Site Loader

Содержание

Излучение коротковолновое

Коротковолновые лучи, глубоко проникая в ткани и клетки, вызывают значительные изменения в них и ионизацию. Процесс ионизации в клетке состоит в том, что некоторые атомы, под влиянием излучения, поглощая энергию, испускают электроны и становятся положительно заряженными ионами. Возникший свободный электрон присоединяется к незаряженному атому и последний, получая заряд, превращается в отрицательно заряженный ион; создаются пары ионов. Изменение электронной структуры атомов нарушает химические связи, вследствие чего разрушаются молекулярные структуры клетки. Более других повреждаются ядерные элементы клетки, особенно носители генетических свойств — нуклеиновые кислоты; цитоплазма также претерпевает различные нарушения. Результаты воздействия на наследственные свойства клеток стойки и необратимы.[ …]

Излучение, которое достигает почву или растительный покров, подразделяется на коротковолновое (300—4000 нм) и длинноволновое (более 4000 нм). Ультрафиолетовые лучи короче 290 нм, губительные для живых организмов, поглощаются озоновым слоем и до поверхности планеты практически не доходят.[ …]

Коротковолновый спектр электромагнитного излучения (свет) беспокоит в ночное время диких животных, вызывает гибель большого количества насекомых, которые летят на свет фар сельскохозяйственных агрегатов и гибнут, попадая с током воздуха в радиатор трактора, комбайна или автомобиля.[ …]

Коротковолновое ультрафиолетовое излучение (КУФ-излучение) обладает бактерицидным свойством, которое было открыто в конце XIX в., хотя еще древние люди освещали раны солнцем для быстрейшего их заживления. Максимум бактерицидного действия приходится на 250—260 нм. КУФ-излучение губительно действует на все виды микроорганизмов (бактерии, вирусы, споровые формы). Поглощение лучистой энергии бактериальной клеткой ведет к необратимой коагуляции протеиновой фракции протоплазмы, следствием чего является гибель клетки.[ …]

В более коротковолновой части спектра УФ излучений используются специальные маложелатиновые фотослои. Широко применяются фотоэлектрические приемники, использующие явления фотоэффекта, ионизации и вторичной электронной эмиссии: фотоэлементы, фотоэлектронные умножители (ф.э.у.), ионизационные камеры, счетчики фотонов и т. п. [1, 8, 16].[ …]

Озон как фильтр коротковолнового излучения. Химические процессы, происходящие в атмосфере, в слоях, которые расположены ниже 90 км, кроме фотодиссоциации 02, существенным образом отличаются от тех процессов, что наблюдаются на больших высотах. В мезо- и стратосфере, в отличие от более высоких слоев, концентрация 02 увеличивается, поэтому вероятность столкновения О2 с О, которое ведет к образованию 03, резко возрастает.[ …]

Около 50 % солнечного излучения достигает поверхности суши и океанов. Часть этого излучения сразу отражается и направляется обратно в космическое пространство. Это коротковолновое излучение не меняет в процессе отражения своей длины волны. Остальное излучение поглощается поверхностью Земли и океаническими водами и распространяется вглубь, превращаясь в тепловую энергию, затрачивается на испарение воды. Глубина, на которую это тепло может распространяться, зависит от свойств поглощающей поверхности. В океане толщина прогретого слоя иногда превышает 100 м. Перенос энергии в земной коре происходит за счет молекулярной теплопроводности и представляет собой более медленный процесс. На глубине 0,5 м суточные изменения температуры едва заметны. Поток энергии, достигающей поверхности Земли и поглощенный ею, в конце концов, излучается обратно в виде длинных инфракрасных волн. Соотношение между этими двумя потоками зависит от характера поверхности, ее отражательной способности, высоты Солнца над горизонтом и т.д.[ …]

Основным источником УФ излучения естественного происхождения является Солнце. Из всего спектра УФ излучения Солнца только небольшая длинноволновая часть (рис. 8.1) достигает земной поверхности (А >0,29 мкм). Остальная часть всего УФ спектра, в особенности, коротковолновая, поглощается атмосферой, что оказывает сильное влияние на атмосферные процессы.[ …]

Механизм воздействия УФ излучения на живые организмы до конца не изучен, тем более невозможно предсказать последствия выживаемости разных биообъектов при увеличении интенсивности УФ излучения и смещению его спектра в сторону коротких волн. Этот процесс крайне нежелателен. Человечеству нужно позаботиться, чтобы атмосфера и озоновый слой оставались надежной защитой от губительного коротковолнового УФ излучения.[ …]

Спектр электромагнитных излучений, освоенный человечеством в настоящее время, представляется необычайно широким, простирающимся от сверхдлинных волн (несколько тысяч метров и более) до коротковолнового у-изпучения (с длиной волны менее 10-12 см).[ …]

Воздействие инфракрасного излучения на организм человека проявляется как общими, так и местными реакциями. Местная реакция сильнее при облучении длинноволновой радиацией, поэтому при одной и той же интенсивности облучения время переносимости в этом случае короче, чем при коротковолновой радиации. За счет большой глубины проникновения в ткани тела коротковолновый участок спектра инфракрасной радиации обладает более выраженным общим действием на организм человека. Так, коротковолновая радиация (0,7—2,4 мкм) вызывает повышение температуры глубоколежащих тканей, например при длительном повторном облучении глаз ведет к помутнению хрусталика (профессиональная катаракта).[ …]

ЭЛЕКТРОМАГНЙ ТНОЕ (ВОЛНОВОЕ) ИЗЛУЧЕНИЕ СблНЦА -включает весь диапазон длин волн — от низкочастотных радиоволн до гамма-излучения. Коротковолновое (ультрафиолетовое и рентгеновское) излучение, с длинами юли от нескольких ангстрем (А) до 1000 А, почти полностью поглощается в верхних слоях земной атмосферы, приводит к их ионизации, т.е. к появлению ионосферы. Основные параметры ионосферы — концентрация электронов, распределение концентрации с высотой — существенно зависят от солнечной активности. Ионосфера является естественным экраном, препятствующим проникновению к Земле радиоволн космического происхождения на частотах от нескольких герц до нескольких мегагерц. При изменении уровня солнечной активности интенсивность излучения в вышеназванном диапазоне сильно меняется (близ 10 А — 1000 раз). Текущие в ионосфере электрические токи, изменяющиеся при вариациях коротковолнового излучения Солнца, оказывают влияние на фоновые электромагнитные поля на поверхности Земли в области сверхнизких частот.[ …]

Именно озоновый слой, поглощая коротковолновое ультрафиолетовое излучение Солнца, сохраняет все живое на Земле и определяет тепловой режим, а также динамику атмосферы.[ …]

Для достаточно строгого описания излучения и поглощения атмосферными газами развит ряд сложных методов и моделей (см., например, [7] и имеющуюся там библиографию). Поглощение наблюдается в многочисленных колебательно-вращательных полосах Н2О, СО2, СО, 03, 02, СН4, Ы02, N20, N0, БОг и других газов [5]. Для длин волн больше примерно 4 мкм эти газы, исключая 02, излучают большое количество тепловой (длинноволновой) радиации Кроме селективного излучения и поглощения линиями в окнах прозрачности атмосферы имеет место континуальное излучение и поглощение, обусловленное далекими крыльями линий. Воздействие газов на солнечную (коротковолновую) и тепловую радиацию зависит от целого ряда факторов и может сильно измениться с ростом высоты. Для средних безоблачных атмосферных условий оценки нагревания и выхолаживания атмосферы, обусловленные только поглощением и излучением парниковыми газами, представлены на рис. 3.5 [12, 22]. Видно, что-доминирующим парниковым газом в тропосфере является водяной пар, тогда как озон и углекислый газ являются ответственными за тепловой баланс в более высоких слоях атмосферы.[ …]

В результате воздействия солнечного излучения на молекулы вещества в атмосфере образуются свободные электроны и положительные ионы. Такие процессы носят название фотоионизации. Для их протекания также необходимо выполнение указанных выше условий. В табл. 8 приведены некоторые из наиболее важных процессов фотоионизации, протекающих в верхних слоях атмосферы. Как следует из таблицы, фотоны, вызывающие фотоионизацию, относятся к коротковолновой (высокочасточной) ультрафиолетовой части спектра. Излучение этой части спектра не доходит до поверхности Земли, его поглощают верхние слои атмосферы.[ …]

На рис. 14.5 условно изображены два сорта излучения, одно — приходящее от Солнца, с максимумом по интенсивности в оптическом диапазоне, другое — уходящее от Земли. Уходящее излучение содержит как коротковолновое излучение, рассеянное и отраженное атмосферой и поверхностью Земли, так и длинноволновое, связанное с излучением самой планеты. Если взять за 100% излучение, которое приходит от Солнца, то примерно 31% от него отражается и рассеивается атмосферой сразу: 17% облаками, 6% поверхностью земли и 8% безоблачной атмосферой. Назад уходит примерно 31%, а 69% этого коротковолнового излучения поглощается атмосферой (4% поглощается облаками, а 22% — безоблачной атмосферой) и 43% Землей. В установившемся стационарном режиме атмосфера излучает во внешнее пространство те же 69% низкочастотного ИК излучения. Причем атмосфера излучает низкочастотное ИК излучение и вниз, в Землю (67 + 34 = 101%), а Земля излучает в атмосферу 115% ИК излучения + 29% энергии скрытым теплом и турбулентными потоками, что составляет 144% по энергии от падающего излучения. Хотя поток энергии от поверхности Земли превышает 100%, никакого противоречия с законом сохранения энергии здесь нет, поскольку Земля получает 43% по энергии высокочастотным излучением и 101% (67 + 34 = 101%) низкочастотным ИК излучением от атмосферы, что составляет те же 144%. Таким образом, между поверхностью Земли и атмосферой благодаря парниковому эффекту возникают встречные потоки энергии, которые дополнительно нагревают атмосферу и поверхность Земли.[ …]

Парниковый эффект — снижение теплового излучения Земли из-за повышения содержания диоксида углерода в ей атмосфере. Диоксид углерода свободно пропускает коротковолновое солнечное излучение, но задерживает тепловые лучи, идущие от нагретой земной поверхности. Повышение концентрации диоксида углерода приводит к нарушению энергетического баланса планеты и ее перегреву.[ …]

В радиобиологии различают два основных типа излучений —длинноволновые 2000—2950 А, в которые входят ультрафиолетовые лучи и коротковолновые, особенно рентгеновские, с длиной волны от 0,06 до 1000 А. Первый тип излучения неглубоко проникает в ткани. Его бактерицидное действие было подробно рассмотрено выше.[ …]

Опасны не солнечные лучи сами по себе, а лишь коротковолновое (УФ-С) излучение, несущее гибель всему живому, и УФ-Б (рис. 5.3). Нормальным считается положение, когда озоновый слой задерживает и полностью поглощает УФ-С и фильтрует УФ-Б.[ …]

Чувствительность организмов к ионизирующим излучениям. В процессе исторического развития все живые существа приобрели способность благополучно переносить естественный фон ионизирующего излучения; превышение этого фона представляет опасность для каждого организма. Только ионосфера защищает жизнь на Земле от губительного коротковолнового жесткого космического излучения. Важно подчеркнуть, что в воздействиях последнего на организмы не существует низшей пороговой дозы.[ …]

Здесь (5зг — приходящая на верхнюю границу зоны коротковолновая радиация; а — альбедо; 1 — уходящее длинноволновое излучение — (ккал/см2 • мес) и — температура поверхности; — средняя равновесная температура, 0 С; в = 0,5 — балл облачности; А = 14,0, В = 0,14; А = 3,0, В =0,10 — размерные коэффициенты. Справа в уравнении баланса энергии (12) —меридиональный приток тепла в виде закона Ньютона, где (5 = 0,235 ккал/см2 • мес • град. Все коэффициенты в (12) и (13) определены на основе эмпирического материала. Считая меридиональные потоки тепла неизвестными, найдем их значения, при которых имеет место минимум скорости обмена энтропией с внешней средой для этой модели. В простейшем случае, когда северное, например, полушарие разбито на две широтные зоны равной площади, возможно несложное аналитическое решение поставленной задачи.[ …]

Таким образом, основными поглотителями атмосферы коротковолновой части УФ излучения Солнца являются атомы водорода, гелия, азота, кислорода и затем, основным экраном от УФ излучения (при к [ …]

Поглощение солнечной радиации. Качество и количество излучения зависят от температуры излучающего тела. Чем выше температура, тем больше интенсивность излучения и тем больше коротких (высокочастотных) волн радиации. Таким образом, высокотемпературная солнечная радиация состоит главным образом из коротковолнового излучения в видимой или близкой к видимой частоте. Коротковолновая солнечная энергия поглощается у земной поверхности, где она превращается в тепло. После этого земля становится излучающим телом, но при более низкой температуре (в среднем 13,9°С). Земля характеризуется длинноволновым (низкочастотным) излучением.[ …]

Вследствие большой разности между температурами Солнца и Зем ли в коротковолновой области спектра пренебрегают собственным тепловым излучением земной атмосферы п подстилающей поверхности и при вычислении лучистых потоков полагают /¿(г, ю) = 0. В длинноволновой же области спектра вблизи максимума (—10-5-15 мкм) теплового излучения Земли с достаточно высокой точностью можно не учитывать эффекты рассеяния (А(г) = 0), и в предположении о локальном термодинамическом равновесии, а именно эти приближения, как правило, используются в указанном спектральном диапазоне, функция источников /5(г, оа) = В(Т).[ …]

Тропосфера почти совершенно прозрачна по отношению к проходящей через нее коротковолновой солнечной радиации, но содержащийся в ней водяной пар сильно поглощает длинноволновое (тепловое) излучение Земли.[ …]

В настоящее время большое внимание уделяется теории переноса длинноволнового излучения в облачности как совокупности облаков конечных горизонтальных размеров. В ряде работ [7, 14, 23, 27, 28] предлагается рассчитывать среднюю интенсивность длинноволновой радиации в разорванной облачности на основе решений уравнения переноса, полученных для сплошного однородного слоя, изолированного облака и ансамбля регулярно расположенных в пространстве облаков. Здесь на основе идей и методов, используемых в коротковолновой области спектра, получим и решим уравнения для средней интенсивности длинноволновой радиации [13, 30].[ …]

На восстановительную вторичную атмосферу воздействовали большие потоки энергии: коротковолновое ультрафиолетовое излучение, а также ионизирующее излучение от Солнца (сейчас оно экранируется озоновым слоем атмосферы), электрические разряды (грозы, коронные разряды), местные источники тепла вулканического происхождения. В этих условиях мог идти активный химический синтез, при котором из газов вторичной атмосферы, через такие промежуточные продукты, как синильная кислота, этилен, этан, формальдегид и мочевина, образовывались сначала мономеры, а затем и простейшие полимеры. Так как окисления не происходило, воды древнего океана обогащались такими соединениями, как аминокислоты, пуриновые и пиримидиновые основания, сахара, карбоновые кислоты, липиды, образуя так называемый “первичный бульон”. Могли идти процессы осаждения, разделения и адсорбции, а на поверхности минералов (например, глин или горячей лавы) — и дальнейший синтез более сложных соединений. Эти представления подтверждаются, с одной стороны, результатами анализа древних земных горных пород и сравнением их с внеземным органическим веществом (например, из метеоритов), а с другой стороны — многочисленными экспериментами, показавшими, что в смеси газов, воспроизводящих вторичную атмосферу, при достаточном притоке энергии, действительно происходят процессы синтеза. Так, пропуская электрические разряды через смесь газов метана и аммиака при наличии паров воды, удалось получить такие сравнительно сложные соединения, как аланин, глицин, аспарагиновая кислота и др.[ …]

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.[ …]

Парниковый эффект заключается в следующем; углекислый газ способствует проникновению к Земле коротковолнового излучения Солнца, а длинноволновое тепловое излучение Земли задерживается. В результате происходит длительный нагрев атмосферы.[ …]

Для аналитических целей возбуждение флюоресценции проводят главным образом длинноволновым ультрафиолетовым излучением с длиной волны больше 320 ммк, для некоторых веществ — коротковолновым ультрафиолетовым излучением с длиной волны меньше 280 ммк. Для этой цели наиболее пригодными являются ртутно-кварцевые лампы ПРК-2 и ПРК-4, выпускаемые отечественной промышленностью.[ …]

Парниковый (тепличный, оранжерейный) эффект — разогрев нижних слоев атмосферы, вследствие способности атмосферы пропускать коротковолновую солнечную радиацию, но задерживать длинноволновое тепловое излучение земной поверхности. Парниковому эффекту способствует поступление в атмосферу антропогенных примесей (диоксида углерода, пыли, метана, фрео-нов и т.д.).[ …]

В Антарктиде и в высокогорьях, кроме низкой температуры, на водоросли влияет еще и высокая солнечная радиация. Для снижения вредного влияния коротковолнового радиационного излучения сине-зеленые водоросли в ходе эволюции приобрели ряд приспособлений. Важнейшим из них является выделение слизи вокруг клеток. Слизь колоний и слизистые влагалища нитчатых форм являются хорошей защитной обверткой, предохраняющей клетки от высыхания и одновременно действующей как фильтр, устраняющий вредное влияние радиации. В зависимости от интенсивности света в слизи отлагается больше или меньше пигмента, и она окрашивается по всей толще или по слоям.[ …]

Среди компонентов атмосферы, связанных с проблемой климата, озон занимает особое место в связи с его определяющей ролью в поглощении солнечного излучения в коротковолновой части ультрафиолетовой области. Хорошо известно, что озонная оболочка атмосферы Земли обеспечивает практически полное поглощение этого излучения, губительного для всего живого на Земле, хотя ее толщина, если собрать все молекулы озоиа, содержащиеся в вертикальном столбе атмосферы в ее приземном слое, составит всего несколько миллиметров. В связи с этим разрушение озонного слоя не может не волновать все человечество. Явление образования озонных дыр в стратосфере впервые обнаружено более 10 лет назад в высоких широтах южного полушария космическими средствами.[ …]

ЭФФЕКТ ТЕПЛИЧНЫЙ (парниковый) — 1. Увеличение температуры и влажности, связанное с тем, что прозрачное покрытие (стекло, полиэтилен и т.п.) пропускает коротковолновые солнечные лучи, но непроницаемо для длинноволновых тепловых излучений и водяных паров, благодаря чему не происходит охлаждения и оттока влаги. 2. Возможное постепенное потепление климата на планете в результате накопления в атмосфере антропогенного углекислого газа, который играет роль пленки, пропуская солнечные лучи и препятствуя оттоку длинноволнового теплового излучения с поверхности Земли.[ …]

Корф [9] показал, что в экваториальных Андах на Котопахи на высоте 3570 м радиационный баланс за 12 дней в июле в среднем составил 60 % (53 % в ясные дни) от поступающего коротковолнового излучения при альбедо поверхности 0,22. Эти цифры соответствуют данным, приведенным Волошиной [4] для Кавказа на высотах 3000—3500 м (см. рис. 2.11). На Эвересте (28° с. ш.) на высоте 4750 м радиационный баланс за 9 дней в апреле 1963 г. составил 55 % от приходящего коротковолнового излучения при альбедо поверхности 0,16 [10].[ …]

Кроме того, озон, находясь в виде слоя атмосферы Земли — озоносферы, имеет чрезвычайно важное биологическое значение. Этот слой предохраняет живые организмы на Земле от вредного влияния коротковолновой ультрафиолетовой радиации Солнца. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 км почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным “озоновым экраном”, защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца.[ …]

Озоновый слой является своеобразным стабилизатором и демпфером в механизме температурного режима атмосферы. Стратосферный слой озона во многом определяет температурный режим атмосферы. На более верхних уровнях атмосферы за счет поглощения коротковолновой части УФ излучения атомами водорода, азота, кислорода их кинетическая энергия возрастает, а, следовательно, возрастает и температура атмосферы. До высот 80 км достигает ослабленная часть УФ излучения Солнца. В этой области поглощение незначительно, поэтому температура принимает минимальное значение («180 К).[ …]

Оптические свойства коллоидных систем. Поскольку размер коллоидных частиц меньше длин световых волн видимой части спектра, то поглощенная энергия вновь испускается частицами в различных направлениях, поляризованные частицы как бы становятся новыми источниками излучения. Рассеяние света является характерным свойством коллоидных систем и подтверждает их гетерогенность. Интенсивность светорассеяния усиливается при наличии крупных частиц (но с диаметром не более Уго длины волны света), при коротковолновом излучении и при значительном отличии показателей преломления дисперсной фазы и дисперсионной среды. Коллоидные растворы поглощают монохроматический свет, причем максимум поглощения зависит от размера частиц. С уменьшением их диаметра этот максимум смещается в коротковолновую часть спектра.[ …]

Эта аналогия тем более верна, что рост количества используемой человеком энергии ископаемых углеводородов связан с увеличением концентрации углекислого газа в атмосфере, что приводит к так называемому парниковому эффекту. Его смысл достаточно прост: углекислота пропускает коротковолновое солнечное излучение, которое нагревает поверхность Земли и океана и задерживает длинноволновое (тепловое) излучение планеты, что приводит к повышению ее средней температуры.[ …]

Важнейшие климатические и экологические особенности Земли в решающей степени определяются наличием и свойствами ее газовой оболочки атмосферы. Благодаря специфическому газовому составу, способности поглощать и отражать солнечную радиацию, озоновому слою, в котором задерживается основная часть коротковолнового излучения Солнца, благоприятному температурному режиму и присутствию водяного пара атмосферу можно назвать одним из г лавных источников жизни на Земле.[ …]

Выше тропосферы расположена стратосфера, а между ними находится тропопауза. Толщина стратосферы составляет около 40 км, воздух в ней разряжен, влажность его невысока, при этом температура воздуха от границы тропосферы до высоты 30 км над уровнем моря постоянна (около -50°С), а затем она постепенно повышается до + 10°С на высоте 50 км. Под воздействием космического излучения и коротковолновой части ультрафиолетового излучения Солнца молекулы газов в стратосфере ионизируются, в результате образуется озон. Озоновый слой, распространяющийся до высоты 40 км, играет очень большую роль, оберегая все живое на Земле от ультрафиолетового излучения.[ …]

Солнце является источником энергии всех динамических процессов, протекающих в атмосфере, океане и на поверхности суши. В связи с этим климат и его изменения определяются разнообразными факторами, влияющими на величину и вариации радиационных потоков в системе «атмосфера — подстилающая поверхность». Наиболее важными процессами, определяющими погоду, а после усреднения за достаточно длинный временной интервал и климат, являются нагревание за счет поглощения солнечного коротковолнового излучения и выхолаживание за счет длинноволновой радиации, излучаемой системой в космос. Эти компоненты радиационного баланса Земли определяют источники и стоки лучистой энергии, управляющие общей циркуляцией атмосферы и океана.[ …]

Не Исключено, что и с появлением первых фотосинтезирующих организмов (по-видимому сходных.с современными цианобадстерця-ми), обитавших в водоемах докембрийского периода, сохранялся тот же механизм регуляции содержания кислорода в атмосфере, а полученный в результате фотосинтеза кислород полностью растворялся в воде. Во всяком случае, в период до начала палеозоя накопление кислорода в атмосфере шло медленно и не превышало 10 % современного уровня. Только с Появлением наземной растительности начинается заметное повышение уровня кислорода в атмосфере; одновременно сдой озона и накопление в верхних частях атмосферы СО2 и паров воды постепенно экранировали коротковолновую часть солнечного излучения и устранили возможность дальнейшего образования кислорода путем фотолиза воды.[ …]

Современный газовый состав атмосферы по существу является продуктом деятельности живых организмов. Не вдаваясь в подробное рассмотрение сложившихся процессов накопления газов в атмосфере на протяжении более чем 4,5 млрд. лет геологической истории Земли, отметим, что, например, свободный кислород выделялся в атмосферу и в добиологический период, но, как известно, в силу особенностей химизма окружающей среды он практически мгновенно переходил в связанное состояние. И в биологический период на начальном этапе выделяемый кислород главным образом накапливался в растворенном состоянии в водах океана и только при активном освоении суши растениями произошло накопление кислорода в атмосфере, формирование озонового слоя, а затем постепенное повышение содержания диоксида углерода и паров воды. Все это вместе создало условия, при которых прекратилась возможность прямого фотолиза кислорода из воды, так как сформировавшийся экран преградил путь для части коротковолнового излучения Солнца к земной поверхности.[ …]

Излучения Солнца

 

Коротковолновое излучение Солнца

 

Ультрафиолетовое и рентгеновское излучения исходят исходят в основном от верхних слоев хромосферы и короны. Это установили, запуская ракеты с приборами во время солнечных затмений. Очень горячая солнечная атмосфера всегда испускает невидимое коротковолновое излучение, но особенно мощным оно бывает в годы максимума солнечной активности. В это время ультрафиолетовое излучение возрастает примерно в два раза, а рентгеновское – в десятки и сотни раз по сравнению с излучением в годы минимума. Интенсивность коротковолнового излучения изменяется изо дня в день, резко возрастая, когда на Солнце происходят вспышки.

 

Ультрафиолетовое и рентгеновское излучения частично ионизуют слои земной атмосферы, образуя на высотах 200 – 500 км от поверхности Земли ионосферу. Ионосфера играет важную роль в осуществлении дальней радиосвязи: радиоволны, идущие от радиопередатчика, прежде чем достичь антенны приемника, многократно отражаются от ионосферы и поверхности Земли. Состояние ионосферы меняется в зависимости от условий освещения ее Солнцем и от происходящих на нем явлений. Поэтому для обеспечения устойчивой радиосвязи приходится учитывать время суток, время года и состояние солнечной активности. После наиболее мощных вспышек на Солнце число ионизованных атомов в ионосфере возрастает и радиоволны частично или полностью поглощаются ею. Это приводит к ухудшению и даже к временному прекращению радиосвязи.

 

Особое влияние ученые уделяют исследованию озонового слоя в земной атмосфере. Озон образуется в результате фотохимических реакций (поглощение света молекулами кислорода) в стратосфере, и там сосредоточена его основная масса. Всего в земной атмосфере примерно 3•109 т озона. Это очень мало: толщина слоя чистого озона у поверхности Земли не превысила бы и 3 мм! Но роль озонового слоя, простирающегося на высоте нескольких десятков километров над поверхностью Земли, исключительно велика, потому что он защищает все живое от воздействия опасного коротковолнового (и прежде всего ультрафиолетового) излучения Солнца. Содержание озона непостоянно на разных широтах и в разные времена года. Оно может уменьшаться (иногда очень значительно) в результате различных процессов. Этому могут способствовать, например, выбросы в атмосферу большого количества разрушающих озон хлорсодержащих веществ промышленного происхождения или аэрозольные выбросы, а также выбросы, сопровождающие извержения вулканов. Области резкого снижения уровня озона (“озоновые дыры”) обнаруживались над разными регионами нашей планеты, причем не только над Антарктидой и рядом других территорий Южного полушария Земли, но и над Северным. В 1992 г. стали появляться тревожные сообщения о временном истощении озонового слоя над севером европейской части России и уменьшении содержания озона над Москвой и Санкт-Петербургом. Ученые, осознавая глобальный характер проблемы, организуют в масштабах всей планеты экологические исследования, включающие прежде всего глобальную систему непрерывного наблюдения за состоянием озонового слоя. Разработаны и подписаны международные соглашения по охране озонового слоя и ограничению производства озоноразрушающих веществ.

 

Радиоизлучение Солнца

 

Систематическое исследование радиоизлучения Солнца началось только после второй мировой войны, когда обнаружилось, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучают хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Это радиоизлучение и достигает Земли. Радиоизлучение Солнца имеет две составляющие – постоянную, почти не меняющуюся по интенсивности, и переменную (всплески, “шумовые бури”).

 

Радиоизлучение спокойного Солнца объясняется тем, что горячая солнечная плазма всегда излучает радиоволны наряду с электромагнитными колебаниями других длин волн (тепловое радиоизлучение). Во время больших вспышек радиоизлучение Солнца возрастает в тысячи и даже в миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение, порожденное быстропротекающими нестационарными процессами, имеет нетепловую природу.

 

Корпускулярное излучение Солнца

 

Ряд геофизических явлений (магнитные бури, т.е. кратковременные изменения магнитного поля Земли, полярные сияния и др.) тоже связан с солнечной активностью. Но эти явления происходят через сутки после вспышек на Солнце. Вызываются они не электромагнитным излучением, доходящим до Земли через 8,3 мин, а корпускулами (протонами и электронами, образующими разреженную плазму), которые с опозданием (на 1-2 сут) проникают в околоземное пространство, поскольку движутся со скоростями 400 – 1000 км/c.

 

Корпускулы испускаются Солнцем и тогда, когда на нем нет вспышек и пятен. Солнечная корона – источник постоянного истечения плазмы (солнечного ветра), которое происходит во всех направлениях. Солнечный ветер, создаваемый непрерывно расширяющейся короной, охватывает движущиеся вблизи Солнца планеты и кометы. Вспышки сопровождаются “порывами” солнечного ветра. Эксперименты на межпланетных станциях и искусственных спутниках Земли позволили непосредственно обнаружить солнечный ветер в межпланетном пространстве. Во время вспышек и при спокойном истечении солнечного ветра в межпланетное пространство проникают не только корпускулы, но и связанное с движущейся плазмой магнитное поле.

Коротковолновое электромагнитное излучение — Большая Энциклопедия Нефти и Газа, статья, страница 1

Коротковолновое электромагнитное излучение

Cтраница 1

Коротковолновые электромагнитные излучения в деревообрабатывающей промышленности возникают при применении установок токов высокой частоты ( ТВЧ) для сушки древесины, для склеивания, паяния, сварки и термической обработки металлов. В случае несоблюдения установленных норм и правил в монтаже и при эксплуатации этих установок возникает облучение.  [1]

Просвечивание стеклопластиков коротковолновым электромагнитным излучением ( гамма -, рентген — и миллиметровые радиоволны) дает столь большое рассеяние на неоднородностях основного материала, что обнаружение дефектов ( также создающих рассеянное поле волны) крайне затруднительно.  [2]

Кванты — самые коротковолновые электромагнитные излучения ( до Ю-9 см), которые образуются в ходе ядерных реакций и при распаде осколков деления; близки к рентгеновским лучам, но у у-квантов короче длина волны и они несут большой энергетический заряд. Пробег в атмосфере измеряется сотнями метров, свободно проникая через преграды.  [3]

Рентгеном, представляют собой коротковолновые электромагнитные излучения, возникающие при бомбардировке металлической мишени пучком электронов. Такая бомбардировка осуществляется в специальном приборе, получившем название рентгеновская трубка. В то время как длины волн рентгеновых лучей занимают область от 0 01 до 20 А, для кристаллографических работ используются лучи, длина волн которых соизмерима с межатомными расстояниями в кристалле и составляет примерно 1 5 А.  [4]

При таких переходах образуется коротковолновое электромагнитное излучение с линейчатым спектром. Это излучение называется характеристическим рентгеновским излучением.  [5]

Радиацией или ионизирующим излучением называют коротковолновое электромагнитное излучение — рентгеновские и у-лучи, электроны, протоны, нейтроны, а-частицы и ядра отдачи, а также быстрые нейтроны. Благодаря самопоглощению р-частиц 60Со дает практически чистое у-излучение. Его проникающая способность очень высока. Слой воды толщиной 15 см не полностью поглощает излучение. Период полураспада 60Со 5 3 года, время использования в промышленной установке обычно достигает 10 лет.  [6]

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения ( рентгеновского и у-излучений) на свободных ( или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.  [7]

Эффектом Комптова называется упругое рассеяние коротковолнового электромагнитного излучения ( рентгеновского и у-излучений) на свободных ( или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.  [8]

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения ( рентгеновского и у-излучений) на свободных ( или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: иод действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.  [9]

Гамма-излучение по своей природе является коротковолновым электромагнитным излучением, т.е. потоком высокоэнергетических квантов электромагнитной энергии, длина волны которых значительно меньше межатомных расстояний, т.е. А, 10 — 8 см. Не имея массы, у-кванты двигаются со скоростью света, не теряя ее в окружающей среде. Они могут лишь поглощаться ею или отклоняться в сторону, порождая пары ионов: частица-античастица, причем последнее наиболее значительно при поглощении Y KB H-тов в среде. Таким образом, у-кванты при прохождении через вещество передают энергию электронам и, следовательно, вызывают ионизацию среды.  [10]

РЕНТГЕНОВСКИЕ ЛУЧИ — не видимое глазом коротковолновое электромагнитное излучение, возникающее при взаимодействии заряш.  [11]

Икс-лучи ( Х — лучи, рентгеновские лучи) — коротковолновое электромагнитное излучение, проникающее через среды, непрозрачные для видимого света. Икс-лучи были открыты немецким физиком В. К. Рентгеном в декабре 1895 года; он же описал основные свойства нового вида излучения, природа которого была раскрыта позднее.  [12]

Ионизирующим ( проникающим) излучением, или радиацией, принято называть коротковолновое электромагнитное излучение — рентгеновские и у-лучи, высоко-энергетичные заряженные частицы — электроны, протоны, дейтоны, а-частицы и ядра отдачи, а также быстрые нейтроны — частицы, не имеющие заряда.  [13]

Электромагнитное излучение: виды, источники, влияние и защита

Каждая квартира таит в себе опасность. Мы даже не подозреваем, что живём в окружении электромагнитных полей (ЭМП), которые человек не может ни видеть, ни чувствовать, но это не значит, что их нет.

С самого зарождения жизни на нашей планете существовал стабильный электромагнитный фон (ЭМФ). Долгое время он был практически неизменен. Но, с развитием человечества, интенсивность данного фона стала расти с неимоверной скоростью. Линии электропередач, возрастающее число электроприборов, сотовая связь — все эти новшества стали источниками «электромагнитного загрязнения». Как электромагнитное поле влияет на человеческий организм, и каковы могут быть последствия этого воздействия?

Что такое электромагнитное излучение?

Содержание статьи

Помимо естественного ЭМФ, создаваемого электромагнитными волнами (ЭМВ) различной частоты, поступающими к нам из космоса, имеется и другое излучение — бытовое, которое возникает при работе разношёрстной электротехники, имеющейся в каждой квартире или офисе. Каждый бытовой прибор, взять хотя бы обыкновенный фен, при работе пропускает через себя электрический ток, образуя вокруг электромагнитное поле. Электромагнитное излучение (ЭМИ) — это и есть та сила, которая проявляется, когда ток проходит через любое электрическое устройство, воздействующая на всё, что находится около него, в том числе и на человека, который также является источником электромагнитного излучения. Чем больше сила тока, проходящего через прибор, тем мощнее излучение.

Чаще всего, человек не испытывает на себе заметного воздействия ЭМИ, но это не значит, что оно не оказывает на нас влияния. ЭМВ проходят через предметы незаметно, но, иногда, наиболее чувствительные люди ощущают некое покалывание или пощипывание.

Все мы по-разному реагируем на ЭМИ. Организм одних может нейтрализовать его воздействие, а есть индивиды, максимально подверженные этому влиянию, которое способно вызвать у них различные патологии. Особенно опасно для человека длительное воздействие ЭМИ. Например, если дом его находится вблизи линии высоковольтных передач.

Виды электромагнитного излучения

В зависимости от длины волны, ЭМИ можно разделить на:

  • видимый свет — это то излучение, которое человек способен воспринимать зрительно. Длина световых волн варьируется от 380 до 780 нм (нанометров), то есть волны видимого света очень короткие;
  • инфракрасное излучение находится в электромагнитном спектре между световым излучением и радиоволнами. Длина инфракрасных волн больше световых и находится в диапазоне 780 нм — 1 мм;
  • радиоволны. Ими же являются и микроволны, которые излучает СВЧ-печь. Это самые длинные волны. К ним относятся всё электромагнитное излучение с волнами длиной от полмиллиметра;
  • ультрафиолетовое излучение, являющееся вредным для большинства живых существ. Длина таких волн составляет 10-400 нм, а расположены они в диапазоне между видимым и рентгеновским излучениями;
  • рентгеновское излучение выделяется электронами и имеет широкий диапазон длин волн — от 8·106 до 1012 см. Это излучение известно всем по медицинским аппаратам;
  • гамма-излучение является самым коротковолновым (длина такой волны менее 2·10−10 м), и имеет наиболее высокую энергию излучения. Этот вид ЭМИ является

шкала и виды, влияние на человека, защита от от ЭМИ

Что такое электромагнитное излучение?

Электромагнитное излучение – это колебания электрического и магнитного полей. Скорость распространения в вакууме равна скорости света (около 300 000 км/с). В других средах скорость распространения излучения меньше.

Электромагнитное излучение классифицируется по частотным диапазонам. Границы между диапазонами весьма условны, в них нет резких переходов.

  • Видимый свет. Это самый узкий диапазон во всем спектре. Человек может воспринимать только его. Видимый свет сочетает в себе цвета радуги: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. За красным цветом находится инфракрасное излучение, за фиолетовым – ультрафиолетовое, но они уже не различимы человеческим глазом.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Волны видимого света очень короткие и высокочастотные. Длина таких волн – одна миллиардная часть метра или один миллиард нанометров. Видимый свет от Солнца – своеобразный коктейль, в котором смешаны три основных цвета: красный, желтый и синий.

  • Ультрафиолетовое излучение – часть спектра между видимым светом и рентгеном. Ультрафиолетовое излучение используется для создания световых эффектов на сцене театра, дискотеках; банкноты некоторых стран содержат защитные элементы, видимые только при ультрафиолете.
  • Инфракрасное излучение является частью спектра между видимым светом и короткими радиоволнами. Инфракрасное излучение – это скорее тепло, чем свет: каждое нагретое твердое или жидкое тело испускает непрерывный инфракрасный спектр. Чем выше температура нагревания, тем короче длина волны и выше интенсивность излучения.
  • Рентгеновское излучение (рентген). Волны рентгеновского излучения обладают свойством проходить сквозь вещество и не поглощаться слишком сильно. Видимый свет такой способностью не обладает. Благодаря рентгену некоторые кристаллы могут светиться.
  • Гамма-излучение – это наиболее короткие электромагнитные волны, которые проходят сквозь вещество без поглощения: они могут преодолеть однометровую стену из бетона и свинцовую преграду толщиной в несколько сантиметров.

ВАЖНО! Необходимо избегать рентгеновского и гаммы-излучений, так как они представляют для человека потенциальную опасность.

Шкала электромагнитных излучений

Процессы, происходящие в космосе, и объекты, которые там находятся, порождают электромагнитные излучения. Шкала волн является методом регистрации электромагнитных излучений.

Детальная иллюстрация спектрального диапазона представлена на рисунке. Границы на такой шкале условны.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Основные источники электромагнитного излучения

  • Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
  • Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
  • Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
  • Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.

Излучение от бытовых электроприборов

Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека
  • Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
  • Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
  • Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
  • Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
  • Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
  • Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
  • Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
  • Электропроводка и розетки. Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
  • Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.

Установленные нормы ЭМИ для человека

Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.

Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.

Вот безопасные для здоровья нормы:

  • 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
  • 0,3-3 МГц, при напряженности 15 В/м,
  • 3-30 МГц – напряженность 10 В/м,
  • 30-300 МГц – напряженность 3 В/м,
  • 300 МГц-300 ГГц – напряженность 10 мкВт/см2.

При таких частотах работают гаджеты, радио- и телеаппаратура.

Воздействие электромагнитных лучей на человека

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Нервная система чрезвычайна чувствительна к влиянию электромагнитных лучей: нервные клетки уменьшают свою проводимость. В результате ухудшается память, притупляется чувство координации.

При воздействии ЭМИ на человека не только подавляется иммунитет – он начинает атаковать организм.

ВАЖНО! Для беременных женщин электромагнитное излучение представляет особую опасность: снижается скорость развития плода, появляются дефекты в формировании органов, велика вероятность преждевременных родов.

Защита от электромагнитных излучений

  • Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
  • Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до отметки «минимум». Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
  • Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
  • Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
  • Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.

Что такое электромагнитное излучение и как оно влияет на человека

Что такое электромагнитное излучение и как оно влияет на человека

Как проверить уровень электромагнитного излучения в домашних условиях

Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.

Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.

  1. Выдвиньте антенну из приемника;
  2. Прикрутите к ней проволочную петлю диаметром 40 см;
  3. Настройте радио на пустую частоту;
  4. Обойдите помещение. Прислушивайтесь к звукам приемника;
  5. Место, где слышатся отчетливые звуки, и является источником излучения;
  6. Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.

Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.

Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.

«Вредно ли инфракрасное излучение? Длинноволновое?» – Яндекс.Знатоки

Инфракрасное излучение, а соответственно и инфракрасные обогреватели делят на три типа:

  • коротковолновые: 0,74 —2,5 мкм; (температура нагрев-го элемента более 800°С)
  • средневолновые: 2,5 — 50 мкм; (температура нагрев-го элемента до 600°С)
  • длинноволновые: 50 —200 мкм; (температура нагрев-го элемента менее 300°С)

От этого зависит их эффективность и прежде всего Безопасность

Коротковолновые и средневолновые ИК обогреватели

Основная область применения: локальный либо уличный обогрев.

Влияние на человека: «Не желательно длительное пребывание человека под воздействием коротковолновых обогревателей» . Капиллярные сосуды расширяются, кровообращение усиливается, при попадании коротковолновых инфракрасных лучей на органы зрения, может возникнуть катаракта.

Длинноволновые ИК обогреватели

Область применения – система отопления для жилых, производственных и бытовых помещений, т.е. там, где люди находятся длительное время. Эффективны при обогреве всей площади в помещении.

Влияние на человека: Науке неизвестны какие-либо негативные влияния длинноволнового инфракрасного излучения на организм человека. Более того, сейчас длинноволновое инфракрасное излучение нашло очень широкое распространение в медицине (хирургия, стоматология, инфракрасные бани), что говорит не только о его безвредности, но и о полезном действии на организм.

Исследования в области биотехнологий показали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также лучами жизни. Тело человека само излучает длинные инфракрасные волны, но и оно нуждается в постоянной подпитке длинноволновым теплом.

Если нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Длинноволновое инфракрасное излучение нормализует процессы обмена и устраняет причину болезни, а не только её симптомы.

Отопление с использованием ИК-излучения особенно благоприятно воздействует на повышение иммунной системы детей, на здоровье престарелых, и лиц с ослабленным здоровьем. ИК лучи эффективно устраняют воспаления, при простудных заболеваниях подавляется размножение болезнетворных бактерий не только в организме человека, но и в окружающей атмосфере. Достигается хороший косметический эффект, улучшается циркуляция крови в кожном покрове, улучшается цвет лица, разглаживаются морщины, кожа выглядит моложе.

Обогреватели такого типа греют окружающие предметы, живые существа и растения, а не воздух, как например конвекторные.

Так как длинноволновые инфракрасные обогреватели бывают также разных типов, то в плане экономии- самыми экономичными являются кварцевые обогреватели. Самой прогрессивной компанием в части развития данного направления в России является компания TEXTURE из Нижнего Новгорода

Насколько полезны инфракрасные лучи: вред и польза

Длинноволновые инфракрасные лучи

Сегодня многие специалисты предлагают организовывать системы отопления дома при помощи инфракрасного обогрева. Рекламные ролики расписывают положительные аспекты подобных систем, рассказывая, насколько они экономичны, эффективны и совершенно безопасны для людей. Так ли это на самом деле? Чтобы это понять, нужно знать, что такое инфракрасные лучи, какой вред и пользу они несут.

Какое влияние оказывает на живых существ регулярный локальный обогрев? Изучение этого вопроса ведется во многих странах мира. С 1996 года активно работают над подобной темой ученые из Японии, США и Голландии. Они проводят лабораторные эксперименты и озвучивают очень интересные результаты.

Все зависит от длины волны. Самые короткие инфракрасные волны формируют гамма лучи и рентгеновское излучение. Оно опасно для здоровья человека, но мы научились извлекать пользу и из рентгена, и из радиации. Далее по шкале идет ультрафиолетовое излучение, используемое в соляриях. Затем — видимый свет, и только после него стоит инфракрасное излучение. Это длинноволновые лучи, физические свойства которых сегодня активно используются для обогрева.

Что такое инфракрасное излучение?

Инфракрасное излучение — отдельный способ обогрева, при котором отдача и перенос тепла осуществляется от одного тела к другому. Процесс этот всегда идет в одном направлении — тело с более высокой температурой отдает тепло более прохладному объекту.

Длинные инфракрасные волны являются источником электромагнитного излучения. Их размеры находятся в диапазоне от 0,74 до 100 мкм. Человеческое тело тоже излучает электромагнитные волны. Их диапазон составляет от 6 до 20 мкм. Эти цифры наглядно демонстрируют, что человеческий спектр излучения укладывается в границы действия инфракрасного излучения, поэтому оно для человека совершенно безопасно.

Научные исследования показали, что инфракрасные волны, имея разную длину, обладают разными проникающими способностями. Так, например, длинноволновые лучи, идущие от солнца, спокойно проходят сквозь атмосферу, не нагревая ее. Но, проникая сквозь твердые тела, они увеличивают их температуру. Ученые выяснили, что именно дальнее излучение имеет огромное значение для всего живого на земле.

Живые тела сами излучают такой же спектр тепла, поэтому нуждаются в постоянной компенсирующей подпитке. Если ее нет, температура живого тела падает, и оно становится уязвимым для различных инфекций. Иммунитет снижается, и тело на этом фоне быстро стареет. Поэтому ученые утверждают, что дополнительная подпитка в виде инфракрасного излучения скорее полезна, чем вредна.

Многочисленные эксперименты на животных показали, что инфракрасные лучи подавляют рост раковых клеток, уничтожают некоторые вирусы и нейтрализуют разрушительное действие электромагнитных волн. При помощи ИК установок сегодня лечат некоторые формы дистрофии, помогают тем, кто болеет диабетом, поскольку длинноволновые лучи повышают количество вырабатываемого организмом инсулина, а также нивелируют последствия радиоактивного воздействия.

Обратите внимание! Замечено, что инфракрасное излучение, используемое в медицине, не только устраняет симптомы отмеченных заболеваний, но и ликвидирует их причины. А это значит, что в некоторых случаях можно добиться полного выздоровления без хирургических и медикаментозных способов лечения.

В чем польза длинных волн?

Вся продукция, которая сегодня представлена на рынке отопительного оборудования, оказывает два вида позитивного воздействия на все живые организмы:

  1. Общеукрепляющее действие.
  2. Прямое лечение многих заболеваний.

Общеукрепляющее действие связано с улучшением общего самочувствия человека. Оно осуществляется благодаря усилению природной сопротивляемости организмов и повышению иммунитета. Поэтому различные ИК установки сегодня активно используются не только для обогрева частных домов, квартир, офисов и других административных учреждений. Их активно закупают оздоровительные центры, лечебные заведения и кабинеты физиотерапии.

Прямое лечение основано на результативном терапевтическом воздействии. В различных медицинских центрах США, Германии, Японии, Канады и Китая активно используются установки для реабилитации тяжелых больных. ИК волны способны проникать глубоко внутрь тела человека — буквально на клеточный уровень, запуская там многие жизненноважные процессы.

Заметно ускоряется поток всех жидкостей внутри тела, включая циркуляцию крови, усиливаются обменные процессы, а значит, улучшается синтез и распад веществ с высвобождением внутренней энергии. Все питательные вещества, поступающие в организм извне, лучше усваиваются. В результате улучшается иммунитет и питание мышечной ткани, активнее поступает внутрь клеток кислород. Все это в комплексе решает многие терапевтические проблемы.

Сегодня инфракрасное излучение активно используется для нормализации артериального давления, решения проблемы лишнего веса, восстановления сна, лечения артрита и ревматизма, сердечно-сосудистых заболеваний, устранения воспалений суставов, почечной недостаточности, проблем с пищеварением. Хорошо себя зарекомендовали подобные установки при очистке организма от шлаков и токсинов, устранении общей слабости и истощении организма, а также при лечении кожных заболеваний. Поэтому можно говорить, что польза инфракрасного излучения доказана и очевидна.

Есть ли вред от инфракрасного излучения?

Влияние инфракрасного излучения на человека

Технический прогресс подарил миру много разных открытий. Но в то же время техногенный бум спровоцировал появление множества страхов и суеверий. Фобии каждый раз возникали у людей после крупных аварий. И Чернобыль, и недавнее Цунами в Японии показали, насколько разрушительными могут быть плоды технической мысли.

Информационная доступность, конечно, расширяет кругозор обычных граждан, но она же и заставляет их переживать и отказываться от любых новинок и установок, производящих то или иное излучение. И рентген, и радиация — опасные явления, а это тоже разновидность излучения. Поэтому все хотят увидеть другую сторону медали, узнать, чем могут быть опасны длинноволновые лучи, и какой вред они могут принести человеку.

Сегодня науке неизвестны случаи, когда инфракрасные лучи стали бы причиной каких-либо серьезных ситуаций. Они существенно отличаются от ультрафиолетового излучения, способного провоцировать сильные ожоги кожи. Ученые доказали, что инфракрасное излучение — это всего лишь форма энергии, по своему физическому составу близкая энергии самого человека и всего живого на земле. Оно способно уничтожать вредные микроорганизмы, но принести вред человеку ИК излучение не может. И вот почему.

Основной источник природного инфракрасного излучения — солнце. Каждый из нас в течение жизни испытывает на себе его воздействие. И ничего не происходит. Это подтверждает безопасность солнечных лучей.

Солнце производит весь спектр изучения, но атмосфера земли становится преградой для ультрафиолета, рентгена и радиации. Она же выступает в качестве фильтра и для инфракрасного излучения. Атмосфера пропускает только ИК лучи, диапазон которых составляет 7–14 мкм. Все тела на земле, нагреваясь, испускают такой же спектр, поэтому природа явления одинакова и не противоречит физическим законам, а значит, не причиняет вреда.

При изготовлении отопительных приборов используется подсмотренный у природы принцип. Учитываются все показатели, поэтому инфракрасные полы, настенные и потолочные обогреватели для человека совершенно безопасны. Но только в том случае, если при своей работе они испускают волны определенной длины.

Особенности длины волны

Физические характеристики длинноволнового излучения

Существует три спектра волн — короткие, средние и длинные:

  • Длинноволновые лучи создают наименьшую температуру. Они находятся в так называемом темном спектре, поэтому не светятся, а значит, и не обжигают.
  • Средневолновые лучи излучают серый свет из волны намного короче, поэтому излучение имеет большую температуру. Приборы, функционирование которых построено на излучении средних волн, необходимо использовать крайне осторожно, внимательно изучая технические параметры установки и ее эксплуатационные особенности.
  • Установки, излучающие коротковолновые лучи, спектр которых находится в белом диапазоне, имеют самую высокую температуру — до 800 градусов по Цельсию. Это самое активное инфракрасное излучение, способное очень глубоко проникать в клетки человеческого организма. Оно активно поглощается водой, которая содержится в тканях человека, вызывая сильное перегревание. Поэтому пользоваться приборами с таким спектром излучения необходимо крайне осторожно. Именно они способны нанести максимальный вред.

Интенсивность излучения

Спектр инфракрасных лучей

Еще один аспект, который может нанести вред здоровью человека — это интенсивность излучения. Она измеряется умножением единицы площади на единицу времени. Воздействие обогревателей может быть общим, как в случае с теплым полом, или локальным — настенные и потолочные обогреватели. Если установки излучают длинные волны, они лишь повышают температуру тела. А коротковолновые лучи изменяют температуру внутренних органов человека. В этом и заключается главный вред подобных установок.

Как он проявляется? Если на один градус повышается температура головного мозга, развивается эффект солнечного удара. У человека возникает тошнота и головокружение, пульс учащается, в глазах темнеет. Увеличение температуры головного мозга на 2 градуса приводит к развитию менингита. Попадание коротких волн в глаза приводит к образованию катаракты. Поэтому находиться вблизи обогревателей с таким излучением в течение длительного времени нельзя.

Обобщение по теме

Итак, польза инфракрасных обогревателей очевидна. Но, выбирая установку, важно учитывать длину волны. Науке сегодня не известны негативные проявления длинноволновых лучей. А вот их терапевтическое воздействие очевидно. Коротковолновое излучение способно нанести ощутимый вред при неправильной эксплуатации приборов. И это обстоятельство обязательно нужно принимать во внимание, приобретая инфракрасные обогреватели для дома.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *