Site Loader

Содержание

Виды электрических конденсаторов и их назначение

В этом материале мы очень подробно поговорим про конденсаторы, расскажем, зачем они нужны, каких видов бывают и многое другое. По своей сути это довольно простое устройство, но при этом сегодня без них трудно представить наш мир: конденсаторы встречаются повсеместно. В этой статье не будет схем и подробного разбора, а также глубокой теории — все это интересно лишь узкому кругу специалистов. Тут мы попробуем простым языком и не слишком длинно рассказать все, что нужно знать про конденсаторы.

Что такое и зачем нужен

Электрический конденсатор это двухполюсник который применяется для накопления заряда и его последующей отдачи. Каждый конденсатор имеет определенную емкость, разумеется, ничего общего с емкостью аккумуляторов она не имеет. Если говорить про электронные схемы, то конденсатор является вторым по распространенности после резисторов. Конденсаторы бывают постоянной или переменной емкости, бывают разных типов и из разных материалов, но об этом мы еще поговорим ниже.

То есть, основная задача конденсатора это сперва накапливать электроэнергию, после чего отдавать её. Также стоит отметить, что конденсаторы относят к пассивным электронным компонентам.

Конденсаторы выполняют сразу ряд задач, благодаря чему они и используются так широко. Например, поддержание разницы потенциалов. Есть электронные компоненты, которые крайне чувствительны к падению напряжения, некоторые из них просто прекратят работу, либо перезапустятся, что крайне нежелательно во многих случаях. Если просадка напряжения происходит на короткий промежуток времени, то её компенсирует конденсатор, отдав накопленную энергию. Он не может заменить источник бесперебойного питания, емкость конденсатора значительно меньше, впрочем, тут есть разные варианты. Также конденсаторы выполняют роль фильтра низких и высоких частот. Кстати, не стоит думать, что типичный конденсатор это маленькое устройство, которое видели большинство людей. Они бывают очень большими и весят десятки, а то и сотни килограмм.


Характеристики конденсатора

Вне зависимости от типа и устройства, у каждого конденсатора есть набор характеристик. По своей сути это очень простые устройства, поэтому и параметров у них довольно мало. Стоит отметить, что есть не только обычные характеристики, но и так называемые паразитные, которые оказывают негативное влияние на их работу. Когда конденсатор подбирают под конкретную сферу использования, учитывают все характеристики. В рамках этой статьи мы поговорим только про основные, а такие как тангенс угла диэлектрических потерь или диэлектрическую абсорбцию рассматривать не будем. Напоминаем, что в нашей статье мы стараемся говорить простыми словами и коротко.

Емкость конденсатора

Емкость является главным параметром конденсатора, тут можно увидеть аналогию с аккумуляторами, правда единица измерения тут другая и называется фарад, ампер-часы тут не используются. Кстати, один фарад (фарадей) это примерно 26,8 А*ч.

Емкость большинства конденсаторов измеряется в микрофарадах или пикофарадах. Впрочем, есть отдельные конденсаторы, которые имеют емкость в десятки фарад, то есть, этот показатель у них в десятки раз больше, чем у обычных аккумуляторов. Правда, такие конденсаторы имеют ограниченную сферу применения и зачастую изготавливаются под заказ, под конкретное оборудование, где требуется такая емкость.

Если нужно большая емкость, то здесь могут соединить параллельно несколько конденсаторов. Тут есть нюансы, которые мы рассматривать не будем, но этот способ используется довольно часто. Также к емкости можно отнести удельную емкость. Это отношение собственно емкости к массе или объему конденсатору, такой же показатель есть и у аккумуляторов. Максимальная удельная емкость есть у тех конденсаторов, которые имеют минимальную толщину диэлектрика, но для таких повышается вероятность пробоя, что является проблемой. Про пробой мы еще поговорим ниже.

Номинальное напряжение

Стандартный показатель для всех электрических устройств. В случае конденсатора номинальное напряжение это максимально допустимое значение. В указанных пределах конденсатор будет работать нормально и сохранит свою работоспособность. Если же напряжение будет выше, то конденсатор может выйти из строя. Вероятность этого зависит от уровня превышения, а также времени. Но сама по себе эта характеристика достаточно простая, тут выбирают исходя из фактического напряжения, которое будет проходить через конденсатор, возможно делают это с небольшим запасом.


Вероятность взрыва

Да, есть и такой параметр, так как вероятность взрыва конденсатора не такая уж и маленькая, это вообще достаточно распространенное явление. О причинах можно рассказывать долго, но главной является повышенная температура, из-за которой происходит перегрев конденсатора и его взрыв. Но не стоит думать, что это именно опасный взрыв, нет, все не так. В современных конденсаторах устанавливают предохранительный клапан (актуально для устройств с большой емкости), либо делаю специальную верхнюю крышку, в небольших моделях.

В компьютерах да и вообще в быту можно увидеть последний вариант. Многие видели вздутую верхнюю крышку конденсатора. Это не говорит о том, что он уже вышел из строя, но говорит о том, что скоро это произойдет. Ну а если крышка разорвана, то конденсатор нужно менять.

В старых моделях подобное было не предусмотрено, поэтому при взрыве от них могли отлетать осколки. И скорость их была такая, что они могли представлять опасность для здоровья человека. Убить не могли (если говорить про небольшие конденсаторы), но нанести травмы — вполне. Также стоит отметить, что есть разные типы конденсаторов и в них вероятность взрыва, как и его опасность — разная. Например, есть танталовые конденсаторы, которые состоят из тантала и двуокиси марганца. И эти два вещества, перемешанные вместе, при определенных условиях инициируют химическую реакцию, что приводит к взрыву конденсатора. Но, повторимся, современные устройства, которые широко используются в быту и т.д. не представляют опасности.

Это основные характеристики конденсаторов, как мы писали выше, про дополнительные и второстепенные в рамках данной статьи мы рассказывать не будем. Далее поговорим о различных видах конденсаторов, которые сегодня применяются наиболее широко. Про совсем специфические, которые применяются весьма ограниченно, мы рассказывать не будем.

Виды конденсаторов

Конструкция конденсатора может быть разной, как и материалы из которого он изготовлен. Разумеется, от этого зависят и его свойства с характеристиками, поэтому и существуют разные виды. В простейшем виде конденсатор представляет собой два электрода (называются обкладками), которые имеют форму пластин. Они разделены диэлектриком, на практике слоев диэлектрика может быть много, да и сами электроды могут быть многослойными или в виде лент. Современные конденсаторы довольно сильно отличаются от самых первых, не только по своей конструкции, но и по используемым в них материалам.

Металлобумажные

Металлобумажные конденсаторы являются разновидностью бумажных. В них в качестве диэлектрика выступает бумага. Но не обычная, а специальная, предназначенная именно для конденсаторов. Обкладки делают из фольги. Этот вид используется в цепях как высокой, так и низкой частоты. Главный минус бумажного конденсатора это его низкая прочность, поэтому сегодня они хоть и не вышли из употребления, но используются все реже. А вот металлобумажный является его более продвинутой разновидностью. Тут вместо фольг напыляют металл на бумажный диэлектрик и все это помещено в механический корпус, который предотвращает случайное повреждение всей конструкции. У металлобумажных конденсаторов неплохая удельная емкость, они герметичные, при этом они недорогие и довольно универсальные. Используются они довольно широко, хотя и не повсеместно, свои минусы у них есть.

Керамические

Выглядят как керамические круги на металлических ножках, либо имеют форму похожую на круг, подобные конденсаторы видели многие. Могут быть как в виде одной пластины, так и целой пачки.

Электроды, которые из металла, напыляют на керамические пластины и крепят с выводами конденсатора. Свойства этого типа напрямую зависят от вида керамики, которая используются. Главное различие это электрическая проницаемость, которая может варьироваться в очень большом диапазоне. Основная особенность керамических конденсаторов это высокая емкость при небольшом размере, при этом они способы работать с любой поляризацией и не обладают высокими утечками. Из-за компактности их часто применяют в небольших устройствах. Цена на керамические конденсаторы выше, чем на большинство других типов.


Электролитические

Здесь в качестве диэлектрика выступает оксид металла, который образовывается электрохимическим способом на одной обложке, которая сделана из того же металла. В качестве второй обложки выступает электролит (отсюда и название), который может быть как жидким, так и сухим. Подавляющее большинство электролитических конденсаторов являются поляризованными, поэтому они могут работать исключительно с соблюдением полярности. Если она перепутана, то это вызовет химическую реакцию, которая необратима, то есть, конденсатор выйдет из строя. Более того, в ходе этого процесса начнет выделяться газ, а это может привести уже к взрыву. Впрочем, как мы писали выше, в современных устройствах в конструкции предусмотрена такая вероятность и в низ газ просто выйдет без особых последствий. Но сам конденсатор придется менять. Разновидностью этого типа являются ионисторы, которые также могут называть «суперконденсаторы» — их емкость может быть несколько тысяч фарад. Электролитические конденсаторы в свою очередь разделяются на несколько подтипов о которых мы расскажем ниже.

Танталовые

Танталовые конденсаторы это одна из разновидностей электролитических. Название от того, что электрод сделан из тантала. Именно про них мы уже упоминали выше, когда рассказывали про взрывоопасность конденсаторов. В любом случае, это их недостаток, но вместе с тем у них есть и ряд достоинств: они устойчивы к внешним воздействиям, ток утечки у них низкий, размер очень компактный из-за высокой удельной емкости. Именно это объясняет использование танталовых конденсаторов не смотря на их потенциальную опасность. Но, повторимся, современные не являются опасными.

Алюминиевые

Алюминиевые электролитические конденсаторы имеют довольно большую емкость, но нормально работать могут только на малых частотах, что ограничивает сферу их применения. Для положительного электрода здесь используют алюминий, а в качестве диэлектрика выступает триоксид алюминия. Это еще одна разновидность электролитических конденсаторов, о которых мы рассказывали выше. У них высокое соотношение емкости и к размеру, это довольно распространенный тип сегодня.

Пленочные

Этот вид также можно отнести к современным, в качестве диэлектрика тут выступает пленка из различных видов пластика, отсюда и название. Электроды либо напыляют на пленку (более дорогой способ производства), либо делают в виде фольги, которая спрессовывается с пленкой. Применяются довольно широко, у них есть как свои плюсы, так и минусы, которые в большей степени зависят от типа пластика. Например, если это полистирол, то максимальная температура эксплуатации не может превышать +70 градусов по Цельсию, тогда как другие виды пластика способны выдерживать до +120-130 градусов. Некоторые типы устойчивы к пробою и имеют другие свойства. В целом же пленочные конденсаторы характеризуются низким током утечки, но имеют они небольшую емкость по сравнению с другими типами конденсаторов. Тем не менее, некоторые их свойства делают пленочные конденсаторы весьма распространенными в некоторых областях.

Это наиболее распространенные типы конденсаторов, хотя есть и другие. Например, полимерные, которые сегодня постепенно вытесняют электролитические. Или воздушные, где диэлектриком является воздух, но сегодня они применяются очень редко.

Классификация конденсаторов

Разумеется, конденсаторы классифицируются не только по видам, которые обусловлены используемыми материалами и особенностями конструкции, но и по другим параметрам. Про это можно рассказывать очень долго, но в рамках этой статье мы коротко расскажем про другие способы классификации. Это имеет прямое отношение к выбору подходящего варианта. Хотя в этом материале мы и не рассказываем, как выбрать конденсатор, но, тем не менее, после прочтения этой статьи определенные выводы вы сделаете. Ну а если уж мы коснулись вопроса выбора, то в подавляющем большинстве случаев такого вопроса вообще нет. Просто потому, что взамен вышедшего из строя конденсатора нужно просто купить аналогичный и ничего выдумывать тут не нужно. Но вернемся к их классификации.

Конденсаторы классифицируют по изменению емкости, где выделяют постоянной и переменной емкости. Первые никак не меняют этот показатель, вторые меняют его при воздействии различных факторов, например, температуры. Конденсаторы переменной емкости также разделяют на нелинейные и подстроечные. Конденсаторы иногда разделяют по назначению, хотя эта классификация фактически не используется и значения не имеет. Но их можно разделить на две группы: общего и специального назначения. Первая предназначена для широкого применения, вторая для использования в особых условиях эксплуатации. Специальные конденсаторы зачастую разрабатывают и производят под заказ, хотя и здесь есть серийные изделия.

Конденсаторы классифицируют также по типу монтажа, где выделяют навесные, с защелкивающимися выводами, винтовыми выводами и для печатной установки. Способ монтажа зависит от устройства, где будет использоваться конденсатор. Например, если это винтовой вывод, то здесь предусмотрена резьба для соединения, подобные конденсаторы используют с радиаторами. Также их разделяют по способу защиты, это не то, о чем мы писали выше, когда рассказывали про взрывоопасность, это про условия эксплуатации. Тут есть незащищенные конденсаторы, которые предназначены для обычных условий, есть защищенные, которые не боятся высокой влажности. Они могут быть неизолированными или изолированными, также отдельно выделяют уплотненные, корпус которых заполнен разными материалами, а также герметичные, которые, соответственно, полностью герметичны. Также их разделяют по форме, но она в большей степени зависит от вида. Впрочем, некоторые виды конденсаторов могут быть любой формы, чаще всего используется цилиндрическая или плоская, но есть и сферические.

Это основная информация, которую нужно знать про конденсаторы. Конечно, мы про многое не рассказали, но если попытаться написать про все, статья будет очень длинной. Хотя сам по себе конденсатор это довольно простое устройство, но с их фактическим использованием связано очень много нюансов, рассказать про которые в одной статье попросту невозможно. Ну а если вы хотели найти здесь ответ на вопрос, какой конденсатор выбрать взамен вышедшего из строя, то он очень простой. Просто покупайте аналогичный по форме, виду, характеристикам. Это не тот случай, когда нужно что-то изобретать, особенно в том случае, если вы мало что в этом понимаете. Подключение конденсатора не является очень сложной задачей, хотя тут есть моменты, которые нужно знать. Но об этом поговорим в другой статье.

Конденсатор — электронное устройство, принцип работы, функциональное назначение, разновидности.

Конденсатор (электро-, Capacitor — Eng.) — элемент электрической цепи, который обеспечивает кратковременное накопление энергии и быструю отдачу накопленного. Применяются в цепях фильтров питания, цепях межкаскадовых связей, а также для фильтрации помех.

Основной характеристикой является ёмкость. Измеряется в Фарадах (Ф, F). Фарад характеризует заряды, создаваемые электрическими полями.
Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одной важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и выход конденсатора из строя. Качественные конденсаторы от дорожащих своим именем производителей, имеют солидный запас прочности и могут работать и на немного завышенных напряжениях без каких либо последствий. Потому именно их и стоит приобретать для лучшей стабильности и долговечности.

Существуют поляризированные и неполяризированные конденсаторы. При неправильном подключении поляризированного, он может выйти из строя из-за сильного нагрева, с последующим вскрытием или даже мини-взрывом.

Существует множество разновидностей конденсаторов.
В относительно сложных электронных схемах обычно применяются электролитические, полимерные и керамические. К тому же если конденсаторы используются с цифровым оборудованием, желательно чтобы они имели низкое эквивалентное последовательное сопротивление (Low — ESR). Чтобы это получить, производители используют более качественные компоненты конденсатора. Если требуется Low-ESR конденсатор а вы поставили обычный, он будет довольно сильно нагреваться и быстро выйдет из строя. Может быть за пару дней или даже часов.

Электролитические — самые недолговечные, по причине постоянного испарения электролита, особенно при повышенной температуре или плохой герметичности конденсатора. Но тем не менее, они и самые распространённые по причине своей дешевизны.


В основном, имеют срок службы не более 50 000 часов, обычно же 10 — 20 000. При испарении или недостаточном количестве электролита вздуваются и даже разрываются с характерным хлопком. Вздутые конденсаторы — показатель того что необходимо его заменить во избежании проблем с питанием и общей стабильностью.

Твёрдотельные полимерные

Относительно долговечны, очень редко вздуваются и намного компактней электролитических. Большинство производителей компьютерной техники, полностью перешли на полимерные конденсаторы, даже в бюджетном секторе. Нюанс в том, что они дороже электролитических. Потому этот переход был постепенным и произошёл благодаря массовому производству и удешевлению полимерных конденсаторов.

Принцип работы схож с электролитическими конденсаторами, только вместо электролита используется вязкий полимерный материал. Он практически не испаряется и имеет лучшие показатели, чем обычный электролит.

Керамические

Керамические конденсаторы умеют накапливать энергию с малыми потерями по току, лучше фильтруют помехи и не вздуваются в тяжёлых эксплуатационных условиях. А ещё они не вскрываются и не взрываются (есть исключения в некоторых видах полимерных), забрызгивая электролитом остальные компоненты схемы.
Имеют гораздо меньший размер в сравнении с электролитическими, меньше нагреваются. Срок службы 100 000 часов и более.

Не менее распространены танталовые конденсаторы, но применяются преимущественно в точной электронике с нанесением на саму плату. Танталовые конденсаторы, относятся к подвиду электролитических, но с натяжкой.

При малых размерах, имеют выдающиеся характеристики, а также долгий срок службы. Менее чувствительны к нефильтрованной высокочастотной составляющей, выносливы при работе с повышенной температурой, имеют низкий ESR.

Основы конденсаторов в электронике — использование, функция в цепи, единица измерения, формула

Понимание основ конденсаторов в электронике — типы конденсаторов и их использование, функция в цепи, единица измерения, формула с пояснениями со схемой, изображениями, видео.

Здесь мы понимаем основы конденсаторов в электронике — типы конденсаторов и их использование, функции в цепи, единицы измерения и формулы, поясняемые диаграммой, изображениями и видео.

Содержание

Что такое конденсатор?

Конденсатор — это электронный компонент для накопления электрического заряда. Это пассивный электронный компонент, который может накапливать энергию в электрическом поле между парой проводников, называемых «пластинами».

Проще говоря, мы можем сказать, что конденсатор — это компонент для накопления и высвобождения электричества, как правило, в результате химического воздействия. Лейденская банка была ранним примером конденсатора.

Конденсаторы состоят из двух проводящих поверхностей, разделенных изолятором; к каждой поверхности подведен провод.

  • Чек : Активные и пассивные электронные компоненты

Единицы измерения конденсатора и символ

Символ конденсатора

В электронике обычно используются два символа конденсатора. Один символ для поляризованных конденсаторов, а другой символ для неполяризованных конденсаторов.

На приведенной ниже диаграмме символ с одной изогнутой пластиной представляет собой поляризованный конденсатор. Изогнутая пластина представляет собой катод ( – ве ) конденсатора, а другая пластина – анод (). 0033 + ве ). Иногда к стороне +ve также добавляется знак плюс.

Конденсатор Обозначение поляризованных и неполяризованных конденсаторов

Единица конденсатора

Единица измерения емкости SI составляет фарад ( Символ : F ). Единица названа в честь великого английского физика. Майкл Фарадей.

Конденсатор емкостью 1 фарад, когда он заряжен электрическим зарядом в 1 кулон, имеет разность потенциалов между обкладками 1 вольт.

Видео: основы работы с конденсаторами

Различные типы конденсаторов

Существует несколько типов конденсаторов для различных целей и функций. Ниже приведены наиболее распространенные типы конденсаторов:

1. Керамический конденсатор

Это неполяризованные конденсаторы, изготовленные из двух или более чередующихся слоев керамики и металла. Керамика действует как диэлектрик, а металл действует как электроды.

Керамические конденсаторы также называются « Дисковые конденсаторы ».

Керамический конденсатор типа Thru-Hole и SMD

2. Электролитический конденсатор

Электролитические конденсаторы поляризованы. Это означает, что положительный вывод конденсатора должен быть соединен с положительным выводом, а отрицательный вывод — с отрицательным выводом. Невыполнение этого требования приведет к повреждению конденсатора.

Эти типы конденсаторов обычно используются там, где требуется большая емкость.

Электролитические конденсаторы сквозного и поверхностного монтажа

3. Пленочный конденсатор

Пленочные конденсаторы или конденсаторы из пластиковой пленки являются наиболее распространенным типом конденсаторов, используемых в большинстве электронных схем. Есть неполяризованные.

Они очень надежны, долговечны и имеют меньшие допуски. Они также хорошо работают в условиях высокой температуры окружающей среды.

Сквозной и поверхностный пленочный конденсатор

4. Переменный конденсатор

Это неполяризованные конденсаторы. Они имеют подвижные и неподвижные пластины для определения емкости и обычно используются в цепях передатчиков и приемников, транзисторных радиоприемниках и т. д.

Переменный конденсатор типа Thru-Hole и SMD

Диаграмма, поясняющая принцип работы конденсатора

Простой конденсатор, подключенный к батарее через резистор

Зависимость тока в цепи от времени

Использование и функции конденсатора Конденсатор должен накапливать электрическую энергию в электрическом поле и отдавать эту энергию в цепь по мере необходимости. Он также позволяет передавать только переменный ток, а НЕ постоянный ток.

Видео: Использование и назначение конденсаторов

Формула для расчета емкости конденсатора?

  • Формула для полной емкости в параллельной цепи: CT=C1+C2…+Cn.
  • Формула для полной емкости в последовательной цепи: CT={1{1C1}+{1C2}…+{1Cn}} .

Надеюсь, теперь вы изучили и поняли основы работы с конденсаторами. Не стесняйтесь поделиться с другими и поделиться своими мыслями и комментариями ниже.

  • Похожие сообщения:

    • Конденсатор поверхностного монтажа — Руководство по конденсаторам для поверхностного монтажа
    • Где купить электронные компоненты в Индии
    • Электронные компоненты Наименование Сокращения и символы
    • Основные электронные компоненты – типы, функции, символы
    • 10 ведущих производителей электронных компонентов в мире
    • Производители, поставщики и дистрибьюторы электронных компонентов
    • Электронные компоненты, детали и их функции
    • Паяльная станция Goot в Индии
    • Различные типы печатных плат (PCB)
    • Печатная плата: конструкция, схема и сборка
    • Основы и физика полупроводниковых устройств
    • Электронные схемы для начинающих
    • Символы цепей электронных компонентов

Объяснение конденсаторов — инженерное мышление

Объяснение конденсаторов. Узнайте, как работают конденсаторы, где мы их используем и почему они важны.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.

Помните, что электричество опасно и может привести к летальному исходу. Вы должны иметь квалификацию и компетентность для выполнения электромонтажных работ. Не прикасайтесь к клеммам конденсатора, так как это может привести к поражению электрическим током.

Что такое конденсатор?

Конденсатор и батарея

Конденсатор накапливает электрический заряд. Это немного похоже на батарею, но хранит энергию по-другому. Он не может хранить столько энергии, хотя может заряжаться и высвобождать свою энергию намного быстрее. Это очень полезно, и именно поэтому вы найдете конденсаторы, используемые почти на каждой печатной плате.

Как работает конденсатор?

Я хочу, чтобы вы сначала подумали о водопроводной трубе, по которой течет вода. Вода будет течь до тех пор, пока мы не закроем вентиль. Тогда вода не может течь.

Если после вентиля пустить воду в бак, то в баке будет храниться часть воды, но мы продолжаем получать воду, вытекающую из трубы. Когда мы закроем клапан, вода перестанет поступать в бак, но мы все равно будем получать стабильную подачу воды, пока бак не опустеет. Как только бак снова наполнится, мы можем открывать и закрывать клапан, и пока мы не полностью опорожним бак, мы получаем непрерывную подачу воды из конца трубы. Таким образом, мы можем использовать резервуар для воды для хранения воды и сглаживания перебоев в подаче.

В электрических цепях конденсатор действует как резервуар для воды и накапливает энергию. Он может освободить это, чтобы сгладить перебои в поставке.

Если мы очень быстро выключим простую схему без конденсатора, то лампочка начнет мигать. Но если мы подключим конденсатор в цепь, то свет будет гореть во время перерывов, по крайней мере, на короткое время, потому что теперь конденсатор разряжается и питает цепь.

Внутри основного конденсатора у нас есть две проводящие металлические пластины, которые обычно сделаны из алюминия или алюминия, как его называют американцы. Они будут разделены диэлектрическим изоляционным материалом, таким как керамика. Диэлектрик означает, что материал будет поляризоваться при контакте с электрическим полем. Вскоре мы увидим, что это значит.

Внутри конденсатора

Одна сторона конденсатора подключена к положительной стороне цепи, а другая сторона подключена к отрицательной. На стороне конденсатора вы можете увидеть полосу и символ, указывающий, какая сторона в минусе, кроме того, минусовая ножка будет короче.

Если мы подключим конденсатор к батарее. Напряжение будет толкать электроны от отрицательной клеммы к конденсатору. Электроны будут накапливаться на одной пластине конденсатора, в то время как другая пластина, в свою очередь, высвободит некоторое количество электронов. Однако электроны не могут пройти через конденсатор из-за изоляционного материала. В конце концов, конденсатор имеет то же напряжение, что и батарея, и электроны больше не будут течь.

Теперь с одной стороны скопились электроны, это означает, что мы накопили энергию и можем высвобождать ее, когда это необходимо. Поскольку на одной стороне больше электронов, чем на другой, и электроны заряжены отрицательно, это означает, что у нас есть одна сторона, которая является отрицательной, и одна сторона, которая положительна, поэтому между ними существует разница потенциалов или разность напряжений. Мы можем измерить это с помощью мультиметра.

Что такое напряжение?

Напряжение похоже на давление, когда мы измеряем напряжение, мы измеряем разницу или разность потенциалов между двумя точками. Если представить водопроводную трубу под давлением, мы можем увидеть давление с помощью манометра. Манометр также сравнивает две разные точки: давление внутри трубы с атмосферным давлением снаружи трубы. Когда бак пуст, манометр показывает ноль, потому что давление внутри бака равно давлению снаружи бака, поэтому манометру не с чем сравнивать. Оба имеют одинаковое давление. То же самое с напряжением, мы сравниваем разницу между двумя точками. Если мы измерим батарею на 1,5 В, то получим разницу в 1,5 В между каждым концом, но если мы измерим тот же конец, то получим ноль, потому что разницы нет, это то же самое.

Хотите научиться основам электричества? НАЖМИТЕ ЗДЕСЬ

Возвращаясь к конденсатору, мы измеряем и считываем разницу напряжений между ними из-за накопления электронов. Мы по-прежнему получаем это показание, даже когда мы отключаем аккумулятор.

Если вы помните, с магнитами противоположности притягиваются и притягиваются друг к другу. То же самое происходит с накоплением отрицательно заряженных электронов, они притягиваются к положительно заряженным частицам атомов на противоположной пластине, но никогда не могут достичь их из-за изолирующего материала. Это притяжение между двумя сторонами представляет собой электрическое поле, которое удерживает электроны на месте до тех пор, пока не будет проложен другой путь.

Объяснение основ конденсатора

Если мы затем поместим в цепь маленькую лампу, появится путь, по которому электроны будут течь и достигать противоположной стороны. Таким образом, электроны будут течь через лампу, питая ее, и достигнут другой стороны конденсатора. Однако это продлится недолго, пока количество электронов не выровняется с каждой стороны. Тогда напряжение равно нулю, поэтому толкающая сила отсутствует, и электроны не текут.
Как только мы снова подключим батарею, конденсатор начнет заряжаться. Это позволяет нам прерывать подачу питания, и конденсатор будет обеспечивать питание во время этих перерывов.

Примеры

Мы везде используем конденсаторы. Они немного отличаются, но их легко заметить. На печатных платах они обычно выглядят примерно так, и мы можем видеть их на инженерных чертежах вот так. Мы также можем получить более крупные конденсаторы, которые используются, например, в асинхронных двигателях, потолочных вентиляторах или кондиционерах, и мы можем даже получить такие огромные конденсаторы, которые используются для коррекции низкого коэффициента мощности в больших зданиях.

Пример символов конденсатора

На стороне конденсатора мы найдем два значения. Это будут емкость и напряжение. Мы измеряем емкость конденсатора в фарадах, которые мы обозначаем заглавной буквой F, хотя обычно мы измеряем конденсатор в микрофарадах, поэтому непосредственно перед ним у нас есть микросимвол, который выглядит как буква U с хвостиком.

Пример емкости

Другое значение — это наше напряжение, которое мы измеряем в вольтах с большой буквы V, на конденсаторе значение напряжения — это максимальное напряжение, которое конденсатор может выдержать.

Этот конденсатор рассчитан на определенное напряжение, и если я превысю это значение, он взорвется.

Пример напряжения конденсатора

Большинство конденсаторов имеют положительную и отрицательную клеммы. Нам нужно убедиться, что конденсатор правильно подключен к цепи.

Пример печатной платы конденсатора

Почему мы их используем

Одним из наиболее распространенных применений конденсаторов в больших зданиях является коррекция коэффициента мощности. Когда в цепь помещается слишком много индуктивных нагрузок, формы сигналов тока и напряжения будут рассинхронизированы друг с другом, и ток будет отставать от напряжения. Затем мы используем конденсаторные батареи, чтобы противодействовать этому и привести их в соответствие.

Другим распространенным применением является сглаживание пиков при преобразовании переменного тока в постоянный.
Когда мы используем мостовой выпрямитель, синусоидальная волна переменного тока переворачивается, чтобы заставить отрицательный цикл течь в положительном направлении, это заставит схему думать, что она получает постоянный ток.

через GIPHY

Но одной из проблем этого метода являются промежутки между пиками. Таким образом, мы используем конденсатор для высвобождения энергии в цепь во время этих прерываний, и это сглаживает источник питания, чтобы он больше походил на постоянный ток.

Мы можем измерить емкость и накопленное напряжение с помощью мультиметра. Не все мультиметры имеют функцию измерения емкости.

С конденсаторами следует быть очень осторожными, так как они накапливают энергию и могут сохранять высокое напряжение в течение длительного времени, даже будучи отключенными от цепи. Чтобы проверить напряжение, мы переключаемся на постоянное напряжение на нашем измерителе, а затем подключаем красный провод к положительной стороне конденсатора, а черный провод к отрицательной стороне.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *