Site Loader

Содержание

КОНДЕНСАТОР

   Конденсаторы  являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Разные конденсаторы рисунок

Разные конденсаторы рисунок

   Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Устройство простейшего конденсатора

Устройство простейшего конденсатора

   Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Формулы соединение конденсаторов

Формулы соединение конденсаторов

   Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

Полярный конденсатор изображение на схеме

Полярный конденсатор изображение на схеме

   К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

Фото электролитический конденсатор

Фото электролитический конденсатор

   У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Фото конденсатора с насечками

Фото конденсатора с насечками

   Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Не полярный конденсатор изображение на схеме

Неполярный конденсатор изображение на схеме

   На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный

Керамический


   Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

Расшифровка цифровой маркировки конденсаторов

Расшифровка цифровой маркировки конденсаторов

   На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Таблица номиналов конденсаторов

Таблица номиналов конденсаторов

   Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Фото SMD конденсатора

Фото SMD конденсатора

   Далее показано фото электролитических SMD конденсаторов:

Фото электролитических SMD конденсаторов

Фото электролитических SMD конденсаторов

   Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы

   Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Рисунок как устроен переменный конденсатор

Рисунок как устроен переменный конденсатор

   Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей. 

Фото переменный конденсатор

Фото переменный конденсатор

   На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

Переменный конденсатор изображение на схеме

Переменный конденсатор изображение на схеме

   На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом: 

Подстроечный конденсатор изображение на схеме

Подстроечный конденсатор изображение на схеме

   Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

Фото подстроечный конденсатор

Фото подстроечный конденсатор

   На следующем рисунке изображено строение подстроечного конденсатора:

Рисунок строение подстроечного конденсатора

Рисунок строение подстроечного конденсатора


   Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV.

   Форум по различным радиоэлементам

   Обсудить статью КОНДЕНСАТОР


КАК ПО ПЛАТЕ С ДЕТАЛЯМИ НАРИСОВАТЬ СХЕМУ

Человек надумал разобраться с работой электронного устройства. В принципе в этом нет ничего предосудительного.  Однако он даже ещё не «чайник», он только «кандидат в чайники». До сих пор не слышал про такой «титул», но надо вводить. Если раньше сначала ходили в радиокружок, слушали, что там говорят, а потом уже задавали  вопросы, то сейчас включают компьютер и сразу задают вопросы. Например, по фото печатной платы просят объяснить, как работает данная схема. Винить человека нельзя. Его увлекла электроника. Вся такая изящная, современная и доступная. А ему кроме возможности ею обладать захотелось ещё её  и понять, заглянуть в «душу».

И тут человек вспоминает про существование сайта «Радиосхемы» не только объединяющего радиолюбителей самого разного профиля и уровня, но и славящегося своей лояльностью к новичкам. Да милости просим, всегда рады. Только одно маленькое условие: на первых порах надо делать, как скажут. Причём неукоснительно и не откладывая на потом. В противном случае, как говаривало одно недоразумение, некогда возглавляющее целое государство, консенсуса мы не достигнем))

Для достижения понимания того как работает электронное устройство необходима его принципиальная электрическая схема. Рассматриваем вариант, когда в готовом виде схему найти не удалось, зато есть в наличии печатная плата. Не буду предлагать фотографировать эту плату хорошим цифровым фотоаппаратом, причем, строго в проекции «ось объектива, перпендикулярна плоскости платы», с обеих сторон, габариты платы по размеру кадра.

КАК ПО ПЕЧАТНОЙ ПЛАТЕ НАРИСОВАТЬ СХЕМУ

Так же как и скачать программу Sprint-Layout (ссылки будут ниже), в которую затем можно вставить сделанные фото и отрисовать, сначала со стороны печатных проводников, затем рисунок зеркально перевернуть и «расставить» по местам изображения электронных компонентов. Хочется-то, прямо сейчас, ничего не скачивая, не изучая и дополнительно не во что, не вникая взять и нарисовать. 

Как действовать — нужны лист тетрадной бумаги в клеточку, карандаш, ластик и линейка.

Рисование начинаем со стороны печатных проводников платы. В первую очередь изображаем размещённые там смд компоненты. Их и расстояние между ними рисуем с четырёхкратным увеличением (иначе потом там ничего не разглядишь), также должно быть сохранено их взаимное расположение и пропорциональное расстояние на плоскости. Затем жирными точками отмечаются контакты пайки.

КАК ПО ПЕЧАТНОЙ ПЛАТЕ НАРИСОВАТЬ СХЕМУ НА БУМАГЕ

Соединения контактов между собой прорисовываем не спеша, толстыми линиями. Тут лучше вообще использовать карандаш с мягким грифелем. На этом этапе стирательная резинка очень пригодится.

КАК НАРИСОВАТЬ СХЕМУ САМОМУ

Теперь нужно отзеркалить изображение. Лист переворачивается рисунком вниз и кладётся на стекло, снизу стекло подсветить фонариком (в дневное время можно  просто прислонить  его к оконному стеклу) и обвести просвечивающиеся контуры  смд деталей и печатных проводников. Здесь уже лучше использовать шариковую авторучку.

КАК НАРИСОВАТЬ СХЕМУ САМОМУ

Теперь к полученной картинке необходимо дорисовать внешние электронные компоненты (желательно выполнить их другим цветом) и указать их порядковые обозначения, приведённые на плате. Полученное уже в полной мере отображает порядок размещения деталей на печатной плате и соединение их между собой. По проводникам не лишним будет еще, и пройтись не толстым фломастером. Осталось составить список электронных компонентов, в котором будут указаны их номиналы и можно смело обращаться к знатокам за разъяснениями. В помощи, поверьте не откажут.

ПО ПЕЧАТНОЙ ПЛАТЕ НАРИСОВАТЬ СХЕМУ ПРИНЦИПИАЛЬНУЮ

В заключении сделал ещё полшажка вперёд, получилась вот такая принципиальная схема, конечно же, не идеальная, но не это стояло на повестке дня. Рисовал её в программе Splan, можно конечно было это сделать и от руки, но не хватило выдержки. Даже для показательного действа.

ПО ПЕЧАТНОЙ ПЛАТЕ НАРИСОВАТЬ СХЕМУ ПРИНЦИПИАЛЬНУЮ

А это плата отрисованная в Sprint-Layout, если делать наперегонки с рисованием в ручную, то успею отработать только две (против одной от руки), потому как редко рисую, кто занимается этим чаще сделает четыре.

плата отрисованная в Sprint-Layout

Мораль: если это для вас действительно разовое мероприятие, то сделать всё можно и на тетрадном листочке (один раз попробовать даже надо). Во второй же раз, большая просьба, не будьте мазохистом. Автор инструкции — Babay iz Barnaula.

   Форум по схемам

   Обсудить статью КАК ПО ПЛАТЕ С ДЕТАЛЯМИ НАРИСОВАТЬ СХЕМУ


Замена конденсаторов на мат.плате и в блоке питания

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

вздутые конденсаторы

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

взорвавшийся конденсатор

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

подбор конденсатора по номиналу

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

Выпаивание конденсаторовВыпаивание конденсаторовВыпаивание конденсаторов

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

подготовка площадки под конденсатор

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

плотность печати платы

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

облуживание ножек конденсатора

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

отремонтированная мат.плата

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

 Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

выламывание конденсатора с платы

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Впаивание проволоки

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

отремонтированная мат.плата

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Изображение конденсаторов на схеме. | Весёлый Карандашик

Мало кому известно, что работа двигателя внутреннего сгорания, каким бы модернизированным он не был, зависит от маленькой детальки, именуемой нами конденсатором.

Наверное, каждый замечал при расчёсывании своих волос прилипание на расчёску пуха или выпавшего волоса, треск синтетической одежды в сухую погоду. Возможно, кто-то получал лёгкий, но неприятный удар электрического заряда от дверцы при выходе из автомобиля. Да и каждый в своей жизни хоть раз, но видел разряд молнии. Что объединяет эти примеры?Конденсатор электрический

На расчёске, одежде, кузове автомобиля, атмосферных слоях накапливается электрический заряд. Обратите внимание: накапливается до определённой величины и сила каждого заряда зависит от размера объекта, который его накапливает.

До XVII века разгадка электрических явлений не была найдена. Разными способами пытались ‘поймать электрическую жидкость’, используя для этого различные приспособления, именуемые накопителями. Первым конденсатором(от лат. condensare — ‘уплотнять’, ‘сгущать’) можно назвать Лейденскую банку — стеклянный сосуд, оклеенный внутри и снаружи листовым оловом и способным накапливать и хранить сравнительно большие электрические заряды.

Устройство электрического конденсатора.

Устройство электрического конденсатораСовременная, обычная конструкция электрического конденсатора состоит, конечно же,  не из листового олова, а из двух металлических пластин или поверхностей — обкладок, разделёнными между собой материалом, который не проводит электричество в естественных условиях — диэлектрик. К каждой обкладке присоединено по одному проводнику, которые служат для подключения конденсатора к электрической цепи. По геометрическому виду электрические конденсаторы бывают плоские, цилиндрические, сферические, трубчатые.

Конденсаторы с малой способностью накопления заряда — с малой электрической ёмкостью — имеют всего лишь две плоские обкладки с диэлектриком посередине, либо с двухсторонним напылением металла на керамическую плитку. В цилиндрических конденсаторах в роли обкладки выступает смотанный рулон металлизированной фольги — станиоль или алюминиевая фольга —  с прослойкой диэлектрика. Трубчатые конденсаторы сочетают в себе тип конструкции плоских конденсаторов.

Для быстрого заряда и хранения накопленной электрической энергии используют ионисторы — суперконденсаторы, называемые ещё конденсатор-аккумулятор. Вместо обкладок у них используется активированный уголь или вспененный  металл с тонкой диэлектрической прослойкой.

Как различить конденсаторы на рисунке электросхемы.

В зависимости от типа используемых обкладок и используемого диэлектрика электрические конденсаторы по своему исполнению имеют различный вид: цилиндрические, сферические, плоские и имеют две группы использования: общего назначения —  повсеместное использование, и специального назначения — импульсные, высоковольтные и др., и могут иметь два и более выводов для соединения.

Конденсаторы, не изменяющие своей ёмкости, кроме изменённой ёмкости по истечении гарантийного срока, называются постоянными — с постоянной ёмкостью, и имеют только два вывода для подключения к цепи. Бывают и исключения, когда при наличии двух выводов конденсатор является переменным — конденсатор переменной ёмкости. Такие электрические конденсаторы изменяют свою ёмкость под воздействием магнитного поля, приложенного напряжения, механического воздействия или от влияния ещё каких-либо внешних сил, известных современной физике.

Переменный конденсаторК примеру: когда при настройке радиоприёмника Вы вращаете ручку управления для поиска новой радиостанции, то в процессе вращения ручки изменяется ёмкость конденсатора, управляющего обработкой частоты принимаемого радиоприёмником сигнала. Тут используется переменный конденсатор — конденсатор переменной ёмкости.

Когда производится настройка принимаемого телевизионного сигнала телевизором, так же происходит изменение ёмкости конденсатора, управляемого частотой обработки сигнала, но разница состоит в управлении изменением ёмкости. У приёмника — поворотом ручки — смещение обкладок конденсатора переменной ёмкости относительно друг-друга, а у телевизора — изменением напряжения, приложенного к управляющей обкладке элемента, называемого варикапом, в большей степени относящемуся к полупроводниковому диоду.

Как отличить на схеме конденсаторы?

Конденсатор электрический на схемеКонденсаторы постоянной ёмкости изображаются параллельными отрезками с отводными соединительными линиями от середины. У переменных конденсаторов — две и более параллельных линии или одна из них дугообразная, с пересекаемой линией со стрелкой на конце. Варикапы имеют на рисунке так же два вывода, один из которых заменён на треугольничек, обращённый углом к обкладке и выводом на основании. Не путайте с варикондами, которые рисуются так же, как и постоянные конденсаторы, но имеют пересекаемую линию через обкладки со стрелкой на конце и изменяют свою ёмкость от приложенного к обкладкам напряжения. Ионисторы рисуются двумя параллельными, как конденсаторы постоянной ёмкости, но  помещённые в окружность или с одинаково жирными обкладками.

В зависимости от типа напряжения все конденсаторы делятся на две группы: полярные  — работающие в среде постоянного тока и неполярные — обеспечивающие свою работоспособность в среде переменного тока. Полярные конденсаторы  изображаются параллельными прямыми, с указанием возле одной обкладки знака полярности приложенного напряжения — (+), или с обкладками, различающимися толщиной или формой.

ИонисторБуквенное обозначение у всех конденсаторов одинаковое —  С , за исключением ионисторов, обозначаемых буквой К и варикапов, обозначаемых КВ.

При использовании конденсаторов недавно бывших в работе в какой-либо электрической схеме обязательно перед тем, как Вы возьмёте его в руки, замкните накоротко его выводы изолированным инструментом для снятия электрического заряда. А вот с  ионисторами так не поступайте, иначе его испортите, создав большой ток короткого замыкания.


Поделись с другими. Возможно, они тоже ищут.

Как обозначаются конденсаторы на схемах: основные параметры и емкость

В электротехнике используются конденсирующие элементы разных типов и размеров. При чтении чертежей электрику необходимо знать обозначение конденсаторов на схеме и различать изображения устройств разных видов.

Типы конденсаторных элементов

Типы конденсаторных элементов

О конденсаторе

Это устройство обладает способностью хранения электрического заряда. Между его пластинами располагается слой диэлектрика, создающий изоляцию для пары проводящих поверхностей. Основной характеристикой устройства является емкость – способность к накоплению заряда. С точки зрения технологии, наиболее распространенные типы конденсаторов – электролитические и электростатические. Выбор используемого элемента зависит от особенностей электросхемы и того, какую функцию он должен выполнять.

Обозначение конденсаторов на схемах

В отношении того, как именно обозначается конденсатор на схеме, существует строгая стандартизация: устройство узнается по паре параллельных друг другу близко расположенных вертикальных черт. Эти линии символизируют обкладки. Устройство полагается подписывать литерой С, возле нее обозначить порядковый номер устройства в электросхеме. Рядом с этими обозначениями или под ними указывают значение емкости.

Условные обозначения конденсаторов

В России существует система условных графических обозначений, включающая УГО конденсатора. Визуальной репрезентации этих устройств, а также резисторов посвящен отдельный ГОСТ, входящий в Единую систему конструкторской документации. Используются также международные стандарты – IEEE.

Конденсатор с постоянной емкостью

Такие элементы выпускаются с поляризацией и без нее. Неполяризованные изделия мелкого размера имеют широкую сферу применения, их можно подсоединять в разных направлениях. На схеме их обозначают двумя параллельными короткими черточками, находящимися под прямым углом к линиям соединения. На корпусе устройства указывают его емкость, нередко без единиц измерения (0,1 – это 1 микрофарад).

Важно! За рубежом иногда используют аббревиатуру MFD для указания емкости. Она означает микрофарады.

Графическая репрезентация элемента с постоянной емкостью

Графическая репрезентация элемента с постоянной емкостью

Код номера конденсатора

Первая пара знаков показывает емкость, цифра следом за ними – количество нулей. Единица измерения – пикофарад. Иногда на такой маркировке присутствуют буквы, они обозначают допуск в процентах и номинальное напряжение.

Поляризованные конденсаторы

Самым распространенным типом полярного конденсаторного элемента является электролитический. Такие изделия выпускаются в форме цилиндров или в осевом исполнении. Первый вариант несколько компактнее и дешевле. Выводы у него находятся с одной из сторон, тогда как у осевых вариантов – на разных. Поскольку устройства относительно крупные, на их корпусах указываются номинальное напряжение (оно у них относительно низкое) и емкость.

Важно! При подключении этих изделий необходимо строго соблюдать полярность, иначе они могут выйти из строя или даже взорваться.

Так в схемах показывают поляризованные элементы

Так в схемах показывают поляризованные элементы

Танталовые конденсаторы

Эти изделия крайне компактны, ставят их в тех случаях, когда важно минимизировать габариты. В прошлом их маркировали двумя цветными полосами (каждый цвет соответствовал цифре) и пятнышком белого или серого цвета (в первом случае значение полос в микрофарадах делили на 10, во втором – на 100). Если повернуть предмет пятном на себя, на правой стороне будет находиться полюс «плюс». Возле выводов также рисовалась полоса, указывающая напряжение. Современные модели маркируются цифровыми значениями параметров.

Переменные конденсаторы

Из-за очень малой емкости эти детали имеют узкую сферу применения – в основном они используются в радиосхемах. Графически переменные элементы изображаются традиционным символом из пары коротких параллелей, зачеркнутых наклонной стрелой. Емкость указывают не четкой цифрой, а диапазоном.

Обозначение переменных изделий

Обозначение переменных изделий

Конденсаторы-триммеры

Это суперминиатюрные изделия, монтируемые прямо на печатную плату. Поскольку показатель емкости меняется только при настроечных работах, такие элементы получили название подстроечных. Графическое представление отличается от стандартного для переменных конденсаторов только тем, что вместо острия стрела снабжена перпендикулярной черточкой.

Ионистор

Это изделие с двухслойным строением и довольно большой емкостью (до 10 Ф). На границе электродной поверхности и электролита у таких устройств возникает пространство статичных носителей заряда. В отличие от электролитических вариаций, способ хранения энергии здесь – электростатическое поле. Сочетание большой площади поверхности и малой толщины пространства обеспечивает столь высокий показатель емкости. Обозначается как символ конденсаторного элемента с перпендикулярной ему вертикальной линией, помещенный в круг. При этом в верхней правой и нижней левой четвертях, на которые символ и вертикаль делят круг, находятся линии, сходные с графиком полусинусоиды.

Температурный коэффициент конденсатора

Этот показатель отражает склонность емкостного значения меняться под действием температурных колебаний. Рабочий показатель температуры сильно влияет на долговечность элемента. Коэффициент зависит от вида элемента, например, у изделий из керамики он небольшой, у электролитических – значительный.

Маркировка отечественных конденсаторов

Постсоветские производители маркируют свои изделия довольно подробно и унифицировано. В редких случаях возможны некоторые отличия в обозначениях.

Ёмкость

Это параметр всегда указывается первым, для дробных чисел его кодировка состоит из трех знаков. Первая цифра – это целая часть числа, отражающего значение емкости, третья – дробная часть, на второй позиции находится буква, обозначающая единицу измерения: m – миллифарад, n – нанофарад, p – пикофарад. Например, 3n6 – 3,6 нанофарад. Целые значения указываются так: число и рядом единица измерения с добавленной буквой F (3 pF – 3 пикофарада).

Важно! Если номинал не указан, целая цифра говорит о том, что значение указывалось в пикофарадах, десятичная дробь – в микрофарадах.

Номинальное напряжение

Если размер изделия достаточный, показатель указывают по стандартной схеме: 180 В (или V) – 180 вольт. На миниатюрных конденсаторах значение кодируют латинской буквой, например, 160 В – литерой Q.

Дата выпуска

Ее принято указывать четырьмя цифрами: первые две – это последние цифры года выпуска, вторые две – месяц (9608 – август 1996 года).

Расположение маркировки на корпусе

Поскольку указание параметров очень важно для монтажа схемы, данные показатели помещают на корпусе устройства самой первой строкой. В начале всегда указывают емкость.

Цветовая маркировка отечественных радиоэлементов

Это кодировка с использованием 4 цветных полос, где каждый цвет соотносится с определенной цифрой. Первые две полосы показывают емкость в пикофарадах, следующая – допустимое отклонение, последняя – номинальное напряжение.

Маркировка конденсаторов импортного производства

У американских и других импортных изделий кодировка емкости выглядит так: начальные две цифры – значение в пикофарадах, третья – число нулей.

Цветовая маркировка импортных конденсаторов

Она состоит из пятерки полос. Начальная пара – емкостной показатель в пФ, следующая полоса – число нулей, четвертая – показатель возможного отклонения, пятая – номинал напряжения.

Данные о конденсаторах на схемах призваны информировать работающих с ними специалистов о видах используемых устройств и их основных характеристиках. При выборе используемого элемента нужно обращать внимание на маркировку.

Видео

7 правил проектирования печатных плат / Habr

Приветствую! В процессе обсуждения статьи товарища KSVl была озвучена необходимость небольшого пособия по проектированию печатных плат. Очень часто на хабре я вижу статьи в стиле «5 правил оформления кода» или «5 шагов к успешному проекту», то есть очень удобные собрания тезисов по определенной теме. К сожалению подобных статей по разработке электроники мало и это плохо…

Я обещал пользователю KSVl и некоторым другим читателям, статью с базовыми принципами проектирования печатных плат (ПП), так же приглашаю к ознакомлению всех любителей попаять за чашечкой кофе!



Пролог


Все описанные в статье правила, являются самыми базовыми и ориентированы исключительно на совсем начинающих разработчиков для которых электроника просто хобби. Сразу хочу отметить, что данная статья не претендует на абсолютную истину и все объяснения даны в вольной форме.

Наверняка найдутся люди, которые скажут: «Да и так ведь работает, зачем что-то менять?». И вот тут увы, я не готов тратить силы и переубеждать вас. Одни хотят все делать хорошо, качественно и надежно, другим же не дано понять этого желания.

Источники информации на которых базируются описанные в статье правила:

  1. Курс общей физики и электротехники. Все в пределах 1-го курса ВУЗа
  2. Книги Говарда Джонса «Конструирование высокоскоростных цифровых устройств: начальный курс черной магии» и «Высокоскоростная передача цифровых данных: высший курс черной магии»
  3. Стандарты IPC, например, IPC-2221A. Бывает перевод на русском (старая версия) и оригинал последних версий на английском
  4. Собственный опыт

Правило №1 — Ширина проводника


Ошибка — очень часто начинающие разработчики используют ту ширину проводников (дорожек), которая стоит по умолчанию в используемой САПР. В упомянутой ранее статье, автор использовал EasyEDA и там базовое значение ширины стоит 6 mils, то есть около 0.15 мм. Данная ширина проводников использована практически везде и это плохо, ибо ведет к ряду проблем.

Проблема №1 — падение напряжения. Все мы помни закон Ома из которого следует, что чем меньше площадь сечения проводника, тем больше его сопротивление. Чем больше сопротивление проводника, тем больше на нем упадет напряжение.

Проблема №2 — нагрев проводника. Тут все тот же закон Ома, мощность выделяемая на проводнике пропорциональна его сопротивлению, то есть чем больше сопротивление, тем больше тепла выделится на проводнике. Дорогу 0.15 мм ток в 5-10А легко испарит.

Проблема №3 — паразитная индуктивность. Этот момент к базовым вряд ли уже относится, но знать про него надо. Чем меньше сечение проводника, тем больше его индуктивность. То есть любой проводник на самом деле не просто «кусок меди», это составной компонент из активного сопротивления, индуктивности и паразитной емкости. Если эти параметры слишком высоки, то они начинают негативно отражаться на работе схемы. Чаще они проявляются частотах больше 10 МГц, например, при работе с SPI.

Проблема №4 — низкая механическая прочность. Думаю не надо объяснять, что дорожка шириной 2 мм более прочно прикреплена к текстолитовой основе, чем дорожка 0.15 мм. Ради интереса возьмите заводскую ненужную плату и поковыряйте ее.

Решение — используйте максимально возможную ширину проводников. Если проводник можно провести с шириной 0.6 мм, то это лучше, чем провести его шириной 0.15 мм.

Пример:

1) Плохо

2) Хорошо

Правило №2 — Подключение к выводам


Под выводами подразумевается контактная площадка компонента (pad), переходные отверстия (via) и прочие объекты, которые на плате мы соединяем с помощью проводников (дорожек).

Ошибка — бывают две крайности. В одной, разработчик совершает ошибку из правила №1 и подключает дорожку 0.15 мм к выводу smd резистора 1206. В другом случае наоборот, использует проводник ширина которого равна ширине контактной площадки. Оба варианта плохие.

Проблема №1 — низкая механическая прочность. При нескольких попытках перепайки компонента, площадка или дорожка просто отслоятся от текстолитовой основы печатной платы.

Проблема №2 — технологические проблемы с монтажом платы. Хотя это станет проблемой, если вы начнете заказывать в Китае не только платы, но и сборку. Вам конечно соберут, но % брака вырастает.

Решение — ширина проводника, подключаемого к контактной площадке, должна составлять примерно 80% от ширины этой площадки.

Пример:

1) Плохо

2) Хорошо

Размер площадки конденсатора 1206 в данном случае составляет 1.6 х 1 мм. Соответственно для подведения сигнала снизу используется дорожка равная 80% от ширины площадки, то есть 0.8 мм (80% от 1 мм). Для подведения сигнала справа используется дорожка толщиной 1.2 мм (примерно 80% от 1.6 мм). Ширина площадки у микросхемы в корпусе SOIC-8 равна 0.6 мм, поэтому подводить нужно сигнал с помощью дорожки около 0.5 мм.

Стоит понимать, что данный вариант является идеальным. Переход из 1.2 мм в 0.5 мм вам наверняка не понравится — лишняя возня. Его можно избежать. Для этого обычно принимают ширину дорожки относительно минимального pad-а (площадки), то есть в данном случае можно сделать вот так:

Как видите, я выбрал ширину проводника по минимальной площадке, то есть по площадке вывода микросхемы в корпусе SOIC-8. Такой упрощение допустимо, но его стоит применять с умом.

Правило №3 — Цепи питания


Теперь рассмотрим случай, когда упрощение в отношение правила №2 просто недопустимо, а именно — проектирование цепей питания. Данной правило опирается на два предыдущих и является частным, но пожалуй самым критичным случаем.

Ошибка — пренебрежение правилами №1 и №2 при проектирование цепей питания.

Проблема №1 — на выходе вашего стабилизатора напряжения строго +3.3В. Вы включаете устройство и наблюдаете, что микросхема ведет себя неадекватно, АЦП измеряет не точно и периодически выключается. Вы измеряете напряжение на ногах потребителя (микросхемы) и обнаруживаете вместо +3.3В всего лишь +2.6В.

Проблема №2 — ваш DC-DC преобразователь не запускается, либо на выходе имеет большие пульсации.

Проблема №3 — в попытках найти неисправность, вы ставите щуп осциллографа на линию +3.3В и обнаруживаете там вместо постоянного напряжения какие-то страшные пульсации и помехи.

Решение — соблюдаем особо строго и фанатично правила №1 и №2. Дорожки максимально широкие. Питание должно приходить на микросхему через керамический конденсатор, который по возможности ставят ближе к выводу этой микросхемы.

Пример:

1) Плохо

2) Хорошо

Что я сделал чтобы стало хорошо:

1) Дорожка питания VCC3V3 теперь подходит не в обход конденсатора, а через него. То есть сначала на конденсатор, а затем уже на вывод микросхемы

2) Переходное отверстие (via) я использовал размером 1.2/0.6 мм. Да, согласно требованиям для 4 класса точности (стандартного), я могу использовать переходное отверстие размером 0.7/0.3 мм, но делать этого не стал и применил более габаритный переход. Это позволило уменьшить его сопротивление и пропустить больший ток

3) Шина питания, которая приходит от стабилизатора у меня теперь не 0.3 мм, а 2 мм! Не бойтесь делать широкие проводники. Такой подход минимизирует падение напряжения в цепи и уменьшит индуктивность проводника

Правило №4 — Земля


О влияние качества проектирование земляной шины (GND) можно говорить вечно, но любой разговор сводится к простой сути: стабильно и работоспособность устройства в наибольшей степени зависит именно от проектирование земли. Данная проблема очень объемная и требует глубокого изучения, поэтому я дам самые базовые рекомендации.

Ошибка — трассировка цепи GND (земли) обычным проводником, да еще и минимальной ширины. Это просто к-к-к-комбо!

Проблема №1 — нестабильность работы устройства и сильные помехи в цепях, особенно в цепях питания.

Проблема №2 — нагрев и часто обрыв тонкого проводника, т.к. в нем действует большой ток.

Решение — использовать полигон для разводки цепи GND, а в идеале отдельный слой, который полностью выделен для данной цепи, например, нижний слой.

Пример:

1) Плохой

2) Хороший

Как видите, вместо обычного проводника я применил заливку сплошным полигоном. Такое решение обеспечило мне огромную площадь сечения, ведь полигон это просто очень большой проводник. Только иногда такое решение имеет недостаток, например, когда плотность монтажа высокая и другие проводники разрывают сплошной полигон, как тут цепи LED1..3 разрывают кратчайший путь между выводом микросхемы и конденсатора (GND):

Тут нам поможет, упомянутый ранее, отдельный слой GND. В двухслойной плате в идеале под него выделить нижний слой, а в многослойной плате — один из внутренних слоев:

Таким образом мы восстановили кратчайший путь для тока по цепи GND, а помог в данном случае нижний слой (синий цвет), который из себя полностью представляет земляной полигон. Переходные отверстия (via) около контактных площадок обеспечили для них максимально короткое соединение с нижним слоем земли.

Конечно это идеальный случай и иногда не получится его реализовать без удорожания платы, поэтому тут решение за вами. Порой «супер» надежность и не нужна, тут важно найти для своей задачи золотую середину между стоимостью и качеством.

Правило №5 — Ширина зазора


Минимальное значение зазора между медными проводниками на печатной плате, нам диктуют технологические требования. Для 4-го (стандартного) класса значение составляет 0.15/0.15 мм или 6/6 mils. Максимальная ширина ограничена лишь вашей фантазией, габаритами платы и здравым смыслом.

Ошибка — зазор недостаточно большой, обычно оставляют значение по умолчанию около 0.15 мм.

Проблема №1 — электрический пробой. Короткое замыкание возникает, когда 2 проводника с разным потенциалом замыкают, например, металлическим предметом и ток резко возрастает. К сожалению идеальных диэлектрических материалов не бывает и в какой-то момент любой материал начинает проводить ток. Пример тому — изоляторы на ЛЭП, иногда и их пробивает. Данное явление происходит, когда превышено значение критического напряжения пробоя. По этой же причине и стеклотекстолит, являющийся основной большинства печатных плат, в какой-то момент может начать пропускать ток.

Решение — увеличение расстояния между проводниками. Напряжение пробоя зависит от типа материала и от толщины/ширины изолятора. В случае печатных плат — расстояние (зазор) между проводниками как раз является тем параметром, который влияет на критического значение напряжения пробоя. Чем больше расстояние между проводниками, тем большее напряжение необходимо чтобы пробить его.

Так же хочется сказать, что пробой по стеклотекстолиту не всегда самая актуальная проблема. Воздух, который окружает плату, тоже является диэлектриком, но при определенных условиях становится проводником, вспомните грозу. Воздушный электрический пробой большая проблема в электронике, особенно если учитывать, что воздух может быть сухой, а может и иметь влажность 90-100%, например, в тропиках или на Севере.

Пример:

Условимся, что в данном примере есть 3 проводника: выпрямленное сетевое напряжение +310В, низковольтная линия питания для микроконтроллера +3.3В и шина земли (GND).

1) Плохой

2) Хороший

Почему 0.3 мм плохо, а 0.8 мм уже хорошо спросите вы и в качестве ответа приведу вам 2 источника:

1) Обычные физика и электротехника. Данные в них разнятся из-за различных методик измерений и прочего, но наиболее реалистичная цифра для сухого воздуха составляет 2 кВ/мм. Тут многие испугаются цифры и подумают: «У меня же нет таких напряжений» и это будет ошибкой. Данное значение характерно лишь для сухого воздуха, который встретить в реальных условиях удается редко. И тут цифры уже куда скромнее, например, при влажности 100% напряжение пробоя воздуха составляет всего 250 В/мм! А еще на значение напряжения пробоя влияет запыленность воздуха и платы, а так же атмосферное давление (кривая и закон Пашена).

2) Стандарт IPC-2221, ссылку на который я давал в начале. Интересует нас таблица 6-1, которая выглядит вот так:

Как видите в таблице для большое количество значений даже для нашего конкретного случая 301-500В. Если посмотрим, то увидим значение 0.25 мм для закрытых проводников на внутренних слоях, то есть в «идеальных» условиях без доступа пыли, грязи и влаги. Если устройство будет работать где-то в горах и проводник находится на внешних слоях (все проводники в случае 2-х слойной платы) на высоте до 3000 метров, то там минимальный зазор уже 2,5 мм, то есть в 10 раза больше. Если же мы эксплуатируем устройство на большей высоте, то зазор необходим уже в 12.5 мм! Стоит сделать замечание — такой большой зазор требуется если наша плата не покрыта защитными составами, например, лаком или компаундом. Как только появляется защитное покрытие, то мы видим уже более адекватные значения: 0.8 и 1.5 мм.

Поэтому в «хорошем» примере по мимо обеспечения зазора 0.8 мм, необходимо так же покрыть плату защитных составом, например, лаком после завершения монтажа устройства, его отмывки и сушки. В противном случае необходимо увеличить зазор!

Правило №6 — Гальванический зазор


Ошибка — приравнивание диэлектрического зазора к гальваническому. По сути они очень похожи, но по требованиям все строже, когда дело доходит до гальванической развязки. Ярким случаем является развязка схемы управления и силовой части с помощью реле или оптрона, когда зазор между развязанными сторонами выбирается так же 0.8 или 1,5 мм.

Проблема №1 — пробой изоляции, выход из строя системы управления и прочего дорогого оборудования.

Решение — увеличение порога электрического пробоя. Стандартными значениями обычно являются напряжения 1,5 кВ, 2,5 кВ и 4 кВ. Если ваше устройство работает с сетевым напряжением, но человек напрямую с ним не взаимодействует, то напряжение развязки в 1,5 кВ будет достаточным. Если предполагается взаимодействие человека с устройством, например, через кнопки и прочие органы управления, то рекомендую применить изоляцию с напряжением 2,5 кВ и более.

Пример:

1) Плохой

Что плохого спросите вы, ведь зазоры на плате есть, их можно сделать и 1,5 мм. Дело в том, что даже если сделать зазор 2 мм, то этого будет недостаточным для обеспечения изоляции. Самым «слабым» местом должно быть расстояние между выводами управления реле (1-2) и выводами силовыми (3-8). Так же надо учитывать, что пробой может быть не только между проводниками на одном слое, но и на разных — насквозь плату через стеклотекстолит.

2) Хороший

Что было сделано для улучшения ситуации:

а) Появилась четкая граница между низковольтной и высоковольтной частью. Теперь проводник +3.3В не проходит в высоковольтной области +310В, полигон GND не выходит за границу низковольтной часть, соответственно и пробоя не будет. Так же в зоне/границе гальванической развязки не должно быть вообще ничего.

б) Изолирующая зона освобождена от паяльной маски. Маска — тоже слабое место и в зависимости от качества ее пробьет раньше, чем стеклотекстолит. Это делать не обязательно в общем случае, но если с устройством взаимодействуют люди, то настоятельно рекомендую.

в) Как я выше писал, слабое место — расстояние между управляющими и силовыми выводами реле. Везде я смог сделать изолирующую зону 4 мм, а тут только 2.5 мм. От маски мы очистили, от проводников тоже и единственное через что может произойти пробой по плате — стеклотекстолит. Поэтому убираем и его, я сделал вырез под реле шириной 2.5 мм и убрал весть текстолит между выводами. Данная операция тоже не обязательна, но существенно повышает надежность и безопасность вашего устройства.

Правило №7 — Переходные отверстия


Ошибка — очень часто наблюдаю картину, когда на 2-х слойной печатной плате для того, чтобы соединить 2 контактные площадки, использую 3..4… или даже 5 переходных отверстий.

Проблема №1 — переходных отверстий (via) становится слишком много на плате и это ограничивает место под проводники, что приводит к удлинению цепей, а следовательно и к увеличению их сопротивления. Уменьшает устойчивость цепей и сигналов к помехам.

Решение — используйте минимальное количество переходных отверстий: если вам нужно соединить 2 контакта на разных слоях, то не используйте более 1-го переходного отверстия. Если 2 контакта находятся на одном слое и вы не можете соединить их напрямую, то используйте максимум 2 переходных отверстия. Если вам нужно больше переходов для соединения, то что-то вы делаете не так — тренируйте логику и переразводите участок платы, который привел к проблеме.

Пример:

1) Плохо

2) Хорошо

Для соединения использовано минимальное количество переходных отверстий (via), что дает больше свободного места для других проводников и обеспечивает минимальные паразитные параметры проводника.

Несколько общих советов


  • Не используйте автотрассировщики! В «сыром» не настроенном виде они выдают ужасный результат, который даже самую светлую идею превратит в гуано. Для того, чтобы автотрассировщик работал хорошо, ему необходимо прописать определённые правила, которые скажут ему, что дороги надо не 0.15, а 1 мм и так далее. Для адекватного результат даже на простых платах приходится прописывать сотню, а то и две, этих самих правил. В Altium Designer под них выделен целый раздел, например. Если вы любитель и у вас не стоит задачи спроектировать свою плату для ноутбука, то разводите плату руками — выйдет быстрее и качество будет на высоте
  • Не ленитесь переделывать плату. Часто бывает, что вы сделали плату на 90%, но дальше все стало туго и вы начинаете нарушать «правила» и лепить гуано. Откатитесь назад, иногда приходится откатываться в самое начало, сделайте работу качественно и на этапе отладки устройства вы сэкономите очень много времени и нервов
  • Перед тем как начать проектировать плату, посмотрите несколько open source проектов, например, на хабре или hackaday. Главное не копируйте оттуда чужие очевидные ошибки
  • Если у вас есть знакомые разработчики электроники, пускай тоже любители — дайте им на проверку. Свежий взгляд на ваш проект позволит избежать очень много ошибок

Заключение


Надеюсь данная статья станет полезной для начинающих электронщиков и избавит их хотя бы от самых простых ошибок. Думаю не мало людей в данных правилах увидят и свои недочеты, но не стоит от этого правила слепо копировать. Всегда думайте головой и ищите лучший вариант, иногда и 4 переходных отверстия для 1-й цепи допустимы, если это позволяет вам улучшить конечный результат.

Те, кому данного материала мало — предлагаю ознакомиться со стандартами IPC по диагонали, сильно вчитываться смысла нет, а так же прочитать начальный курс «черной магии» от Говарда Джонса. В ней разобраны и физические принципы проектирования, а так же приводится множество рекомендаций по проектированию стандартных цепей и интерфейсов. Это раньше высокоскоростные цифровые цепи были чем-то магическим и возвышенным, но сегодня на дворе 2018 и с ними сталкиваются даже совсем новички, например, при подключение датчиков и памяти по SPI или дисплеев.

О развязке питания с примерами / Habr

Когда я участвовал в проведении конкурса 7400, я понял, что многим из представленных логических схем для надежной работы не хватает простейших защитных элементов. Одним из самых часто встречающихся недостатков конструкции было отсутствие блокировочных емкостей. Позже, прочитав статью о законе Мёрфи, я решил немного написать о развязке и блокировочных конденсаторах.

Как человек, которого можно назвать старожилом в области электроники, я познакомился с проблемой отсутствия развязки на собственном опыте. Свою первую высокоскоростную схему я собрал, будучи стажером в крупной фирме по производству электроники. Та схема, цифровой частотомер, была собрана на логике семейства 74Fxx и работала на частоте 11 МГц (по тем временам это считалось очень много). Это была плата размером 23 × 16 см (Double Eurocard), содержащая около 40 микросхем, соединенных монтажом накруткой (wire wrap). Когда пришло время ее включать, я увидел, что схема не работает, как надо, а выдает полную ерунду.

Проверив несколько раз сборку, я рассказал о проблеме своему руководителю, а он взглянул на плату и сказал: «Не хватает блокировочных конденсаторов. Поставь их на питание около каждой микросхемы, тогда и поговорим.» Совершенно растерянный, я сделал, как было сказано, и — о чудо! — все сразу заработало. Почему, казалось бы, ни на что не влияющая емкость заставила схему работать? Мой руководитель рассказал мне о бросках тока при переключении, об индуктивности проводников и о развязке. Я признаю, что прошло несколько лет, прежде чем я действительно понял, что он тогда говорил, но урок был усвоен: всегда ставить конденсаторы на питание цифровых микросхем.

Термины «блокировочный конденсатор» и «развязка» — не случайные слова, а имеют в данном контексте вполне определенное значение:
развязка — действие, направленное на (частичное) отделение цепей питания микросхемы от общего источника питания;
блокировочный конденсатор — конденсатор, установленный таким образом, что он шунтирует питание микросхемы и действует как местный источник питания.

Почему это всё так важно? Взгляните, например, сюда:


Рисунок 1. Отсутствие блокировочноых конденсаторов.

Разве это похоже на цифровой сигнал? Такую ерунду вы получите без блокировочных конденсаторов.

Пожалуйста, обратите внимание, что тактовая частота не важна. Проблема заключается в восходящих и спадающих фронтах сигнала. Так, одни и те же соображения применимы для систем, работающих на частоте 1 Гц, 20 кГц или 50 МГц. Используемые частоты в примерах ниже выбраны такими, чтобы их было удобно наблюдать на осциллографе.

Следует отметить, что на высокой частоте сбой наступает быстрее, чем на низкой, за счет большего числа фронтов в единицу времени. Однако это не означает, что низкочастотные схемы будут работать надежно. Это далеко не так, они будут сбоить так же легко, согласно закону Мёрфи. Да, и кстати, вы подумали о ваших маленьких микроконтроллерах, работающих на частоте 16 МГц?

Чтобы увидеть, что происходит, нужно измерить токи, протекающие через схему. Вот простая экспериментальная установка, собранная для иллюстрации:


Рисунок 2. Подключение инвертора.

Рисунок 3. Измерительная схема.

Генератор импульсов подключен к инвертору 74HC04, нагруженному на емкость 10 пФ. Сигнал на выходе инвертора, TP1, показан на верхней осциллограмме. Источник питания подключен к выводам микросхемы 7 и 14. В разрыв земляного проводника включен токоизмерительный резистор 10 Ом.

Напряжение в точке TP2 пропорционально потребляемому микросхемой току и отображается на нижней осциллограмме. Блокировочный конденсатор может быть подключен или отключен при необходимости. Щупы осциллографа снабжены делителями 1:10, так что масштаб осциллограммы по вертикали нужно умножить на 10. Все неиспользуемые входы 74HC04 заземлены. Установка выглядит так:


Рисунок 4. Установка, собраннная на макетной плате.

Рисунок 5 показывает проблемы, возникающие на высоких и низких частотах. Картинки слева — без блокировочного конденсатора, справа — с ним.


Рисунок 5. Выходное напряжение (верхний канал) и потребляемый ток (нижний канал).
Сверху — тактовая частота 330 кГц, снизу — 3,3 МГц.
Слева — без блокировочного конденсатора, справа — с ним.

Некоторые наблюдения из рисунка 5:

  • Измеренный ток — это только ток через ногу GND и блокировочный конденсатор. Он не в точности соответствует току, потребляемому микросхемой. Сложно измерять ток через ноги Vcc и GND одновременно (ограничения, накладываемые конструкцией осциллографа. — Прим. перев.). Однако, измерение тока через вывод GND достаточно для иллюстративных целей.
  • При логической «1» на выходе наблюдается высокочастотный «звон». Его размах больше 2 В, и выбросы превосходят напряжение питания. Добавление блокировочного конденсатора снижает «звон» до практически несущественного уровня. Выброс все еще остается, но затухает гораздо быстрее
  • Фронтам сигнала соответствуют выбросы («иголки») потребляемого тока. Добавление блокировочного конденсатора уменьшает эти выбросы и делает их симметричными при восходящем и спадающем фронтах. Диапазон выбросов от -22 до +45 мА без блокировочного конденсатора и от -32 до +36 мА — с ним.
  • Симметричная форма тока при наличии блокировочного конденсатора говорит, что энергия запасается и извлекается обратно. Это очень важная особенность.
  • Остаточный ВЧ звон во многом зависит от положения щупа осциллографа (не показано), что говорит о том, что схема содержит паразитные LC-элементы и радиочастотные антенны. Расположение на плате и взаимное положение соединительных проводов оказывает значительное влияние на амплитуду и частоту колебаний. Эти помехи не могут быть полностью устранены, но их можно сильно уменьшить, правильно разведя печатную плату.

Взглянем на фронты сигнала поближе:


Рисунок 6. Фронты выходного напряжения (верхний канал) и потребляемого тока (нижний канал).
Сверху — задний (спадающий) фронт, снизу — передний (восходящий) фронт.
Слева — без блокировочного конденсатора, справа — с ним.

Микросхема 74HC04 выполнена по технологии КМОП. Это означает, что статический потребляемый ток близок к нулю. Ток потребляется только при переключениях из «0» в «1» и из «1» в «0». При переключении все нагрузочные и паразитные емкости должны быть перезаряжены. Для экспериментальной схемы нагрузка имеет емкость 10 пФ. Сюда нужно добавить емкости выводов и паразитные емкости, которые составляют примерно 5+2 пФ. Щуп осциллографа имеет емкость 10 пФ, которую тоже нужно учесть. Таким образом, суммарная емкость нагрузки на выходе инвертора примерно 27 пФ.

Выходную емкость нужно зарядить от 0 до 5 В примерно за 4,3 нс. Приняв для простоты, что зарядный ток постоянный, оценим его величину:
Q = I · t = C · U
I = (5 · 27 · 10-12)/(4,3 · 10-9) = 31,4 мА

Это означает, что через выход инвертора при каждом переключении втекает или вытекает огромный (по меркам КМОП. — Прим. перев.) ток. Откуда черпается энергия на это? Конечно, из источника питания. На рисунке 6 хорошо видно, что ток не возникает мгновенно, а нарастает до определенного уровня, а затем падает снова. Такое поведение явно указывает на наличие индуктивных элементов.

Лучше всего это видно на рисунке 6 справа, где ток достигает максимума в тот момент, когда выходное напряжение падает до нуля. Затем ток падает, вызывая провал выходного напряжения. Расчетный ток достаточно хорошо совпадает с измеренным, учитывая, что была проведена лишь простейшая оценка.

Еще раз внимательно взглянем на нижнюю половину рисунка 6. Слева выходное напряжение не доходит до 5 В в течение некоторого времени, а справа — достигает почти сразу. Без блокировочного конденсатора микросхеме не хватает мощности питания для формирования крутого фронта, и напряжение застревает на уровне 4 вольт. Блокировочный конденсатор выдает необходимую мгновенную мощность на некоторое время.

Блокировочный конденсатор примерно в 4000 раз больше, чем емкость нагрузки, значит, следует ожидать, что падение напряжения питания будет в 4000 раз ниже (чем размах выходного напряжения. — Прим. перев.) — порядка 1-2 мВ.

При обратном переключении, из «1» в «0», как на рисунке 6 сверху, блокировочный конденсатор выступает в роли резервуара для принятия выделившейся энергии. Емкость нагрузки разряжается, и ток должен стечь на землю. Тем не менее, энергия не может быть мгновенно передана в источник питания, и блокировочный конденсатор будет временно хранить ее.

Основной источник питания не может обеспечить микросхему достаточной мощностью из-за индуктивности проводников. Каждый провод обладает паразитной индуктивностью, которая препятствует изменению тока. Из определения индуктивности:
U = L · dI / dt ⇒ dI = U · dt / L

Из этого уравнения видно, что изменение тока обратно пропорционально индуктивности. Иными словами, если возрастает индуктивность, становится труднее изменить ток за заданный промежуток времени, при прочих равных параметрах. Кроме того, изменение тока вызывает падение напряжения на индуктивности. Чем длиннее провод (или дорожка на плате) тем более высокую индуктивность он имеет, тем сильнее он сопротивляется быстрому изменению тока, и тем больше будет падение напряжения.

Блокировочный конденсатор является локальным накопителем энергии. Он всегда должен быть установлен как можно ближе к выводам питания микросхемы, чтобы свести к минимуму индуктивность проводников от конденсатора до микросхемы. Такая схема развязывает общие и локальные цепи питания.

Микросхема состоит из шести инверторов, поэтому схему можно изменить так, чтобы увеличить потребляемый ток:


Рисунок 7. Экспериментальная схема с дополнительной нагрузкой.


Рисунок 8. Выходное напряжение (верхний канал) и потребляемый ток (нижний канал) для схемы с дополнительной нагрузкой.
Сверху — тактовая частота 330 кГц, снизу — 3,3 МГц.
Слева — без блокировочного конденсатора, справа — с ним.

Обратите внимание на другой масштаб по оси Y для канала измерения тока, по сравнению с рисунками 5 и 6.

Ток через вывод GND теперь имеет выбросы около 70 мА при отсутствии блокировочного конденсатора. Если же последний установлен, снова наблюдаем симметричную форму выбросов амплитудой ±50 мА при восходящих и спадающих фронтах.

Обратите внимание, что фронт сигнала, как видно на рисунке 8 внизу слева, теперь гораздо более пологий. Микросхеме просто-напросто не хватает энергии для быстрого переключения. Установка блокировочного конденсатора (рисунок 8 справа) восстанавливает крутизну фронта до приемлемого уровня.


Рисунок 9. Фронты выходного напряжения (верхний канал) и потребляемого тока (нижний канал).
Слева — задний (спадающий) фронт, справа — передний (восходящий) фронт.
Блокировочный конденсатор установлен.

Подробное рассмотрение фронтов сигнала выявляет увеличенный по продолжительности выброс тока, что вызвано большими потребностями в энергии. Нагрузка микросхемы примерно в шесть раз выше, чем раньше (первый инвертор нагружен на входные емкости остальных инверторов, которые составляют 5 раз по 5 пФ).

Это был лишь простой пример — микросхема из шести инверторов. А теперь экстраполируйте вышесказанное на сложную логическую схему, содержащую множество элементов и множество внутренних соединений. В ней очень много паразитных емкостей, которые должны перезаряжаться при каждом изменении входных сигналов. Наконец, представьте себе микроконтроллер, состоящий из многих тысяч вентилей.

Изложенные выше объяснения и иллюстрации должны дать ясное понимание того, что блокировочный конденсатор — важный элемент, выполняющий свою специальную функцию. Он запасает энергию источника питания локально, выдает её при необходимости, а также принимает избытки энергии.

Локальное хранилище энергии постоянно пополняется из основного источника питания через проводник Vcc. В то же время, избыточная энергия должна быть сброшена в источник питания через проводник GND. Сброс энергии в блокировочный конденсатор повышает напряжение на нем, и, по сути, кратковременно создает на схеме локальную область с другим потенциалом. Устранение этого дисбаланса является очень важным и осуществляется при помощи заземления. (Здесь под заземлением понимается не подключение к массе нашей планеты, а соединение с общим проводом источника питания. — Прим. перев.)

Печатные платы часто имеют отдельные заземленные слои, которые очень эффективны для соединения элементов с общим проводником источника питания. Хорошо проработанная разводка земли имеет первостепенное значение для сброса избыточной энергии. Но будьте осторожны, в сплошном заземленном слое могут возникать вихревые токи, а многочисленные связи с общим проводом — образовывать т.н. земляные петли.

Всегда будет хорошей идеей обратиться к знакомому разработчику со стажем. Большинство ошибок уже было кем-либо допушено раньше, и нет никакой необходимости повторять их до бесконечности.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *