькуляторы и портативные проигрыватели компакт-дисков.

Ом и вольт

Ученые знают, что существуют способы измерения электрических величин. Один из них — кулонов в секунду. — мера потока электронов через металлический проводник или провод. Ток в один кулон в секунду равен один ампер .

Даже материалы, которые проводят электричество, сопротивляются потоку электронов. Единица электрического сопротивления — Ом . Давление, необходимое для протекания одного кулона в секунду (один ампер) через проводник с сопротивлением Ом , составляет один вольт.

Закон Ома объясняет взаимосвязь между напряжением (E), сопротивлением (R) и током (I).

В двух цепях с одинаковым напряжением ток будет пропорционально больше в цепи с меньшим сопротивлением. В цепях с одинаковым сопротивлением протекающий ток будет прямо пропорционален приложенному напряжению. Ток прямо пропорционален напряжению, обратно пропорционален сопротивлению.

I (Амперы) = E (Вольт) / R (Ом)

Также: E = IR или R = E / I

Одним из наиболее распространенных электрических измерений, которые вы будете использовать, является ватт, единица измерения электрической энергии. мощность: Вт (Вт) = E (Вольт) x I (Амперы).

Количество электрического заряда измеряется в кулонах.

Ученые и инженеры используют свои знания в области электричества для разработки новейших инструментов, инструментов и устройств. И вы можете применить принципы электричества, которые вы только что узнали, вместе с наукой об аккумуляторах, которую вам преподнесла компания Energizer.

Пожалуйста, прочтите внимательно!

Во всех экспериментах используется безопасный низковольтный аккумулятор. Бытовой электрический ток содержит высокое напряжение, которое может привести к серьезным травмам.НЕ ИСПОЛЬЗУЙТЕ бытовой электрический ток ни в одном из этих экспериментов. ВСЕ эксперименты следует проводить под наблюдением взрослых.

  • Тщательно следуйте инструкциям по подключению для каждого эксперимента. Неправильная проводка может привести к утечке и / или разрыву батареи.
  • НЕ разбирайте аккумулятор. Контакт с материалом внутренней батареи может привести к травме.
  • ЗАПРЕЩАЕТСЯ бросать в огонь, перезаряжать, вставлять задним ходом или смешивать с использованными батареями или батареями других типов. Это может привести к взрыву батарей, утечке жидкости и причинению травм.

Основные принципы электроэнергетики

Электричество

Электричество, проще говоря, это протекание электрического тока по проводнику. Этот электрический ток принимает форму свободных электронов, которые переходят от одного атома к другому. Таким образом, чем больше в материале свободных электронов, тем лучше он проводит. Есть три основных электрических параметра: вольт, ампер и ом.


1. Вольт

Давление, которое оказывает на свободные электроны, заставляя их течь, известно как электродвижущая сила (ЭДС).Вольт — это единица измерения давления, то есть вольт — это величина электродвижущей силы, необходимая для проталкивания тока в один ампер через проводник с сопротивлением в один Ом.


2. Ампер

Ампер определяет расход электрического тока. Например, когда один кулон (или 6 x 1018 электронов) проходит через заданную точку проводника за одну секунду, это определяется как ток в один ампер.


3. Ом

Ом — это единица измерения сопротивления проводника.Три вещи определяют величину сопротивления в проводнике: его размер, его материал, например, медь или алюминий, и его температура. Сопротивление проводника увеличивается с увеличением его длины или уменьшения диаметра. Чем более проводящими являются используемые материалы, тем ниже становится сопротивление проводника. И наоборот, повышение температуры обычно увеличивает сопротивление проводника.

Закон Ома

Закон

Ома определяет соотношение между электрическим током (I), напряжением (V) и сопротивлением (R) в проводнике.

Закон Ома можно выразить как: В = I × R

Где: V = вольты, I = амперы, R = ом

Пропускная способность

Амортизатор — это величина тока, которую может выдержать проводник до того, как его температура превысит допустимые пределы. Эти ограничения приведены в Национальном электротехническом кодексе (NEC), Электротехническом кодексе Канады и в других технических документах, например, опубликованных Ассоциацией инженеров по изолированным кабелям (ICEA). Важно знать, что многие внешние факторы влияют на допустимую нагрузку электрического проводника, и эти факторы следует принимать во внимание, прежде чем выбирать размер проводника.

Электропроводность


2

Ученые наблюдают сложный перестраиваемый магнетизм в топологическом материале

23 марта 2021 г. — Ученые обнаружили новое спиральное магнитное упорядочение в топологическом соединении EuIn2As2, которое поддерживает экзотическую электрическую проводимость, настраиваемую магнитным …


Ученые изображают проводящие края в многообещающем 2D-материале

Февраль8 августа 2019 г. — Исследователи непосредственно изобразили « краевую проводимость » в однослойном дителлуриде вольфрама, недавно открытом двумерном топологическом изоляторе и квантовом материале. Исследование позволяет …


Кухонные температурные сверхтоки из уложенных друг на друга 2D материалов

21 октября 2020 г. — «Стопка» 2D-материалов может позволить создавать сверхтоки при невероятно высоких температурах, которые легко достижимы на домашней кухне. Международное исследование открывает новый путь к…


Пробираясь через узкое место — новый класс слоистого перовскита с высокой кислородно-ионной проводимостью

27 апреля 2020 г. — Ученые обнаружили слоистый перовскит, который демонстрирует необычно высокую оксидно-ионную проводимость, на основе нового метода фильтрации и новой концепции дизайна. Такие материалы трудно найти, поэтому …


Поляризационное руководство по созданию высокопроизводительных универсальных солнечных элементов

Янв.4, 2021 г. — Когда солнечные элементы подвергаются воздействию солнечного света, в их компонентах образуются определенные связанные «пары зарядов», которые необходимо разделить для генерации фототока. Сегнетоэлектрические материалы в счет …


Высокоэффективные термоэлектрические материалы: новый взгляд на селенид олова

24 апреля 2019 г. — Измерения на синхротронных источниках BESSY II и PETRA IV показывают, что селенид олова также можно использовать в качестве термоэлектрического материала при комнатной температуре — при высоком давлении…


Сотрудничество дает искры новой модели керамической проводимости

22 октября 2020 г. — В качестве изоляторов оксиды металлов, также известные как керамика, могут не показаться очевидными кандидатами на электропроводность. В то время как в обычных металлах электроны движутся вперед и назад, их движение в …


Новый квантовый переключатель превращает металл в изолятор

3 февраля 2020 г. — Исследователи продемонстрировали совершенно новый способ точного управления электрическими токами, используя взаимодействие между спином электрона и его орбитальным вращением вокруг…


Рекорд теплопроводности с нитридом тантала

31 марта 2021 г. — Чтобы отвести тепло, например, от компьютерных микросхем, необходимы материалы, которые очень хорошо проводят тепло. Ученые в Вене проанализировали материалы на атомном уровне и обнаружили …


Обширный обзор полупроводников без спиновых зазоров: кандидаты в спинтронику нового поколения

26 июня 2020 г. — Ученые опубликовали обширный обзор бесспиновых полупроводников (SGS), нового класса материалов с «нулевой запрещенной зоной», которые имеют полностью спин-поляризованные электроны и дырки, и во-первых…


Проведение электрического тока к телу человека и через него: обзор

Эпластика. 2009; 9: e44.

Опубликовано в Интернете 12 октября 2009 г. Иллинойс, Урбана-Шампейн,

Лесли А. Геддес

b Школа биомедицинской инженерии Велдона, Университет Пердью, Вирджиния Лафайет, Индиана

a Исследовательская лаборатория биоакустики и отделение хирургии, Иллинойсский университет в Урбане-Шампани

b Школа биомедицинской инженерии Велдона, Университет Пердью, W Lafayette, Ind

Это статья открытого доступа, в которой авторы сохраняют авторские права на работу.Статья распространяется по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Эта статья цитируется в других статьях в PMC.

Abstract

Цель: Цель данной статьи — объяснить, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Методы: Эта междисциплинарная тема объясняется путем первого обзора электрических и патофизиологических принципов.Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Также обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен расслабления, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током. После обзора основных принципов обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий.Темы, связанные с ожогами высоким напряжением, включают замыкания на землю, градиент потенциала земли, ступенчатый и контактный потенциалы, дуги и молнии. Результатов: Практикующий врач будет лучше понимать электрические механизмы травм и их ожидаемые клинические эффекты. Выводы: Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему происходят конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

В этой статье объясняется, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Эта междисциплинарная тема объясняется в части A путем сначала обзора электрических и патофизиологических принципов, а затем в части B путем рассмотрения конкретных типов несчастных случаев. Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен отпускания, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током.После обзора основных принципов в части B обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий. К темам, связанным с высоковольтными ожогами, относятся замыкания на землю, градиент потенциала земли, ступенчатые потенциалы и потенциалы прикосновения, дуги и молнии. . Понимание того, как электрический ток достигает и проходит через тело, может помочь понять, как и почему происходят определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

ЧАСТЬ A: ОСНОВЫ ЭЛЕКТРИЧЕСТВА И КАК ЭТО ВЗАИМОДЕЙСТВУЕТ С ТЕЛОМ ЧЕЛОВЕКА

Поражение электрическим током определяется как внезапная резкая реакция на электрический ток, протекающий через любую часть тела человека. Удар электрическим током — смерть от поражения электрическим током. Первичное поражение электрическим током — это повреждение тканей, вызванное прямым воздействием электрического тока или напряжения. Вторичные травмы, такие как падения, являются обычным явлением. Если не указано иное, эта статья относится к токам и напряжениям 60 (или 50) Гц переменного тока (среднеквадратичное значение). Кроме того, под сопротивлением мы на самом деле подразумеваем величину импеданса. Высокое напряжение относится к среднеквадратичному значению переменного тока 600 В или более.

Очень небольшое количество электрического тока приводит к серьезным физиологическим эффектам.

Ток означает количество электричества (электронов или ионов), протекающего в секунду.Ток измеряется в амперах или миллиамперах (1 мА = 1/1000 ампера). Количество электрического тока, протекающего через тело, определяет различные эффекты поражения электрическим током. Как указано в таблице, различные величины тока вызывают определенные эффекты. Большинство эффектов, связанных с током, возникает в результате нагревания тканей и стимуляции мышц и нервов. Стимуляция нервов и мышц может привести к проблемам, начиная от падения из-за отдачи от боли и заканчивая остановкой дыхания или сердца. Чтобы вызвать физиологические эффекты, требуется относительно небольшой ток.Как показано в таблице, для отключения автоматического выключателя на 20 А требуется в тысячу раз больше тока, чем для остановки дыхания.

Таблица 1

Расчетное влияние переменного тока 60 Гц *

1 мА Едва заметное
16 мА Максимальный ток, который средний человек может схватить и «отпустить» 20 мА Паралич дыхательных мышц
100 мА Порог фибрилляции желудочков
2 A Остановка сердца и повреждение внутренних органов
15/20 Общий предохранитель

Сопротивление кожи защищает тело от электричества

Тело имеет сопротивление току.Более 99% сопротивления тела прохождению электрического тока приходится на кожу. Сопротивление измеряется в Ом. Мозолистая, сухая рука может иметь сопротивление более 100000 Ом из-за толстого внешнего слоя мертвых клеток в роговом слое. Внутреннее сопротивление тела составляет около 300 Ом по отношению к влажным, относительно соленым тканям под кожей. Сопротивление кожи можно эффективно обойти, если есть повреждение кожи от высокого напряжения, порез, глубокое истирание или погружение в воду (таблица). Кожа действует как электрическое устройство, такое как конденсатор, в том смысле, что пропускает больше тока, если напряжение быстро меняется.Быстро меняющееся напряжение будет приложено к ладони и пальцам руки, если он держит металлический инструмент, который внезапно касается источника напряжения. Этот тип контакта даст намного большую амплитуду тока в теле, чем это могло бы произойти в противном случае. 2

Таблица 2

Способы значительного снижения защитного сопротивления кожи

Существенные физические повреждения кожи: порезы, ссадины, ожоги
Разрыв кожи при 500 В или более
Быстрое приложение напряжения к участку кожи
Погружение в воду

Напряжение

Напряжение можно рассматривать как силу, проталкивающую электрический ток через тело .В зависимости от сопротивления будет течь определенный ток при любом заданном напряжении. Это ток, который определяет физиологические эффекты . Тем не менее, напряжение действительно влияет на результат поражения электрическим током несколькими способами, как описано ниже.

Разрыв кожи

При напряжении 500 В или более высокое сопротивление внешнего слоя кожи выходит из строя. 3 Это значительно снижает сопротивление тела току. В результате увеличивается сила тока, протекающего при любом заданном напряжении.Области разрыва кожи иногда представляют собой раны размером с булавочную головку, которые легко не заметить. Они часто являются признаком того, что в тело может проникнуть большой ток. Можно ожидать, что этот ток приведет к повреждению глубоких тканей мышц, нервов и других структур. Это одна из причин, по которой при высоковольтных повреждениях часто возникают серьезные повреждения глубоких тканей, а не ожоги кожи.

Электропорация

Электропорация (повреждение клеточной мембраны) происходит из-за приложения большого напряжения к длине ткани.Это могло произойти при 20 000 В из рук в руки. Электропорация также может происходить при напряжении 120 В, когда конец шнура питания находится во рту ребенка. В этой ситуации напряжение невелико, но вольт на дюйм ткани такое же, как и в случае, когда высокое напряжение прикладывается от руки к руке или с головы до ног. В результате электропорации даже кратковременный контакт может привести к серьезным травмам мышц и других тканей. Электропорация — еще одна причина возникновения глубоких повреждений тканей.

Нагрев

При прочих равных, тепловая энергия, передаваемая тканям, пропорциональна квадрату напряжения (увеличение напряжения в 10 раз увеличивает тепловую энергию в 100 раз).

Переменный и постоянный ток

Мембраны возбудимых тканей (например, нервных и мышечных клеток) будут передавать ток в клетки наиболее эффективно при изменении приложенного напряжения. Кожа в чем-то похожа тем, что пропускает больше тока при изменении напряжения. Следовательно, при переменном токе происходит непрерывное изменение напряжения с 60 циклами изменения напряжения в секунду. При использовании переменного тока, если уровень тока достаточно высок, будет ощущение поражения электрическим током, пока сохраняется контакт.Если есть достаточный ток, клетки скелетных мышц будут стимулироваться настолько быстро, насколько они могут реагировать. Эта скорость меньше 60 раз в секунду. Это вызовет тетаническое сокращение мышц, что приведет к потере произвольного контроля над мышечными движениями. Клетки сердечной мышцы будут получать 60 стимуляций в секунду. Если амплитуда тока достаточная, произойдет фибрилляция желудочков. Сердце наиболее чувствительно к такой стимуляции в «уязвимый период» сердечного цикла, который происходит во время большей части зубца T.

Напротив, при постоянном токе ощущение шока возникает только тогда, когда цепь замкнута или разорвана, если только напряжение не относительно высокое. 4 Даже если амплитуда тока велика, это может не произойти в уязвимый период сердечного цикла. При переменном токе длительность разряда более 1 сердечного цикла определенно даст стимуляцию в уязвимый период.

Как связаны ток, напряжение и сопротивление

Закон Ома выглядит следующим образом:

На рисунке показаны источник напряжения и резистор.Например, сопротивление 1000 Ом, подключенное к источнику электроэнергии на 120 В, будет иметь значение

. Напряжение вызывает протекание тока ( I ) через данное сопротивление. Несколько круговой путь тока называется цепью.

Токовый путь (-а)

Электроэнергия течет из (как минимум) одной точки в другую. Часто это происходит от одной клеммы к другой клемме источника напряжения. Соединение между выводами источника напряжения часто называют «нагрузкой».«Нагрузкой может быть что угодно, проводящее электричество, например лампочка, резистор или человек. Это показано на рисунке.

Чтобы проиллюстрировать некоторые важные моменты, эту схемную модель можно применить к автомобилю. Например, отрицательная клемма автомобильного аккумулятора подключена («заземлена») к металлическому шасси автомобиля. Положительный вывод подключается к красному кабелю, состоящему из отдельных проводов, идущих к стартеру, фарам, кондиционеру и другим устройствам. Электрический ток проходит по множеству параллельных путей: радио, стартер, свет и многие другие пути тока.Ток в каждом пути зависит от сопротивления каждого устройства. Отсоединение положительного или отрицательного полюса батареи остановит прохождение тока, хотя другое соединение не повреждено.

Применение модели к человеческому телу

На примере автомобиля легче понять, как протекает ток в человеческом теле. Человек, получивший удар электрическим током, будет иметь (как минимум) 2 точки контакта с источником напряжения, одна из которых может быть заземлением. Если соединение или отключено, ток не будет протекать.Аналогия также объясняет, как ток может проходить по множеству параллельных путей, например, через нервы, мышцы и кости предплечья. Сила тока в каждом автомобильном приборе или типе ткани зависит от сопротивления каждого компонента.

Рисунок развивает модель еще дальше. Он показывает аккумулятор и фары на велосипеде. Ржавые контакты на положительной и отрицательной клеммах аккумуляторной батареи. Общее сопротивление, через которое напряжение должно протекать током, равно сопротивлению двух ржавых контактов в дополнение к сопротивлению фар. Чем больше сопротивление, тем меньше ток . Ржавое соединение аналогично сопротивлению кожи, а фара аналогична внутреннему сопротивлению кузова. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи .

Ржавые контакты добавляют сопротивление току. Фары аналогичны внутреннему сопротивлению кузова, а ржавые соединения аналогичны сопротивлению кожи. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи.

На рисунке изображен человек, подключенный к источнику напряжения. Есть соединения с левой рукой и левой ногой. «Общее сопротивление тела» человека складывается из очень низкого (приблизительно 300 Ом) внутреннего сопротивления тела плюс 2 сопротивления при контакте с кожей. Сопротивление контакта с кожей обычно составляет от 1000 до 100000 Ом, в зависимости от площади контакта, влажности, состояния кожи и других факторов. Таким образом, кожа обеспечивает большую часть защиты тела от электрического тока.

Схема человека, подключенного к источнику напряжения.

Высоковольтный контакт

Высоковольтные (≥600 В) контакты иногда кажутся парадоксальными. Птица удобно сидит на высоковольтной линии электропередачи. Но человек в рабочих ботинках, стоящий рядом с грузовиком, погибает при прикосновении к его стороне, потому что приподнятое навесное оборудование грузовика касалось линии электропередачи. Высокое напряжение разрушает электрические изоляторы, включая краску, кожу и большую часть обуви и перчаток. Специальная обувь, перчатки и инструменты считаются защитными при определенных уровнях напряжения.Эти элементы необходимо периодически проверять на наличие (иногда точного размера) разрывов изоляции. Изоляция может оказаться неэффективной, если на поверхности предмета есть влага или загрязнения.

Как отмечалось выше, для протекания тока требуются 2 или более точек контакта, находящихся под разным напряжением. Многие электрические системы подключены («заземлены») к земле. Опорные конструкции часто бывают металлическими, а также физически находятся в земле.

Рабочий был электрически подключен к линии электропередачи через металлические части своего грузовика.Высокое напряжение (7200 В) было достаточно высоким, чтобы пройти через краску на грузовике и его обуви. Птица не находилась достаточно близко к земле или чему-либо еще, чтобы замкнуть цепь на землю. Есть птицы с большим размахом крыльев, которые действительно получают удар током, когда перекрывают разрыв между проводами и конструкциями, находящимися под разным напряжением.

ЧАСТЬ B: ВИДЫ ЭЛЕКТРИЧЕСКОГО КОНТАКТА

Шаговый и контактный потенциалы

Земля (земля) под нашими ногами обычно находится под напряжением 0 В.Линии электропередач и радиоантенны заземляют путем соединения их с металлическими стержнями, вбитыми в землю. Если человек идет босиком по земле с расставленными ногами, между двумя ступнями должно быть напряжение 0 В. Это нормальное состояние нарушается, если проводник высоковольтной линии электропередачи достигает земли или если молния ударяет по земле.

Напряжение от воздушных линий электропередачи может достигать земли несколькими способами. Линия может порваться или отсоединиться от своих изолированных опор и вступить в контакт с самой землей или с конструкциями, которые сами связаны с землей.Опорные провода (растяжки) могут отсоединяться от своих соединений у земли и становиться под напряжением, когда они соприкасаются с линией электропередачи. В этом случае растяжка под напряжением находится под высоким напряжением. Если растяжка контактирует с землей, напряжение на земле в точке контакта и вокруг нее больше не равно 0 В.

Когда провод под напряжением контактирует с землей напрямую или через проводник, это называется замыканием на землю. Уменьшение напряжения с расстоянием от точки контакта с землей объекта под напряжением называется градиентом потенциала земли .Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли.

На рисунке показана типичная кривая распределения градиента напряжения. Этот график показывает, что напряжение уменьшается с увеличением расстояния от заземляющего объекта. Слева от заземленного объекта, находящегося под напряжением, есть разница напряжений между двумя ногами человека, называемая ступенчатым потенциалом. Справа есть разница напряжений между рукой человека и двумя ногами, называемая потенциалом прикосновения.Также существует ступенчатый потенциал между двумя ногами человека справа. (Рисунок и этот раздел являются модификациями части правил OSHA [Standards-29 CFR].)

Ступенчатые и сенсорные потенциалы. Фактические цифры могут варьироваться в зависимости от типа почвы и влажности, а также других факторов.

Мгновенное горение, нагрев электрическим током или и то, и другое.

Дуга высокого напряжения связана с прохождением электричества по воздуху. В некоторых случаях дуга не касается человека. В этой ситуации от тепла дуги могут возникнуть серьезные ожоги (мгновенный ожог).Также возможны ожоги от горящей одежды и других веществ. Ожоги также могут быть вызваны прикосновением к предметам, которые термически горячие, но не находятся под напряжением.

Дуги высокой энергии могут вызывать взрывные ударные волны. 5 Тупая сила травмы, которая возникает в результате, может повредить человеку, разорвать барабанные перепонки и ушибить внутренние органы.

Если дуга или провод под напряжением контактирует с человеком и через него проходит электричество, может возникнуть травма из-за электрического тока, протекающего через тело, в дополнение к механизмам травмы, упомянутым выше.

Клинически важно определить, повлекло ли высоковольтное повреждение электрический ток, протекающий через тело. Ток, протекающий через тело из-за высокого напряжения, может привести к возникновению условий, за которыми необходимо следить с течением времени. Эти состояния включают миоглобинурию, коагулопатию и компартмент-синдромы. Несколько клинических и связанных с электрическим контактом проблем могут помочь определить, протекал ли ток через тело. Во-первых, для протекания электрического тока через тело требуется как минимум 2 точки контакта.При высоком напряжении это обычно ожоги на всю толщину. Они могут быть размером с булавочную головку, а иногда их может быть несколько из-за искрения. Если проводник, например кусок проволоки, соприкоснулся с кожей, это может привести к ожогу из-за формы соприкасающегося объекта.

Горение от вспышки без тока через тело, напротив, имеет тенденцию быть диффузным и относительно однородным. Мгновенные ожоги на , иногда на меньше полной толщины, тогда как ожоги от высоковольтных контактов будут на всю толщину.

Так называемые входные и выходные раны

Часто бывает всего 2 контактных ожога, которые обычно называют входными и выходными ранами.Эти термины относятся к тому факту, что электрический ток исходит от источника напряжения, входит в тело в одной точке, проходит через тело в другую точку контакта, где он выходит из тела и возвращается к источнику напряжения (или земле). Эта терминология несколько сбивает с толку, если учесть, что переменный ток меняет направление много раз в секунду. Терминология также может вводить в заблуждение, потому что она напоминает пулевые ранения, которые иногда имеют небольшие входные и более крупные выходные ранения. При поражении электрическим током размер раны будет зависеть от таких факторов, как размер и форма проводника, геометрия пораженной части тела и влажность.Аналогия с огнестрельными ранениями также вводит в заблуждение, поскольку не всегда имеется выходное ранение от пули, потому что пуля остается застрявшей в человеке. Таким образом, 2 отдельных ожога третьей степени предполагают протекание тока через тело. Диффузный ожог неполной толщины не предполагает протекания тока через тело.

Помимо особенностей, связанных с контактом, существуют клинические признаки, которые могут помочь определить, был ли ток через глубокие ткани. Например, можно ожидать, что высоковольтный контакт с рукой, связанный с током, протекающим в руку, будет вызывать твердость и нежность предплечья.При пассивных и активных движениях пальцев может возникнуть боль, а в руке может возникнуть сенсорная недостаточность.

Молния

Молния обычно сверкает над поверхностью тела, что приводит к удивительно небольшим повреждениям у некоторых людей. Влажная кожа и очень короткие электрические импульсы побуждают электрический ток проходить по поверхности тела. Тем не менее, молния иногда травмирует людей из-за протекания тока в теле, тупой механической силы, эффекта взрыва, который может разорвать барабанные перепонки и ушибить внутренние органы, а также интенсивный свет, который может привести к катаракте.

Контакт с проводниками

Низкое напряжение (

<600 В)

Влияние ударов низкого напряжения указано в таблице. Приведенные текущие уровни зависят от конкретного пути тока, продолжительности контакта, веса, роста и телосложения человека (особенно мускулатуры и костных структур) и других факторов. Эффекты, которые возникают в каждом конкретном случае, сильно зависят от нескольких факторов, связанных с тем, как осуществляется контакт с источником электричества. Эти факторы включают в себя путь тока, влажность, отсутствие возможности отпустить и размер областей контакта.

Путь тока

Если путь тока проходит через грудную клетку, постоянные тетанические сокращения мышц грудной стенки могут привести к остановке дыхания. Дальзил, 6 , который проводил измерения на людях, сообщает, что токи, превышающие 18 мА, стимулируют грудные мышцы, так что дыхание останавливается во время шока.

Другой эффект, возникающий при трансторакальном пути тока, — это фибрилляция желудочков. Трансторакальные пути течения включают руку в руку, руку в ногу и от передней части грудной клетки до задней части грудной клетки.Эксперименты на животных показали, что порог фибрилляции желудочков обратно пропорционален квадратному корню из продолжительности тока.

Феномен отпускания при низком (

<600 В) контакте

Фактором, который имеет большое значение для травм, полученных при низковольтном разряде, является неспособность отпустить. Сила тока в руке, которая заставляет руку непроизвольно сжимать руку, называется отпускающим током. 7 Если, например, пальцы человека обхватить большой кабель или ручку пылесоса под напряжением, большинство взрослых сможет отпустить его с током менее 6 мА.При 22 мА более 99% взрослых не смогут отпустить. Боль, связанная с отпусканием тока, настолько сильна, что молодые мотивированные добровольцы могли терпеть ее всего несколько секунд. 7 При прохождении тока в предплечье стимулируются мышцы сгибания и разгибания. Однако сгибательные мышцы сильнее, и человек не может добровольно расслабиться. Практически во всех случаях неспособности отпускать руки используется переменный ток. Переменный ток многократно стимулирует нервы и мышцы, что приводит к тетаническому (устойчивому) сокращению, которое длится до тех пор, пока продолжается контакт.Если это приводит к тому, что субъект ужесточает хватку за проводник, результатом является продолжение электрического тока через человека и снижение контактного сопротивления. 8

При переменном токе возникает ощущение поражения электрическим током, пока сохраняется контакт. Напротив, с постоянным током возникает только ощущение шока, когда цепь замкнута или разорвана. Пока контакт поддерживается, ощущения шока не возникает. Ниже 300 мА постоянного тока (среднеквадратичное значение) явление отпускания отсутствует, потому что рука не зажата непроизвольно.Когда ток проходит через руку, возникает ощущение тепла. Замыкание или разрыв цепи приводит к болезненным неприятным ударам. При токе более 300 мА отпускание может быть невозможно. 4 Порог фибрилляции желудочков для разряда постоянного тока длительностью более 2 секунд составляет 150 мА по сравнению с 50 мА для разряда 60 Гц; для разрядов короче 0,2 секунды порог такой же, как и для разрядов 60 Гц, то есть примерно 500 мА. 4

Мощность обогрева также увеличивается, когда человек не может отпустить.Это связано с тем, что плотный захват увеличивает площадь кожи, эффективно контактирующую с проводниками. Кроме того, со временем между кожей и проводниками накапливается высокопроводящий пот. Оба эти фактора снижают контактное сопротивление, что увеличивает протекающий ток. Кроме того, нагревание сильнее, потому что продолжительность контакта часто составляет несколько минут по сравнению с долей секунды, необходимой для того, чтобы отстраниться от болезненного раздражителя.

Неспособность отпустить приводит к увеличению тока в течение более длительного периода времени.Это увеличит повреждение из-за нагрева мышц и нервов. Также будет усиление боли и частота остановки дыхания и сердца. Также может быть вывих плеча с травмой связок и сухожилий, а также переломы костей в области плеч.

Явление отпускания при высоком (> 600 В) контакте

Несколько разных результатов могут произойти, когда человек схватится за провод, подающий из рук в руки напряжение 10 кВ переменного тока. Такой контакт занимает более 0,5 секунды, прежде чем большая часть клеток дистального отдела предплечья подвергнется тепловому повреждению.Однако в течение 10–100 миллисекунд мышцы на пути тока сильно сократятся. Человека можно стимулировать, чтобы он сильнее сжимал провод, создавая более сильный механический контакт. Или человека может оттолкнуть от контакта. Какое из этих событий произойдет, зависит от положения руки относительно проводника. Большинство очевидцев сообщают, что жертвы отталкиваются от проводника, возможно, из-за общих мышечных сокращений. В таких случаях время контакта оценивается примерно в 100 миллисекунд или меньше. 9 (стр. 57)

Контакт с погружением: утопление электрическим током

Клинические проблемы

Утопление или близкое к утоплению может быть результатом попадания электричества в воду. Состояния, требующие лечения почти утопления, вызванного электричеством, в основном такие же, как и условия, связанные с неэлектрическим утоплением. Эти состояния включают повышение миоглобина, которое может привести к почечной недостаточности (обнаруживаемой по повышению креатинкиназы [КФК] и анализу мочи), респираторному дистресс-синдрому у взрослых, гипотермии, гипоксии, электролитным нарушениям и аритмиям, которые включают желудочковую тахикардию и фибрилляцию желудочков.Считается, что уровни креатинкиназы и миоглобина в неэлектрических случаях почти утопления связаны с жестокой борьбой, а также иногда с длительной гипоксией и электролитным дисбалансом. Электричество в воде может стимулировать мышцы достаточно сильно, чтобы вызвать у человека сильную мышечную боль во время и после того, как он или она почти утонул. Это еще больше увеличит уровни КФК и миоглобина по сравнению с теми, которые могут возникнуть в результате неэлектрического воздействия на стол, близкий к утоплению. Уровень креатинкиназы иногда повышается в течение дня или более под влиянием проводимого лечения, продолжающейся гипоксии или гипотонии и других состояний, которые могут повлиять на продолжающийся некроз тканей.

Таблица 3

Почему погружение в воду может быть фатальным при очень низких напряжениях

1 Погружение очень эффективно смачивает кожу и значительно снижает ее сопротивление на единицу площади
2 Площадь контакта большой процент площади всей поверхности тела
3 Электрический ток также может попадать в организм через слизистые оболочки, такие как рот и горло
4 Человеческое тело очень чувствительно к электричеству.Очень небольшое количество тока может вызвать потерю способности плавать, остановку дыхания и остановку сердца.

Воздействие электрического тока

Многие определения воздействия электрического тока на людей были сделаны Далзилом. 10 Для любого данного эффекта, такого как столбнячные сокращения мышц, существует диапазон текущих уровней, которые вызывают эффект в зависимости от индивидуальных особенностей субъектов. Например, ток, необходимый для возникновения тетанических сокращений мышц предплечья («отпускающий» ток), может составлять от 6 до 24 мА (среднеквадратичное значение переменного тока 60 Гц) в зависимости от пациента.Следовательно, текущие уровни, перечисленные в публикациях, могут быть максимальными, средними или минимальными уровнями, в зависимости от обсуждаемых вопросов. С точки зрения безопасности часто подходят значения, близкие к минимальным.

Как указано в таблице, Dalziel 7 обнаружил, что ток 10 мА может вызвать тетанические сокращения мышц и, следовательно, потерю мышечного контроля. Кроме того, Smoot and Bentel 12 обнаружили, что 10 мА тока было достаточно, чтобы вызвать потерю мышечного контроля в воде. Они проводили измерения в соленой воде и не сообщали о приложенных напряжениях.

Таблица 4

Механизмы смерти при утоплении электрическим током

.8
Механизм Необходимый ток, мА Необходимое напряжение, В переменного тока
Электрическая стимуляция сердца, вызывающая фибрилляцию желудочков 20419 100 904 30
Тетаническое сокращение (эффективное паралич) дыхательных мышц 20 6
Потеря мышечного контроля конечностей: 16 мА для среднего человека 1 16 4
Потеря мышечного контроля конечностей: всего 10 мА для наиболее чувствительных женщин 7 , 11 10 3

Общее сопротивление тела в воде

Общее с учетом мер безопасности сопротивление тела от руки к ноге в воде считается равным 300 Ом. 13 15 Smoot 11 , 16 измерил общее сопротивление тела 400 Ом с погружением.Во многом это связано с внутренним сопротивлением тела. Таким образом, погружение устраняет большую часть сопротивления кожи.

Соленая вода обладает высокой проводимостью по сравнению с человеческим телом, поэтому поражение электрическим током в соленой воде является относительно редким явлением. Это связано с тем, что большая часть электрического тока проходит по внешней стороне тела.

Если есть разница напряжений, например, между одной рукой и другой, то через тело будет протекать электрический ток. Сила тока равна напряжению, деленному на общее сопротивление тела.

Какое напряжение в воде может быть смертельным?

В таблице указаны значения силы тока, необходимые для того, чтобы вызвать фибрилляцию желудочков и другие фатальные состояния. Общее сопротивление тела в воде составляет 300 Ом. Таким образом, известны необходимый ток и сопротивление, которое он должен испытывать. Таким образом, можно рассчитать необходимое напряжение. Для фибрилляции желудочков расчет выглядит следующим образом:

Требуемое напряжение = Ток × Сопротивление

Для того, чтобы вызвать фибрилляцию желудочков, необходимое напряжение будет следующим:

Напряжение = 100 мА × 300 Ом = 30 В

Рисунки для других механизмов смерти указаны в табл.

Электрический контакт, связанный с водой, часто происходит двумя способами. Эти механизмы могут происходить в ваннах, бассейнах и озерах. Первый механизм контакта заключается в том, что человек в воде выходит из воды и контактирует с токопроводящим объектом, находящимся под напряжением. Например, человек чувствует себя хорошо, сидя в ванне. Сопротивление контакта его рукой с объектом под напряжением за пределами ванны может быть достаточно высоким, чтобы защитить его или ее, особенно если его или ее рука не мокрая и площадь контакта небольшая.

Второй механизм контакта включает человека в воде, находящегося в электрическом поле из-за проводника под напряжением, который находится в воде. Например, в воду падает электрический нагреватель, подключенный к тёплому проводу розетки 120 В переменного тока. Заземленный слив находится близко к плечам человека, а обогреватель — у его или ее ног. Это дает разницу напряжений 120 В переменного тока от плеч до ступней. При общем сопротивлении тела 300 Ом протекает 360 мА, что более чем в 3 раза превышает величину, необходимую для фибрилляции желудочков.

В озерах, прудах и других водоемах источник электроэнергии может генерировать ток в воде. Местоположение напряжений в воде можно измерить. В воде могут присутствовать напряжения из-за того, что корпус лодки, подключенной к береговому источнику питания, находится под напряжением. В воде также могут присутствовать напряжения из-за находящихся под напряжением проводников в воде, которые пропускают электрический ток в воду.

Может существовать электрический градиент (или поле), аналогичный описанной выше ситуации для ступенчатого и касательного потенциалов.Ситуацию сложнее проанализировать в воде, потому что человек в воде принимает разные позы и ориентации в трех измерениях (вверх, вниз и в стороны — север, юг, восток и запад). Трансторакальное напряжение и напряжение на конечностях будут меняться по мере движения человека в зависимости от ориентации (направления) электрического поля.

Измерения потери мышечного контроля в воде

Измерения, аналогичные измерениям Smoot and Bentel 12 , были выполнены с одобрения институционального наблюдательного совета Университета Иллинойса в Урбана-Шампейн.Металлические пластины помещали внутрь резиновых контейнеров. Металлические пластины были плоскими на дне контейнеров. Сверху на каждую металлическую пластину помещали резиновый коврик с отверстиями. (Изолированный) провод заземления источника питания был подключен к одной пластине, а напряжение переменного тока 60 Гц от источника питания было подключено к другой пластине. Испытуемый стоял, опираясь на каждый резиновый коврик по одной ноге, как показано на рисунке. Таким образом, субъект контактировал с электрическим током в основном через воду, контактирующую с ногами через отверстия, а также через воду, контактирующую с ногами выше.Эта траектория потока между ногами имитировала ситуации рукопашного боя и рукопожатия, которые могут возникнуть у пловцов в воде. Эта установка сводила к минимуму ток через грудную клетку. В исследовании участвовал всего 1 субъект.

Установка для измерения напряжения и тока в воде.

Свежая (не соленая) вода с проводимостью 320 мкм / см наполняла каждое ведро до уровня около бедра. Было обнаружено, что электрически индуцированные сокращения мышц сильно меняются положением ног в воде.

Первоначальные испытания показали, что при 3,05 В (среднеквадратичное значение переменного тока 60 Гц) между пластинами протекал ток 8,65 мА, что приводило к непроизвольному сгибанию колена на 90 °. Это сгибание нельзя было преодолеть произвольным усилием. Колено можно было произвольно сгибать дальше, но оно не выпрямлялось больше, чем на 90 °. Непроизвольное резкое сгибание произошло, когда нога была поднята (сгибанием бедра) так, чтобы бедро было горизонтальным, а колено находилось на уровне воды. Это похоже на ситуацию во время плавания.Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра (путем разгибания бедра в нейтральное положение) и нога становится вертикальной. Общее сопротивление корпуса рассчитывается следующим образом:

При 4,05 В протекает ток 12,6 мА. Колено было согнуто на 135 °, то есть пятка находилась рядом с ягодицами. Это нельзя было преодолеть добровольными усилиями. Опять же, это произошло, когда нога была поднята так, чтобы колено находилось на уровне воды, аналогично ситуации, когда кто-то плывет.Меньшее нарушение мышечного контроля было отмечено в других положениях ног. Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра и нога становится вертикальной. Сопротивление составит 4,05 В / 12,6 мА = 332 Ом.

Текущие уровни, измеренные в этих экспериментах, согласуются с уровнями, о которых сообщают Dalziel, 7 Smoot, 11 и NIOSH, 1 , как указано в таблицах и. Общее сопротивление системы (вода плюс предмет) близко к 300 Ом, что часто упоминается в литературе.

ЗАКЛЮЧЕНИЕ

Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему произошли конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

Благодарности

Авторы благодарят Энди Фиша за иллюстрации.

СПИСОК ЛИТЕРАТУРЫ

1. Национальный институт охраны труда.Смерть рабочих от удара током. Публикация NIOSH № 98-131. 2009 г. Доступно по адресу: http://www.cdc.gov/niosh/docs/98-131/overview.html. Проверено 20 марта. [Google Scholar] 2. Рыба Р. М., Геддес Л. А.. Электрофизиология всплесков тока подключения. Cardiovasc Eng. 2008. 8 (4): 219–24. [PubMed] [Google Scholar] 3. Гримнес С. Диэлектрический пробой кожи человека in vivo. Med Biol Eng Comp. 1983; 21: 379–81. [PubMed] [Google Scholar] 4. Бернштейн Т. Расследование предполагаемых случаев поражения электрическим током и возгораний, вызванных внутренним напряжением.IEEE Ind Appl. 1989. 25 (4): 664–8. [Google Scholar] 5. Капелли-Шеллпфеффер М, Ли RC, Тонер М, Диллер КР. Документ представлен на конференции IEEE PCIC. Филадельфия, Пенсильвания: 1996. Взаимосвязь между параметрами электротравмы и травмы. 23–25 сентября. [Google Scholar] 6. Далзил CF. Опасность поражения электрическим током. IEEE Spectr. 1972; 9 (2): 41–50. [Google Scholar] 7. Далзил CF. Воздействие электрического шока на человека. ИРЭ Транс Мед Электрон. 1956: 44–62. PGME-5. [Google Scholar] 8. Рыба РМ. Феномен отпускания. В: Рыба Р.М., Геддес Л.А., редакторы.Электрическая травма: медицинские и биоинженерные аспекты. Тусон, Аризона: Издательство юристов и судей; 2009. глава 2. [Google Scholar] 9. Ли Р. К., Кравальо Э. Г., Берк Дж. Ф., редакторы. Электрическая травма. Кембридж, Англия: Издательство Кембриджского университета; 1992. [Google Scholar] 10. Далзил Чарльз Ф., Ли В. Р. Переоценка смертельных электрических токов. IEEE Trans Indus Gen Appl. 1968; ИГА-4 (5): 467–476. D.O.I.10.1109 / TIGA.1968.4180929. [Google Scholar] 11. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна.IEEE Trans Power Apparat Sys. 1964; 83 (9): 945–964. [Google Scholar] 12. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна. Нью-Йорк. При поддержке Underwriter’s Laboratories Inc. Доклад представлен на: Зимнем совещании по энергетике IEEE; Февраль 1964 г .; Нью-Йорк (раздел на страницах 4 и 5) [Google Scholar] 13. ВМС США. Учебная серия по электричеству и электронике военно-морского флота. Модуль 1 — Введение в материю, энергию и постоянный ток. Иногородний учебный курс. Пенсакола, штат Флорида: Центр профессионального развития и технологий военно-морского образования и обучения; 1998 г.С. 3–108. Доступно по адресу: www.hnsa.org/doc/neets/mod01.pdf. По состоянию на 26 марта 2009 г. [Google Scholar] 14. Управление военно-морского флота, канцелярия начальника военно-морских операций. Руководство по программе безопасности и гигиены труда ВМС США для сил на плаву. Том III. Вашингтон, округ Колумбия: военно-морское ведомство, канцелярия начальника военно-морских операций; 2007. С. D5–9. Доступно по адресу: http // doni.daps.dla.mil / Directive / 05000% 20General% 20Management% 20Security% 20and% 20Safety% 20Services / 05-100% 20Safety% 20and% 20Occupational% 20Health% 20Services / 5100.19E% 20-% 20Volume% 20III.pdf. [Google Scholar] 15. Национальный центр испытаний и исследований в области электроэнергетики. Паразитные напряжения — проблемы, анализ и смягчение последствий [окончательный проект] Форест-Парк, штат Джорджия: Национальный центр испытаний и исследований в области электроэнергетики; 2001.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *