Элементарный учебник физики Т2
Элементарный учебник физики Т2
ОглавлениеИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮГлава I. Электрические заряды § 1. Электрическое взаимодействие. § 2. Проводники и диэлектрики. § 3. Разделение тел на проводники и диэлектрики § 4. Положительные и отрицательные заряды § 5. Что происходит при электризации? § 6. Электронная теория. § 7. Электризация трением. § 8. Электризация через влияние. § 9. Электризация под действием света. § 10. Закон Кулона. § 11. Единица заряда. Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ § 12. Действие электрического заряда на окружающие тела. § 13. Понятие об электрическом поле. § 14. Напряженность электрического поля. § 16. Электрическое поле в диэлектриках и в проводниках. § 17. Графическое изображение полей. § 18. Основные особенности электрических карт. § 19. Применение метода линий поля к задачам электростатики. § 20. Работа при перемещении заряда в электрическом поле. § 21. Разность потенциалов (электрическое напряжение). § 22. Эквипотенциальные поверхности. § 23. В чем смысл введения разности потенциалов? § 24. Условия равновесия зарядов в проводниках. § 25. Электрометр. § 26. В чем различие между электрометром и электроскопом? § 28. Измерение разности потенциалов в воздухе. Электрический зонд. § 29. Электрическое поле Земли. § 30. Простейшие электрические поля. § 31. Распределение зарядов в проводнике. Клетка Фарадея. § 32. Поверхностная плотность заряда. § 33. Конденсаторы. § 34. Различные типы конденсаторов. § 35. Параллельное и последовательное соединение конденсаторов. § 36. Диэлектрическая проницаемость. § 37. Почему электрическое поле ослабляется внутри диэлектрика? § 38. Энергия заряженных тел. Энергия электрического поля. Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК § 39. Электрический ток и электродвижущая сила. § 41. Направление тока. § 42. Сила тока. § 43. «Скорость электрического тока» и скорость движения носителей заряда. § 44. Гальванометр. § 45. Распределение напряжения в проводнике с током. § 46. Закон Ома. § 47. Сопротивление проводов. § 48. Зависимость сопротивления от температуры. § 49. Сверхпроводимость. § 50. Последовательное и параллельное соединение проводников. § 51. Реостаты. § 52. Распределение напряжения в цепи. § 53. Вольтметр. § 54. Каким должно быть сопротивление вольтметра и амперметра? Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА § 56. Нагревание током. Закон Джоуля-Ленца. § 57. Работа, совершаемая электрическим током. § 58. Мощность электрического тока. § 59. Контактная сварка. § 60. Электрические нагревательные приборы. Электрические печи. § 61. Понятие о расчете нагревательных приборов. § 62. Лампы накаливания. § 63. Короткое замыкание. § 64. Электрическая проводка. Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ § 65. Первый закон Фарадея. § 66. Второй закон Фарадея. § 67. Ионная проводимость электролитов. § 69. Элементарный электрический заряд. § 70. Первичные и вторичные процессы при электролизе. § 71. Электролитическая диссоциация. § 72. Градуировка амперметров при помощи электролиза. § 73. Технические применения электролиза. Глава VI. ХИМИЧЕСКИЕ И ТЕПЛОВЫЕ ГЕНЕРАТОРЫ ТОКА § 74. Введение. Открытие Вольты. § 75. Правило Вольты. Гальванический элемент. § 76. Как возникают э. д. с. и ток в гальваническом элементе? § 77. Поляризация электродов. § 78. Деполяризация в гальванических элементах. § 79. Аккумуляторы. § 80. Закон Ома для замкнутой цепи. § 81. Напряжение на зажимах источника тока и э. д. с. § 82. Соединение источников тока. § 84. Термоэлементы в качестве генераторов. § 85. Измерение температуры с помощью термоэлементов. Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ § 86. Электронная проводимость металлов. § 87. Строение металлов. § 88. Причина электрического сопротивления. § 89. Работа выхода. § 90. Испускание электронов накаленными телами. Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ § 91. Самостоятельная и несамостоятельная проводимость газов. § 92. Несамостоятельная проводимость газа. § 93. Искровой разряд. § 94. Молния. § 96. Применения коронного разряда. § 97. Громоотвод. § 98. Электрическая дуга. § 99. Применения дугового разряда. § 100. Тлеющий разряд. § 101. Что происходит при тлеющем разряде? § 102. Катодные лучи. § 103. Природа катодных лучей. § 104. Каналовые лучи. § 105. Электронная проводимость в высоком вакууме. § 106. Электронные лампы. § 107. Электроннолучевая трубка. Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ § 108. Природа электрического тока в полупроводниках. § 110. Полупроводниковые выпрямители. § 111. Полупроводниковые фотоэлементы. Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ § 112. Естественные и искусственные магниты. § 113. Полюсы магнита и его нейтральная зона. § 114. Магнитное действие электрического тока. § 115. Магнитные действия токов и постоянных магнитов. § 116. Происхождение магнитного поля постоянных магнитов. § 117. Гипотеза Ампера об элементарных электрических токах. Глава XI. МАГНИТНОЕ ПОЛЕ § 118. Магнитное поле и его проявления. Магнитная индукция. § 119. Магнитный момент. Единица магнитной индукции. § 120. Измерение магнитной индукции поля с помощью магнитной стрелки. § 122. Линии магнитного поля. § 123. Приборы для измерения магнитной индукции. Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ § 124. Магнитное поле прямолинейного проводника и кругового витка с током. § 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита. § 126. Магнитное поле внутри соленоида. Напряженность магнитного поля. § 127. Магнитное поле движущихся зарядов. Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ § 128. Магнитное поле Земли. § 129. Элементы земного магнетизма. § 130. Магнитные аномалии и магнитная разведка полезных ископаемых. Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ § 132. Введение. § 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки. § 134. Действие магнитного поля на виток или соленоид с током. § 135. Гальванометр, основанный на взаимодействии магнитного поля и тока. § 136. Сила Лоренца. § 137. Сила Лоренца и полярные сияния. Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ § 138. Условия возникновения индукционного тока. § 139. Направление индукционного тока. § 140. Основной закон электромагнитной индукции. § 141. Электродвижущая сила индукции. § 142. Электромагнитная индукция и сила Лоренца. § 143. Индукционные токи в массивных проводниках. Токи Фуко. Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ § 144. Магнитная проницаемость железа. § 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные. § 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея. § 147. Молекулярная теория магнетизма. § 148. Магнитная защита. § 149. Особенности ферромагнитных тел. § 150. Основы теории ферромагнетизма. Глава XVII. ПЕРЕМЕННЫЙ ТОК § 151. Постоянная и переменная электродвижущая сила. § 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения. § 154. Сила переменного тока. § 155. Амперметры и вольтметры переменного тока. § 156. Самоиндукция. § 157. Индуктивность катушки. § 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью. § 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления. § 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока. § 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока. § 162. Сдвиг фаз между током и напряжением. § 163. Мощность переменного тока. § 164. Трансформаторы. § 165. Централизованное производство и распределение электрической энергии. § 166. Выпрямление переменного тока. Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ § 167. Генераторы переменного тока. § 168. Генераторы постоянного тока. § 169. Генераторы с независимым возбуждением и с самовозбуждением. § 170. Трехфазный ток. § 171. Трехфазный электродвигатель. § 172. Электродвигатели постоянного тока. § 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением. § 174. Коэффициент полезного действия генератора и двигателя. § 175. Обратимость электрических генераторов постоянного тока. § 176. Электромагниты. § 177. Применение электромагнитов. § 178. Реле и их применения в технике и автоматике. Ответы и решения к упражнениям Приложения Предметный указатель Таблицы |
Количество выделения тепла в проводнике зависит от. Закон джоуля ленца формула и определение
Довольно трудно представить жизнь современного человека без электричества. Оно стало одним из главных и самых ценных атрибутов современного существования. Фактически любой человек, который когда-либо работал с электричеством, знает, что при прохождении по проводам тока у них есть свойство нагреваться. Отчего же это зависит?
Что такое ток
Ток — это упорядоченное движение заряженных частиц, которые называются электронами. И если ток протекает по проводнику, то в нём начинают происходить разные физические процессы, а именно сталкиваются электроны с молекулами.
Молекулы бывают нейтральные или те, которые потеряли свою отрицательно заряженную частицу. В результате столкновений или электроны могут становиться нейтральными молекулами, или при этом выбивается из другой такой же молекулы электрон, образовавший положительно заряженный ион. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом.
На тепловой нагрев проводника может влиять и сопротивление. Например, можно взять определённое тело и тащить его по земле. Земля в этом случае — сопротивление. Что же с ним будет? Правильно, между телом и поверхностью будет происходить сила трения, которая, в свою очередь, нагревает тело. Ток в этом случае ведёт себя точно так же.
Зависимость
И, внимая все вышеупомянутое, учёным удалось определить эту зависимость между силой тока, сопротивлением и количеством тепла. Эта зависимость носит название закон Джоуля-Ленца, формула которого известна всем физикам. В 1832—1833 годах русским физиком Эмилием Ленцем было обнаружено, что при тепловом воздействии на металлические проводники их проводимость капитально изменялась. Это фактически усложняло работу учёного и мешало рассчитывать электрические цепи.
Тогда же молодому учёному пришла в голову мысль о том, что, возможно, существует какая-то зависимость между силой тока и температурой проводника. Но как быть? В то время отсутствовали точные электрические приборы, позволяющие измерить силу тока, сопротивление, не было даже источника стабильного ЭДС. Ленца это не остановило, он решил провести опыт.
Опыты русского физика
Суть этого опыта была настолько проста, как и все гениальное, что его может повторить даже школьник. Учёный сконструировал специальный прибор, который служил для измерения количества тепла, выделяемого проводником. Этим прибором оказался обычный сосуд, вовнутрь которого Ленц заливал раствор разбавленного спирта и ставил проводник — платиновую проволоку, на которую подавался электрический ток.
После того как прибор был создан, учёный начал проводить опыты. Он измерял точное количество времени, необходимое для того, чтобы спирт в сосуде был нагрет до 10 о С. На это было потрачено много не только месяцев, но и лет. И в 1843 году, спустя 10 лет, был опубликован закон, суть которого заключалась в том, что нагревание проводника током пропорционально квадрату служащего для нагревания тока.
Джоуль и Ленц
Но не тут-то было! Оказывается, несколько лет назад английский физик Джеймс Прескотт Джоуль проводил аналогичные опыты, и уже опубликовал свои наблюдения. Как быть? Ленц не сдался и внимательно изучил работу Джоуля и пришёл к выводу, что, пусть они и проводили одинаковые эксперименты, опыты Ленца были гораздо точнее. В связи с чем научное сообщество добавило к работе Джоуля поправки Ленца и этот закон стал называться как закон Джоуля-Ленца. Математическая формулировка закона выглядит таким образом:
Q = I *U*t, где:
- I — сила тока, А;
- U — напряжение, В;
- t — время, которое ток затрачивает на прохождение проводника, с.
Сам же закон звучит так: количество тепловой энергии, выделяемой в проводнике, через который течёт электрический ток, равно произведению силы тока, напряжения и времени прохождения тока через проводник.
Закон Ома
Однако будет ли всегда верным это утверждение? Можно попробовать вывести его, используя закон Ома. Судя по нему U = I*R, где R — сопротивление, Ом.
Учитывая закон Ома, можно подставить значение в формулу Q = I*U*t = I 2 *R*t. Из этого можно сделать вывод, что количество теплоты напрямую зависит и от сопротивления проводника. Также для закона Джоуля-Ленца будет справедливо и это утверждение: I = Q = I*U*t.
Все три формулы будут верны, однако Q = I 2 *R*t будет верной для любых ситуаций. Две другие тоже являются правильными, однако при определённых обстоятельствах.
Проводники
Теперь о проводниках. Изначально в своих опытах Джоуль и Ленц использовали платиновые проволоки, как и было упомянуто выше. Во всех похожих экспериментах учёные того времени использовали в основном металлические проводники, так как они были довольно недорогими и стабильными. Не удивительно, ведь до сих пор металлические проводники — основной тип проводников, в связи с чем изначально считалось, что закон Джоуля-Ленца был применим только к ним. Однако чуть позже было обнаружено, что этот закон применим не только к металлическим проводникам. Он верен для любых из них. Сами проводники по классификации можно разделить на:
- Металлические (медь, железо, серебро и т.д.). Главную роль в них играют отрицательно заряженные частицы (электроны), которые протекают по проводнику.
- Жидкие. В них же за движение зарядов отвечают ионы — это атомы, в которых или слишком много, или слишком мало электронов.
- Газообразные. В отличие от своих коллег, в таких проводниках ток определяется движением как ионов, так и электронов.
И несмотря на различия, в любом случае при увеличении силы тока или сопротивления увеличится и количество тепла.
Применение закона другими физиками
Открытие закона Джоуля-Ленца сулило огромные перспективы. Ведь, по сути, этот закон позволил создавать своего рода разные электронагревательные приборы и элементы. Например, чуть позже после открытия закона учёные заметили, что при нагревании определённых элементов они начинают светиться. Они захотели поэкспериментировать с ними, используя разные проводники, и в 1874 году русский инженер Александр Николаевич Лодыгин изобрёл современную лампу накаливания, нить которой была сделана из вольфрама.
Применяется закон Джоуля-Ленца и в электротехнике — например, при создании плавких предохранителей. Плавкий предохранитель — это некий элемент электрический цепи, конструкция которого сделана так, что при протекании по нему тока выше допустимого значения (например, при коротком замыкании) он перегревается, плавится и размыкает силовую цепь. Даже обычный электрический чайник или микроволновая печь, которая есть фактически у каждого, работает согласно этому закону.
Заключение
Довольно трудно определить вклад этих учёных в современную электронику и электротехнику, но одно можно сказать точно — появление закона Джоуля-Ленца перевернуло представление людей об электричестве и дало более конкретные знания о том, что такое электрическое поле в проводнике с током.
Без сомнения, открытый этими великими учеными-физиками закон стал определяющей ступенью во всей науке, именно благодаря этому открытию впоследствии были совершены другие более или менее грандиозные достижения других ученых. Вся наука представляет собой тесное переплетение открытий, каких-то разрешенных и неразрешенных задач. Рассмотренный в этой статье закон определенным образом повлиял на многие исследования и оставил неизгладимый и вполне отчетливый след в науке.
Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.
Определение закона и формула
Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него , пропорционально произведению значения плотности электрического поля на значение напряженности.
Математически закон Джоуля — Ленца выражается следующим образом:
ω = j E = ϭ E²,
где ω — количество тепла, выделяемого в ед. объема;
E и j – напряжённость и плотность, соответственно, электрического полей;
σ — проводимость среды.
Физический смысл закона Джоуля – Ленца
Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием . Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.
Другими словами, энергия переходит в другое свое качество – тепло.
Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению. Опасен сильный перегрев при проводов, когда по проводниках могут протекать достаточно большие токи.
В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.
Математически эта формулировка выражается следующим образом:
Q = ∫ k I² R t,
при этом Q – количество выделившейся теплоты;
I – величина тока;
R — активное сопротивление проводников;
t – время воздействия.
Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.
Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.
Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.
Область применения
Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.
Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Формула Джоуля-Ленца
В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.
Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока, равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:
Q=I 2 Rt
где
Q — количество выделяемого тепла (Джоули)
I — сила тока, протекающего через проводник (Амперы)
R — сопротивление проводника (Омы)
t — время прохождения тока через проводник (Секунды)
Почему греется проводник
Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а, как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.
Из формулы также следует — чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев. Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге — подгорание с последующим пропаданием контакта.
Применение закона Джоуля-Ленца в жизни
Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.
Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна, данный эффект использовали в качестве источника света. Появились первые лампочки.
Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку
Заключение
Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.
Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.
Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка
Закон Джоуля Ленца в интегральной форме в тонких проводах:
Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.
— Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поляПреобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.
В формуле мы использовали:
Количество теплоты
Работа тока
Напряжение в проводнике
Сила тока в проводнике
Промежуток времени
В 1841 и 1842 года независимо друг от друга английский и русский физики установили зависимость количества тепла от протекания тока в проводнике. Эту зависимость назвали «Закон Джоуля-Ленца». Англичанин установил зависимость на год раньше, чем русский, но название закон получил от фамилий обоих ученных, потому как их исследования были независимы. Закон не носит теоретический характер, но имеет большое практическое значение. И так давайте кратко и понятно узнаем определение закона Джоуля-Ленца и где он применяется.
Формулировка
В реальном проводнике при протекании через него тока выполняется работа против сил трения. Электроны движутся через провод и сталкиваются с другими электронами, атомами и прочими частицами. В результате этого выделяется тепло. Закон Джоуля-Ленца описывает количество тепла, выделяемое при протекании тока через проводник. Оно прямо пропорционально зависит от силы тока, сопротивления и времени протекания.
В интегральной форме Закон Джоуля-Ленца выглядит так:
Сила тока обозначается буквой I и выражается в Амперах, Сопротивление — R в Омах, а время t — в секундах. Единица измерения теплоты Q — Джоуль, чтобы перевести в калории нужно умножить результат на 0,24. При этом 1 калория равна количеству теплоты, которое нужно подвести к чистой воде, чтобы увеличить её температуру на 1 градус.
Такая запись формулы справедлива для участка цепи при последовательном соединении проводников, когда в них протекает одна величина тока, но падает на концах различное напряжение. Произведение силы тока в квадрате на сопротивление равняется мощности. В то же время мощность прямо пропорциональна квадрату напряжения и обратно пропорциональна сопротивлению. Тогда для электрической цепи при параллельном соединении можно Закон Джоуля-Ленца можно записать в виде:
В дифференциальной форме он выглядит следующим образом:
Где j — плотность тока А/см 2 , E — напряженность электрического поля, сигма — удельное сопротивление проводника.
Стоит отметить что для однородного участка цепи сопротивление элементов будет одинаковым. Если в цепи присутствуют проводники с разным сопротивлением возникает ситуация, когда максимальное количество тепла выделяется на том, который имеет самое большое сопротивление, о чем можно сделать вывод, проанализировав формулу Закона Джоуля-Ленца.
Частые вопросы
Как найти время? Здесь имеется в виду период протекания тока через проводник, то есть когда цепь замкнута.
Как найти сопротивление проводника? Для определения сопротивления используют формулу, которую часто называют “рельс”, то есть:
Здесь буквой «Ро» обозначается удельное сопротивление, оно измеряется в Ом*м/см2, l и S это длина и площадь поперечного сечения. При вычислениях метры и сантиметры квадратные сокращаются и остаются Омы.
Удельное сопротивление — это табличная величина и для каждого металла она своя. У меди на порядки меньше, чем у высокоомных сплавов типа вольфрама или нихрома. Для чего это применяется мы рассмотрим ниже.
Перейдем к практике
Закон Джоуля-Ленца имеет большое значение для электротехнических расчетов. В первую очередь вы можете его применить при расчете нагревательных приборов. В качестве нагревательного элемента чаще всего применяется проводник, но не простой (типа меди), а с высоким сопротивлением. Чаще всего это нихром или кантал, фехраль.
Они имеют большое удельное сопротивление. Вы можете использовать и медь, но тогда вы потратите очень много кабеля (сарказм, медь не используют в этих целях). Чтобы рассчитать мощность тепла для нагревательного прибора вам нужно определится, какое тело и в каких объемах вам нужно нагреть, учесть количество требуемой теплоты и за какое время её нужно передать телу. После расчетов и преобразований вы получите сопротивление и силу тока в этой цепи. На основании полученных данных по удельному сопротивлению подбираете материал проводника, его сечение и длину.
Закон Джоуля-Ленца при передаче электричества на расстояние
При возникает существенная проблема — потери на линиях передачи (ЛЭП). Закон Джоуля-Ленца описывает количество тепла, выделенного проводником при протекании тока. ЛЭП питают целые предприятия и города, а для этого нужна большая мощность, как следствие большой ток. Так как количество теплоты зависит от сопротивления проводника и тока, чтобы кабеля не грелись нужно уменьшить количество тепла. Увеличить сечение проводов не всегда можно, т.к. это затратно в плане стоимости самой меди и веса кабеля, что влечет за собой удорожание несущей конструкции. Высоковольтные линии электропередач изображены ниже. Это массивные металлоконструкции, созданные чтобы поднять кабеля на безопасную высоту над землей, с целью избежания поражения электрическим током.
Поэтому нужно снизить ток, чтобы это сделать повышают напряжение. Между городами линии электропередач обычно имеют напряжение 220 или 110 кВ, а у потребителя понижается до нужной величины с помощью трансформаторных подстанций (КТП) или целым рядом КТП постепенно понижая до более безопасных для передачи величин, например 6 кВ.
Таким образом при той же потребляемой мощности при напряжении в 380/220 В ток снизится в сотни и тысячи раз ниже. А по закону Джоуля-Ленца количество тепла в этом случае определяется мощностью, которая теряется на кабеле.
Плавкие вставки и предохранители
Закон Джоуля-Ленца применяется при расчете плавких предохранителей. Это такие элементы, которые защищают электрическое или электронное устройство от чрезмерных для него токов, которые могут возникнуть в следствии скачка питающего напряжения,
О формуле температуры резистора
спросил
Изменено 4 месяца назад
Просмотрено 2к раз
\$\начало группы\$
У меня есть резистор на 10 Вт.
Я использую этот резистор с переменным током. Мне нужна математическая формула для определения температуры резистора с течением времени.
Температура резистора зависит от P = V 2 /R и времени, например, для R = 20 Ом.
- Ввод формул: V, R, t
- Вывод формулы: температура.
Есть ли формула для этого?
- резисторы
- температура
\$\конечная группа\$
1
\$\начало группы\$
Нет, не существует формулы, по которой можно рассчитать температуру резисторов, зная только номинал резистора, напряжение на резисторе и время. 92 \,\mathrm dt} + \epsilon\text.$$
Это означает, что ваша температура пропорциональна интегралу по функции температуры – поздравляем, вы нашли дифференциальное уравнение с плохо определенными граничными условиями!
Итак, нет простой формулы; вам понадобится поставщик этих резисторов, чтобы сообщить вам тепловое сопротивление . Если в их техническом описании это не указано, вы не можете продолжать. В любом случае, если кто-то пытается продать вам мощные резисторы без тепловых характеристик в техническом описании, держитесь подальше от этого поставщика — есть большая вероятность, что вы получите что-то, что на самом деле не рассчитано на 10 Вт, плохо указано или нет. надежен, как и обещал. Просто покупайте компоненты только из авторитетных источников (Mouser, Arrow, Element14, Digikey), а не из таких мест, как Aliexpress (откуда ваше изображение).
\$\конечная группа\$
\$\начало группы\$
Есть общая формула, но я сомневаюсь, что она поможет.
В этом случае следует знать понятие теплового сопротивления. В общем случае можно найти такое число RT, что для мощности, проходящей через материал или конструкцию, $$ \Delta T = RT x P $$, где дельта Т — разница температур между двумя сторонами материала/конструкции, а Р — рассеиваемая мощность.
Проблема в том, что RT обычно определяется экспериментально.
Есть несколько исключений. Например, если ваш резистор находится в вакууме и вы знаете его коэффициент излучения, вы можете найти его равновесную температуру из уравнения черного тела. Однако во многих случаях точное определение коэффициента излучения также выполняется экспериментально, хотя, вероятно, доступны общие конфигурации. Коэффициент излучения зависит от материала и текстуры, и было проделано много работы, чтобы определить влияние этих свойств.
Если у вас есть резистор, термически связанный с прокладочным блоком, который, в свою очередь, связан с большим радиатором, температура которого вам известна, вы можете найти тепловое сопротивление материала прокладки и рассчитать падение температуры на прокладке из его размеры. Это обычно делается для корпусов силовых полупроводников, а номера RT распространены в технических паспортах многих силовых транзисторов и ИС.
Многие производители радиаторов указывают эффективную RT для своих радиаторов, и вы можете использовать это значение, чтобы рассчитать, насколько сильно нагревается резистор или транзистор при заданной температуре окружающей среды. Обратите внимание, однако, что RT будет разным для каждого радиатора и будет сильно различаться в зависимости от скорости воздушного потока через радиатор. Даже если вы говорите о «естественной конвекции», которая происходит без обдува вентилятором, RT будет варьироваться в зависимости от ориентации радиатора. Некоторые ориентации будут способствовать созданию движения воздуха (что на самом деле охлаждает радиатор) больше, чем другие.
\$\конечная группа\$
\$\начало группы\$
Если вы предполагаете, что СЕРДЕЧНИК резистора кремний/глина/керамика, и предположим, что СЕРДЦЕ имеет диаметр 2 мм (радиус 1 мм), и вы сохраняете импульс!!!! мощность меньше, чем тепловая постоянная времени кремния для 1 кубического миллиметра, тогда мы можем рассуждать следующим образом:
1 кубический метр кремния имеет постоянную времени 11 400 секунд
0,1 кубический метр кремния в 100 раз быстрее, 114 секунд 1 кубический сантиметр) еще в 100 раз быстрее, в 1,14 секунды
0,001 кубический метр (1 кубический миллиметр) еще в 100 раз быстрее, при 0,014 секунды (11,4 миллисекунды) тепловая постоянная времени.
Таким образом, для тепловых импульсов быстрее, чем 11,4 миллисекунды, тепло даже не полностью нагрело сердечник резистора и, конечно, не начало выходить из резистора по проводам, потоку воздуха или излучению.
Для длинных импульсов лучше всего иметь очень короткие выводы к широким кускам металла для теплоотвода резистора. Некоторые резисторы имеют двухсторонние монтажные фланцы и плоские металлические днища для отвода тепла в нижележащие радиаторы, при этом путь прохождения тепла составляет всего 2, 3 или 4 миллиметра. 92/R) к резистору. Эта мощность должна идти на нагрев массы резистора (т.е. mc dT/dt) и рассеяние в воздухе (т.е. hA(T-T_air)), проверьте закон охлаждения Ньютона. Вы получаете дифференциальное уравнение для температуры с некоторыми неизвестными.
\$\конечная группа\$
\$\начало группы\$
Учитывать поведение во времени. Подайте напряжение на резистор, и он нагреется. Когда температура резистора приближается к температуре установившегося состояния, температура резистора ни в какой точке не превышает температуру установившегося состояния. Поскольку перерегулирования нет, хорошее предположение состоит в том, что это процесс первого порядка: 9{-\frac{1}{\tau}}=0,63$$
Подайте напряжение на резистор и измерьте изменение температуры во времени. Постоянная времени — это время, которое требуется, чтобы пройти две трети пути до устойчивого состояния.
\$\конечная группа\$
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя адрес электронной почты и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
курсов PDH онлайн.
PDH для профессиональных инженеров. ПДХ Инжиниринг.«Мне нравится широта ваших курсов HVAC; не только экологические курсы или курсы по энергосбережению
.»
Рассел Бейли, ЧП
Нью-Йорк
«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам
Для разоблачения меня новым источникам
информации. «
Стивен Дедук, P.E.
New Jersey
9002 «. Материал. Я многому научился, и ониочень быстро отвечали на вопросы.
Это было на высшем уровне. Буду использовать
снова. Спасибо.»
Блэр Хейворд, ЧП
Альберта, Канада
«Веб-сайт прост в использовании. Хорошо организован. Я действительно буду пользоваться вашими услугами снова.
Рой Пфлейдерер, ЧП
Нью-Йорк
«Справочный материал был превосходным, и курс был очень информативным, особенно потому, что я думал, что уже знаком
С деталями аварии Канзаса
City Hyatt Apparking ».
Майкл Морган, P.E.
Texas
» Мне действительно нравится ваша бизнес -модель. Мне нравится, что я могу просмотреть текст перед покупкой. Я нашел курс
информативным и полезным
в своей работе.»0005 «У вас отличный выбор курсов и очень информативные статьи. Вы — лучшее, что я нашел.» Рассел Смит, ЧП Pennsylvania «Я считаю, что такой подход позволяет работающему инженеру легко заработать PDH, предоставляя время для просмотра материала». Хесус Сьерра, ЧП Калифорния «Спасибо, что разрешили мне просматривать неправильные ответы. На самом деле, человек узнает больше из неудач.» Джон Скондрас, ЧП Pennsylvania «Курс был хорошо составлен, и использование тематических исследований является эффективным способом обучения. » Джек Лундберг, ЧП Висконсин «Я очень впечатлен тем, как вы представляете курсы; то есть, позволяя Студент для рассмотрения курса до платы и . .» Арвин Свангер, ЧП Вирджиния «Спасибо, что предложили все эти замечательные курсы.0052 наслаждался. Расположение и Взявшись в онлайн курсы. « Уильям Валериоти, P.E. Texas » Курс был легко следовать. Фотографии в основном давали хорошее представление о обсуждаемые темы. Необходимо 1 кредит в этике и обнаружил его здесь. « Gerald Notte, P.E. Нью -Джерси » Это был мой первый онлайн -опыт в получении моих необходимых PDH. было информативно, выгодно и экономично. Я настоятельно рекомендую его для всех инженеров ». Джеймс Шурелл, стр. практика, и не основаны на каком-то непонятном разделе законов, которые не применяются — «обычная» практика. Я многому научился вернуться к своему медицинскому устройству Организация. « Иван Харлан, P.E. Tennessee «. хороший акцент на практическое применение технологии». Юджин Бойл, ЧП Калифорния «Это был очень приятный опыт. Тема была интересной и хорошо представленной, , а онлайн -формат был очень , доступный и легкий до с использованием. Спасибо.» Патрисия Адамс, ЧП Канзас «Отличный способ добиться соответствия непрерывному обучению физкультуры в рамках временных ограничений лицензиата». Джозеф Фриссора, ЧП Нью-Джерси «Должен признаться, я действительно многому научился. Это помогает распечатать тест во время просмотра текстового материала. предоставлены фактические случаи .» Жаклин Брукс, ЧП Флорида «Общие ошибки ADA в дизайне объектов очень полезен. Тест требовал исследования в Документ , но Ответы были Гарольд Катлер, ЧП Массачусетс «Это было эффективное использование моего времени. Спасибо за разнообразие выбора in traffic engineering, which I need to fulfill the requirements of PTOE certification.» Joseph Gilroy, P.E. Illinois «A very convenient and affordable способ заработать CEU для моих требований PG в штате Делавэр. До сих пор все курсы, которые я посещал, были отличными. Надеюсь увидеть больше 40% Дисконтированные курсы. « КРИСТИНА НИККОЛАС, P.E. New York » Radiolical Radiolick Radiolical Radiolick Radiolick Radiolick Radiolick Radiolical. дополнительные курсы. Процесс несложный, и гораздо эффективнее, чем необходимость путешествовать.0052 Айдахо «Услуги, предоставляемые CEDengineering, очень полезны для инженеров-профессионалов для получения единиц PDH в любое время. Очень удобно.» Пол Абелла, ЧП Аризона «Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много времени, чтобы исследовать, где получить мои кредиты от. » Кристен Фаррелл, ЧП Висконсин
и графиками; определенно облегчает
впитывание всех
теорий.»
Виктор Окампо, P.Eng.
Альберта, Канада
». Хороший обзор принципов полупроводника. Мне понравилось пройти курс по телефону
. .»
Клиффорд Гринблатт, ЧП
Мэриленд
«Просто найти интересные курсы, загрузить документы и получить
викторина. Я буду EXPLAY Рекомендации
You To Every PE, которому нужно
CE. тем во многих областях техники».0052
«I have re-learned things I have forgotten. I am also happy to benefit financially
by your promo email which
reduced the price
на 40%. »
Конрадо Касем, ЧП
Теннесси
«Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»
Чарльз Флейшер, П.Е.
Нью-Йорк
«Это был хороший тест, и я фактически проверил, что я прочитал кодексы профессиональной этики
и правила Нью-Мексико
».
Брун Гильберт, ЧП
Калифорния
«Мне очень понравились занятия. Они стоили времени и усилий.»
Дэвид Рейнольдс, ЧП
Канзас
«Очень доволен качеством тестовых документов. Воспользуюсь сертификатом CEDengineerng
, когда потребуется дополнительная сертификация
».
Томас Каппеллин, ЧП
Иллинойс
«У меня истек срок действия курса, но вы все равно выполнили обязательство и поставили
ME, за что я заплатил — много
Оценка! » для инженера». 0052
Хорошо расположен.
для дизайна дерева.»
Брайан Адамс, ЧП
Миннесота
0052
Роберт Велнер, ЧП
Нью -Йорк
«У меня был большой опыт работы с прибрежным строительством — Проектирование
Строительство и
ЭКСПОРТИКА Рекомендовать это.
Денис Солано, ЧП
Флорида
«Очень понятный, хорошо организованный веб-сайт.0052
хорошо приготовлено.»
Юджин Брекбилл, ЧП
Коннектикут хороший опыт 52
Обзор везде и
всякий раз, когда ».
Тим Чиддикс, стр. Сохраняйте широкий выбор тем на выбор».
Уильям Бараттино, ЧП
Вирджиния
«Процесс прямой, никакой чепухи. Хороший опыт.»
Тайрон Бааш, ЧП
Иллинойс
«Вопросы на экзамене были наводящими и демонстрировали понимание материала
. Тщательный
и всеобъемлющий. «
Майкл Тобин, P.E.
Аризона
» Это мой второй курс, и я любил то, что мне предложил, что
9 951 9000 9000 9000 9000951 моя линияработы. Я обязательно воспользуюсь этим сайтом снова.»
Анджела Уотсон, ЧП
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата. »
Кеннет Пейдж, ЧП
Мэриленд
«Это был отличный источник информации о нагревании воды с помощью солнечной энергии.
Луан Мане, ЧП
Conneticut
«Мне нравится подход, позволяющий зарегистрироваться и иметь возможность читать материалы в автономном режиме, а затем
вернуться, чтобы пройти тест.»
Алекс Млсна, ЧП
Индиана
«Я оценил количество информации, предоставленной для класса. Я знаю
Это вся информация, которую я могу
Использование в реальных жизненных ситуациях ».
Natalie Deringer, P.E.
South Dakota
South Dakota
9005South Dakota
» MATELACTION и SELACTION «MATELACTION и MATELACTION» MATELACTION и MATELACTION «MATELACTION и MATELACTION» MATELACTION и MATELACTION «.
курс.»0052
«веб -сайт легко использовать, вы можете загрузить материал для изучения, затем вернуться
и пройти тест. .»
Майкл Гладд, ЧП
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, ЧП
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать сертификат PDH
. Спасибо, что сделали этот процесс простым.»
Фред Шайбе, ЧП
Висконсин
«Положительный опыт. Быстро нашел курс, который соответствовал моим потребностям, и закончил
час PDH за
Один час. «
Стив Торкильдсон, P.E.
South Carolina
» Мне понравилось, чтобы загрузить документы для обзора
«, и мне нравилось загружать документы для обзора
, и в состоянии загружать документы для обзора «, и я любил загрузку документов для обзора «.