PhysBook:Электронный учебник физики — PhysBook
Содержание
- 1 Учебники
-
2 Механика
- 2.1 Кинематика
- 2.2 Динамика
- 2.3 Законы сохранения
- 2.4 Статика
- 2.5 Механические колебания и волны
-
3 Термодинамика и МКТ
- 3.1 МКТ
2 Термодинамика
-
4 Электродинамика
- 4.1 Электростатика
- 4.2 Электрический ток
- 4.3 Магнетизм
- 4.4 Электромагнитные колебания и волны
5 Оптика. СТО- 5.1 Геометрическая оптика
- 5.2 Волновая оптика
-
5.
3 Фотометрия
- 5.4 Квантовая оптика
- 5.5 Излучение и спектры
- 5.6 СТО
-
6 Атомная и ядерная
- 6.1 Атомная физика. Квантовая теория
- 6.2 Ядерная физика
- 7 Общие темы
- 8 Новые страницы
Здесь размещена информация по школьной физике:
- материалы из учебников, лекций, рефератов, журналов;
- разработки уроков, тем;
- flash-анимации, фотографии, рисунки различных физических процессов;
- ссылки на другие сайты
и многое другое.
Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.
Учебники
Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –
Механика
Кинематика
Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве
Динамика
Законы Ньютона – Силы в механике – Движение под действием нескольких сил
Законы сохранения
Закон сохранения импульса – Закон сохранения энергии
Статика
Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика
Механические колебания и волны
Механические колебания – Механические волны
Термодинамика и МКТ
МКТ
Основы МКТ – Газовые законы – МКТ идеального газа
Термодинамика
Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение
Электродинамика
Электростатика
Электрическое поле и его параметры – Электроемкость
Электрический ток
Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках
Магнетизм
Магнитное поле – Электромагнитная индукция
Электромагнитные колебания и волны
Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны
Оптика.

Геометрическая оптика
Прямолинейное распространение света. Отражение света – Преломление света – Линзы
Волновая оптика
Свет как электромагнитная волна – Интерференция света – Дифракция света
Фотометрия
Фотометрия
Квантовая оптика
Квантовая оптика
Излучение и спектры
Излучение и спектры
СТО
СТО
Атомная и ядерная
Атомная физика. Квантовая теория
Строение атома – Квантовая теория – Излучение атома
Ядерная физика
Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы
Общие темы
Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике
Новые страницы
Запрос не дал результатов.
Конденсаторы
1.
Конденсатор представляет собой радиоэлемент, состоящий из двух металлических пластин (обкладок), разделенных диэлектриком, способный накапливать электрические заряды на обкладках, если к ним приложена разность потенциалов. В качестве диэлектрика применяют бумагу, слюду, стеклоэмаль, керамику, воздух и др. Конденсаторы применяют в схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсаций напряжений выпрямителей. В сочетании с катушками индуктивности они образуют резонансные контуры, широко используемые в БРЭА. В зависимости от назначения конденсаторы подразделяются на контурные, разделительные, блокировочные, фильтровые и подстроечные. По характеру изменения емкости и в зависимости от конструкции они делятся на три группы: постоянной емкости, полупеременные (подстроечные) и переменной емкости. Конденсаторы постоянной емкости в зависимости от конструкции, параметров и назначения в свою очередь, подразделяются на две группы: ![]()
Рисунок 1 Обозначение конденсаторов на схемах электрических принципиальных: а) постоянной емкости; б) подстроечный; в) переменный; г) электролитический.
2. Основные характеристики конденсаторов
Конденсаторы независимо от группы и вида характеризуются параметрами: номинальным значением и допустимым отклонением емкости, рабочим напряжением и электрической прочностью, температурным коэффициентом емкости, допустимой реактивной мощностью и тангенсом угла потерь. Номинальное значение емкости конденсатора зависит от геометрических размеров пластин и вида диэлектрика. При изменениях температуры и влажности окружающей среды в процессе эксплуатации изменяются диэлектрические свойства материала и, следовательно, емкость. Конденсаторы постоянной емкости изготовляются с номинальными значениями емкости от 1 пФ до десятков тысяч микрофарад, и эти значения указываются на конденсаторах. На подстроечных конденсаторах и конденсаторах переменной емкости могут быть указаны минимальная и максимальная емкости или только максимальная. Допустимое отклонение емкости конденсатора показывает отклонение в процентах от номинального значения. Конденсаторы широкого применения выпускаются с допустимым отклонением ±5 %, ±10 и ±20 %, отдельные типы — с допустимым отклонением емкости от номинального значения ±2 % и менее. У некоторых электролитических конденсаторов допустимое отклонение составляет 50 % и более. Конденсаторы с небольшим допустимым отклонением емкости от номинального значения применяются в каскадах радиочастоты, где требуется повышенная точность настройки контуров, с большим допуском — в блокировочных и развязывающих цепях. ![]() ![]() Конденсаторы с малым положительным ТКЕ являются термостабильными и применяются в колебательных контурах с высокой стабильностью частоты. Керамические конденсаторы с отрицательным ТКЕ являются термокомпенсирующими и применяются для компенсации изменения емкости конденсаторов колебательных контуров. Тангенсом угла потерь (tg ) называется отношение мощности потерь к реактивной мощности, запасаемой конденсатором при работе. ![]() На корпусах конденсаторов обычно указываются их основные характеристики: тип, номинальное значение емкости, допустимое отклонение емкости от номинального значения, номинальное рабочее напряжение. 3 Маркировка конденсаторов Сокращенные обозначения емкости конденсаторов читаются таким же образом, как и обозначения сопротивлений резисторов. При этом, буквенное обозначение процента отклонения номинального сопротивления или емкости, приведенное ниже, для этих элементов одинаковое.
Что бы не возникла путаница при расшифровке маркировок, следует учитывать, что в большинстве БРЭА процент отклонения резисторов и конденсаторов составляет ±5, ±10, реже ±20.
Конденсаторы с номинальным значением от 100 пикофарад до 0,1микроофарад маркируются в нанофарадах буквой Н или латинской n, например:
Конденсаторы с номинальным значением от 0,1микрофарад и выше маркируются буквой М, например
К группе низкочастотных конденсаторов постоянной емкости относятся бумажные, металлобумажные, электролитические, а также некоторые пленочные конденсаторы. Перечисленные виды конденсаторов обладают большой емкостью и используются в качестве блокировочных, разделительных и фильтрующих элементов в цепях постоянного, переменного и пульсирующего токов. 5. Высокочастотные конденсаторы постоянной емкости К высокочастотным конденсаторам постоянной емкости относятся слюдяные, керамические, стеклокерамические и стеклянные. Их применяют в генераторах, усилителях радио- и промежуточной частот. 6. Подстроечные и переменные конденсаторы
Подстроенные конденсаторы (рисунок 2) применяются для точной подстройки емкостей колебательных контуров. Обычно эти конденсаторы включаются параллельно основным контурным конденсаторам большой емкости. Конструктивно они состоят из двух керамических элементов: неподвижного основания (статора) и подвижного диска (ротора). Рисунок 2. Подстроечные конденсаторы На ротор и статор методом вжигания нанесены тончайшие серебряные обкладки в виде секторов. Конденсаторы переменной емкости (КПЕ) применяются в радиоприемных устройствах для плавной настройки колебательных контуров в диапазонах длинных, средних, коротких и ультракоротких волн.
Для конденсаторов постоянной емкости характерны такие неисправности, как пробой диэлектрика, увеличение тока утечки из-за ухудшения изоляции, изменение номинального значения емкости и обрыв выводов. Определить неисправность конденсатора по внешнему виду очень трудно. Сопротивление исправных конденсаторов (за исключением электролитических) составляет десятки и сотни мегом. Измерить его у конденсаторов емкостью до 0,05 мкФ с помощью омметра практически невозможно. Неисправность конденсаторов переменной емкости с воздушным диэлектриком заключается в замыкании между роторными и статорными пластинами. При работе радиоприемника такой дефект выражается в виде шорохов, треска или пропадания приема радиостанций в некоторых точках шкалы. При параллельном соединении емкости конденсаторов складываются: В обоих случаях рабочие напряжения конденсаторов должны быть не ниже максимального действующего напряжения в данной цепи. Литература: С.С. Боровик, М.А. Бродский.
В начало |
ОШИБКА — 404 — НЕ НАЙДЕНА
- Главная
- Вупси-Дейзи
Наши серверные гномы не смогли найти страницу, которую вы ищете.
Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.
Возможно, некоторые из них могут вас заинтересовать?
МИКРОЭ Безопасный 7 Click
Нет в наличии DEV-19528
Избранное Любимый 0
Список желаний
МИКРОЭ Эмбиент 6 Нажмите
Нет в наличии SEN-19818
Избранное Любимый 0
Список желаний
МИКРОЭ DigiVref Click
Нет в наличии COM-19854
$14,95
Избранное Любимый 0
Список желаний
МИКРОЭ Близость 3 Click
Нет в наличии SEN-20220
16,95 $
Избранное Любимый 0
Список желаний
Конкурс разработчиков Arm DevSummit
17 августа 2021 г.
Пришло время воплотить ваши идеи в области устойчивого развития!
Избранное Любимый 0
Видеодемонстрация: однопарный Ethernet для удаленного мониторинга вибрации
15 сентября 2022 г.
От датчика к данным — эта демонстрация 10BASE-T1L SPE демонстрирует реальный вариант использования из самых глубин подвала SparkFun.
Избранное Любимый 0
Новый!Руководство по подключению основной платы MicroMod V2
5 января 2023 г.
Основная плата MicroMod — одинарная и двойная — это специализированные несущие платы, которые позволяют соединять плату процессора с функциональной платой (платами). Модульная система позволяет добавлять дополнительные функции к плате процессора с помощью функциональных плат. В этом уроке мы сосредоточимся на основных функциях основной платы — Single V2. 1 и основной платы — Double и V2.2.
Избранное Любимый 0
- Электроника SparkFun®
- 6333 Dry Creek Parkway, Niwot, Colorado 80503
- Настольный сайт
- Ваш счет
- Авторизоваться
- регистр
ОШИБКА — 404 — НЕ НАЙДЕНА
- Главная
- ‽
Наши серверные гномы не смогли найти страницу, которую вы ищете.
Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.
Возможно, некоторые из них могут вас заинтересовать?
Провода-перемычки Premium 6″ M/F Упаковка 100 шт.
В наличии ПРТ-09139
26,95 $
9
Избранное Любимый 17
Список желаний
Кабель-удлинитель Barrel Jack — M-F (6 футов)
В наличии COM-11707
Избранное Любимый 10
Список желаний
Kitronik MI:Плата питания V2
В наличии DEV-17852
2
Избранное Любимый 3
Список желаний
MIKROE Перейти в облако (G2C) Нажмите
Нет в наличии WRL-19847
19,95 $
Избранное Любимый 0
Список желаний
Новости (письмо) от наших друзей в Elektor
25 февраля 2021 г.