Site Loader

Коэффициент трения скольжения | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам — очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Коэффициент трения скольжения — отношение силы трения к нормальной составляющей внешних сил, действующих на поверхности тела.


Коэффициент трения скольжения выводится из формулы силы трения скольжения

Так как сила реакции опоры, это масса умножить на ускорение свободного падения, то формула коэффициента получается:

Ниже приведена таблица коэффициентов трения скольжения для некоторых материалов:

В Формуле мы использовали :

— Коэффициент трения скольжения

— Сила трения скольжения

— Сила нормальной реакции опоры

— Масса тела

— Ускорение свободного падения

Коэффициент трения скольжения | Все Формулы

    \[ \]

Коэффициент трения скольжения — отношение силы трения к нормальной составляющей внешних сил, действующих на поверхности тела.

    \[\Large \mu =\frac{F_{Тр}}{N}\]

Коэффициент трения скольжения выводится из формулы силы трения скольжения

    \[\Large F_{Тр}=\mu N\]

Коэффициент трения скольжения

Так как сила реакции опоры, это масса умножить на ускорение свободного падения, то формула коэффициента получается:

    \[\Large \mu =\frac{F_{Тр}}{mg}\]

Ниже приведена таблица коэффициентов трения скольжения для некоторых материалов:

В Формуле мы использовали :

    \[\mu\]

— Коэффициент трения скольжения

    \[ F_{Тр}\]

— Сила трения скольжения

N — Сила нормальной реакции опоры

m — Масса тела

    \[g  = 9.8 \left[m/s^2 \right]\]

— Ускорение свободного падения

Как определить коэффициент трения скольжения?

Если брусок тянут с помощью динамометра с постоянной скоростью, то динамометр показывает модуль силы трения скольжения (Fтр). Здесь сила упругости пружины динамометра уравновешивает силу трения скольжения.

С другой стороны, сила трения скольжения зависит от силы нормальной реакции опоры (N), которая возникает в следствие действия веса тела. Чем вес больше, тем больше сила нормальной реакции. И чем больше сила нормальной реакции, тем больше сила трения. Между этими силами существует прямая пропорциональная зависимость, которую можно выразить формулой:

Fтр = μN

Здесь μ – это коэффициент трения. Он показывает, как именно сила трения скольжения зависит от силы нормальной реакции (или, можно сказать, от веса тела), какую долю от нее составляет. Коэффициент трения — безразмерная величина. Для разных пар поверхностей μ имеет разное значение.

Так, например, деревянные предметы трутся друг о друга с коэффициентом от 0,2 до 0,5 (в зависимости от вида деревянных поверхностей). Это значит, что если сила нормальной реакции опоры 1 Н, то при движении сила трения скольжения может составить значение, лежащее в промежутке от 0,2 Н до 0,5 Н.

Из формулы Fтр = μN следует, что зная силы трения и нормальной реакции, можно определить коэффициент трения для любых поверхностей:

μ = Fтр/N

Сила нормальной реакции опоры зависит от веса тела. Она равна ему по модулю, но противоположна по направлению. Вес тела (P) можно вычислить, зная массу тела. Таким образом, если не учитывать векторность величин, можно записать, что N = P = mg. Тогда коэффициент трения находится по формуле:

μ = Fтр / (mg)

Например, если известно, что сила трения тела массой 5 кг, движущегося по поверхности, равна 12 Н, то можно найти коэффициент трения: μ = 12 Н / (5 кг ∙ 9,8 Н/кг) = 12 Н / 49 Н ≈ 0,245.

Коэффициенты трения покоя и скольжения для наиболее распространенных материалов.

Комбинация материалов.

Коэффициент трения.

Сухие и чистые поверхности

Смазанные или жирные поверхности

Алмаз Алмаз 0.1 0.05 — 0.1
Алмаз Металл 0.1 — 0.15 0.1
Алюминий Алюминий 1.05 — 1.35 0.3
Алюминиевая бронза Сталь 0.45
Фосфористая бронза Сталь 0.35
Алюминий Низкоуглеродистая (малоуглеродистая) сталь

0.61

0,47*

Бронза Сталь 0.16
Бронза Чугун 0.22*
Спеченная бронза Сталь 0.13
Графит Сталь 0.1 0.1
Графит Графит (в вакууме) 0.5 — 0.8
Графит Графит 0.1 0.1
Дуб Дуб (вдоль волокон)

0.62,

0.48*

Дуб Дуб (поперек волокон)

0.54,

0.32*

0.072*
Дерево Чистое сухое дерево 0.25 — 0.5
Дерево Влажное дерево 0.2
Дерево Чистый сухой металл 0.2 — 0.6
Дерево Влажные металлы 0.2
Дерево Бетон 0.62
Дерево Кирпич 0.6
Дерево Влажный снег 0.14, 0.1*
Дерево — вощеное Сухой снег 0.04*
Железо Железо 1.0 0.15 — 0.20
Латунь Сталь 0.35 0.19
Латунь Чугун 0.3*
Кадмий Кадмий 0.5 0.05
Кадмий Хром 0.41 0.34
Кадмий Низкоуглеродистая (малоуглеродистая) сталь 0.46*
Карбид вольфрама Сталь 0.4-0.6 0.1 — 0.2
Карбид вольфрама Карбид вольфрама 0.2 — 0.25 0.12
Карбид вольфрама Медь 0.35
Карбид вольфрама Железо 0.8
Кирпич Дерево 0.6
Кожа Дуб

0.61,

052*

Кожа Металл 0.4 0.2
Кожа Дерево 0.3 — 0.4
Кожа Чистый металл 0.6
Магний Магний 0.6 0.08
Свинцовистая медь
Сталь
0.22
Медь Медь 1 0.08
Медь Чугун

1.05,

0.29*

Медь Низкоуглеродистая сталь

0.53,

0.36*

0.18*
Никель Никель 0.7 — 1.1,
0.53*

0.28,

0.12*

Никель Низкоуглеродистая сталь 0.64* 0.18*
Нейлон Нейлон 0.15 — 0.25
Олово Чугун 0.32*
Платина Платина 1.2 0.25
Плексиглас, оргстекло Плексиглас, оргстекло 0.8 0.8
Плексиглас, оргстекло Сталь
0.4-0.5
0.4 — 0.5
Полистирол Полистирол 0.5 0.5
Полистирол Сталь 0.3-0.35 0.3 — 0.35
Полиэтилен Сталь 0.2 0.2
Полистирол Полистирол 0.5 0.5
Резина Сухой асфальт (0.5 — 0.8)*
Резина Влажный асфальт (0.25 — 0.75)*
Резина Сухой бетон (0.6 — 0.85)*
Резина Влажный бетон (0.45 — 0.75)*
Свинец Чугун 0.43*
Серебро Серебро 1.4 0.55
Сапфир Сапфир 0.2 0.2
Сталь Сталь 0.8 0.16
Стекло Стекло

0.9 — 1.0,

0.4*

0.1 — 0.6,
(0.09-0.12)*
Стекло Металл 0.5 — 0.7 0.2 — 0.3
Стекло Никель 0.78 0.56
Тормозные колодки Чугун 0.4
Тормозные колодки Влажный чугун 0.2
Твердое углеродное покрытие (пленка) Твердое углеродное покрытие (пленка) 0.16 0.12 — 0.14
Твердое углеродное покрытие (пленка) Сталь 0.14 0.11 — 0.14
Ф-4, ПТФЭ, PTFE, Teflon Ф-4, ПТФЭ, PTFE, Teflon 0.04

0.04,

0.04*

Ф-4, ПТФЭ, PTFE, Teflon Сталь 0.04 0.04
Ф-4, ПТФЭ, PTFE, Teflon Ф-4, ПТФЭ, PTFE, Teflon 0.04 0.04
Хром Хром 0.41 0.34
Чугун Чугун

1.1,

0.15*

0.07*
Чугун Дуб 0.49* 0.075*
Чугун Низкоуглеродистая (малоуглеродистая) сталь

0.4,

0.23*

0.21,

0.133*

Цинк Чугун

0.85,

0.21*

Цинк Цинк 0.6 0.04

Вопрос 22. Закон трения скольжения.

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.  Сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения.  Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается чаще всего латинской буквой k или греческой буквой μ. Она зависит от природы и качества обработки трущихся поверхностей. Fтр=k*N, где k – коэффициент трения скольжения, N – сила нормальной реакции опоры.

ЛИБО ТАКОЙ ВАРИАНТ ОТВЕТА

Первый закон. Сила трения скольжения равна сдвигающей силе и заключена между нулем и максимальным значением, которое достигается в момент выхода тела из положения равновесия 

(условие отсутствия скольжения тела).

Второй закон. Максимальная сила трения скольжения при всех прочих условиях не зависит от площади соприкосновения трущихся поверхностей.

Третий закон. Максимальная сила трения скольжения пропорцио­нальна силе нормального давления тела на опорную поверхность

  (условие начала скольжения тела).

 

  — нормальная реакция опорной поверхности;

  — сила давления тела на эту поверхность.

Безразмерный коэффициент   называют коэффициентом трения скольжения или коэффициентом трения 1-го рода.

Четвертый закон. Коэффициент трения скольжения зависит от материала и физического состояния трущихся поверхностей (степени шероховатости, влажности, температуры и других условий).

Вопрос 23. Закон трения качения.

Пусть к оси катка весом , находящегося на горизонтальной плоско­сти, приложена горизонтальная сила   (рис. 1.29). Соприкосновение катка с плоскостью из-за их деформации происхо­дит не вдоль одной образующей цилиндра, как в случае абсолютно твердых тел, а по некоторой площадке . Точка приложе­ния реакций   и будет находиться в некоторой точке этой площадки. Из условий равновесия катка имеем 

.

Первый закон. Максимальный момент пары сил, препятствующий качению, в широких пределах не зависит от радиуса катка.

Второй закон. Максимальный момент сопротивления качению про­порционален силе нормального давления катка на опорную плоскость и дос­тигается в момент выхода катка из положения равновесия 

(условие начала качения катка).

 Коэффициент   называют коэффициентом трения качения или коэффициентом трения 2-го рода. Он имеет размерность длины. Коэффициент трения качения равен плечу пары сопротивления качения при предельном равновесии катка (рис. 1.29).

Третий закон. Коэффициент трения качения зависит от материала катка, опорной плоскости, а также от физического состояния их поверхностей.

 В момент начала качения катка (выхода катка из положения равновесия) имеем (рис. 1.29)

;.

 

 

Определение коэффициента трения скольжения с помощью линейки.

Пусть имеем линейку, тело и наклонную плоскость, угол наклона которой можно изменять.

Задача.

Определить коэффициент трения скольжения тела по наклонной плоскости с использованием  данных нам объектов.

Как  известно, любую физическую величину можно либо измерить с помощью прибора, либо рассчитать по формуле.

Мы, конечно, помним формулу, по которой можно рассчитать коэффициент трения  µ = Fтр/N. Но, значения сил, входящих в формулу нам не известны. Вспомним, что прибор для измерения силы называется  динамометр, а по условию задания  у нас есть только линейка.

Решение.

Пусть тело находится на наклонной плоскости. При увеличении угла наклона плоскости до определенного значения βmax тело ещё покоится на месте. Именно этот предельный угол βmax  для нас имеет значение. Выполним чертёж к этой задаче. Изобразим на чертеже все силы, действующие на тело в этом случае. Такими силами будут: со стороны Земли – сила тяжести mg, со стороны опоры – сила реакции опоры N и сила трения Fтр.

Р1Так как тело при предельном угле βmax ещё находится в покое, то равнодействующая этих трёх сил равна нулю (*)

Запишем II закон Ньютона в векторном виде для этого случая:

ma->= mg->+ N->+ Fтр->

Запишем теперь этот же закон в проекциях на оси, помня о выражении (*):

OX: 0 = -mgSIN β + 0 + Fтр => mgSIN β = Fтр   (1)

OY: 0 = -mgCOS β + N + 0 => mgCOS β = N    (2)

Вспомним о том, что /Fтр/ = /µN/ и перепишем выражение (1) в другом виде (выражение (2 )оставим без изменения):

mgSIN β = µN       (3)

mgCOS β = N       (2)

Разделим выражение (3) на выражение (2)

mgSIN β / mgCOS β = µN/N,

tg β =  µ.

Формула для расчёта коэффициента трения выведена, осталось вспомнить определение тангенса угла βmax в прямоугольном треугольнике АВС. Смотрим внимательно на чертёж ниже.

Р2

Итак, µ = tg β = ВС/AC.

Длины ВС и AC измеряем линейкой. Задание выполнено!

А если Вы знаете другие способы определения коэффициента трения при помощи исходного оборудования, то напишите нам в блог.

Остались вопросы? Не знаете, как подготовиться к лабораторной работе по физике?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Практикум «Способы определения коэффициента трения скольжения»

(Занятие каникулярной школы для учащихся 8–9 кл.)

Цель:

  • Активизация мыслительной деятельности учащихся.
  • Формирование обобщенного умения проводить физические измерения.
  • Формирование обобщенного умения проводить экспериментальную проверку физических закономерностей.
  • Формирование умения систематизировать полученные результаты в виде таблицы, умение делать вывод на основе эксперимента.

Организация проведения практикума: Все учащиеся принимающие участие в работе практикума делятся на группы. Каждая группа учащихся получает задание с кратким описанием работы.

По окончании выполнения работы учащимся необходимо составить отчет. Отчет состоит из таблицы, вычисления искомой величины и ее погрешности, вывода по работе.

Ход работы

I. Вступительное слово учителя:

Если положить на горизонтальную поверхность брусок и подействовать на него с достаточной силой в горизонтальном направлении, то брусок станет двигаться. Нетрудно убедиться, что в этом случае на брусок действуют четыре силы: в вертикальном направлении – сила тяжести P и сила реакции опоры Q, равные по модулю противоположные по направлению; в горизонтальном направлении – сила тяги F и противоположная по направлению сила трения Fmp.

Чтобы брусок двигался равномерно и прямолинейно, нужно, чтобы модуль силы тяги был равен модулю силы трения.

На этом основан метод измерения силы трения. Следует приложить к бруску силу тяги, которая будет поддерживать равномерное прямолинейное движение этого тела. По этой силе тяги определяют модуль силы трения.

II. Практикум.

Задание группе I.

Определите коэффициент трения скольжения при движении бруска по горизонтальной поверхности стола.

Оборудование: трибометр, деревянная линейка, деревянный бруска с тремя отверстиями; динамометр; набор грузов по механике.

Порядок выполнения работы.

  1. Вычислите цену деления шкалы динамометра.
  2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
  3. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра.
  4. Результат измерения запишите в таблицу.
  5. Нагружая брусок одним, двумя и тремя грузами, измерьте в каждом случае силу трения. Данные занесите в таблицу.
  6. Вычислите коэффициент трения скольжения
  7. Определите инструментальную погрешность коэффициента трения.
  8. Сделайте вывод.

Легко убедиться, что в случае движения тела по горизонтальной поверхности сила нормального давления равна силе тяжести, действующей на это тело: N = P. Это позволяет вычислить коэффициент трения:

Цена деления шкалы динамометра, ц.д = 0,1 Н.

1. Определили вес бруска и груза с помощью динамометра, записали в таблицу.

2. Двигая брусок равномерно по деревянной линейке, определили силу тяги, которая равна силе трения. Записали ее значение в таблицу.

Количество грузов Fтр,H P, H µ
Без груза   0,6 ± 0,1  
Один груз 0,3 ± 0,1 1,6 ± 0,1 0,18 ± 0,06
Два груза 0,5 ± 0,1 2,6 ± 0,1 0,19 ± 0,04
Три груза 0,7 ± 0,1 3,6 ± 0,1 0,19 ± 0,03

3. Определили коэффициент трения для каждого измерения силы трения, занесли их в таблицу.

  4. Определили погрешность измерения для каждого значения коэффициента силы трения.

Вывод:

1. Коэффициент трения равен 0,2.
2. Инструментальная погрешность измерения равна 0,06.
3. Коэффициент трения скольжения при взаимном движении тела по поверхности стола является величиной постоянной не зависящей от силы нормального давления.

2. Сравните коэффициент трения покоя, скольжения и качения. Сделайте вывод.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., карандаши круглые – 2 шт.

Порядок выполнения работы.

1. Вычислите цену деления шкалы динамометра.

2. Измерьте вес бруска с двумя грузами при помощи динамометра. Результат измерения веса запишите в тетрадь.

3. Измерьте максимальную силу трения покоя бруска по столу. Для этого положите брусок на стол, а на брусок два груза; к бруску прицепите динамометр и приведите брусок с грузами в движение. Запишите показания динамометра, соответствующее началу движения бруска.

4. Измерьте силу трения скольжения бруска с грузами по столу. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

5. Измерьте силу трения качения бруска по столу. Для этого положите брусок с двумя грузами на два круглых карандаша и перемещайте равномерно брусок по столу при помощи динамометра. Результат измерения силы запишите в тетрадь.

6. Сделайте вывод о том, какая сила больше:
а) вес тела или максимальная сила трения покоя?
б) максимальная сила трения покоя или сила трения скольжения?
в) сила трения скольжения или сила трения качения?

7. Сравните коэффициент трения покоя, трения скольжения и трения качения.

Цена деления шкалы динамометра, ц.д = 0,1 Н.

Вид трения Fтр,H P, H µ
Трение покоя 0,9 ± 0,1 2,6 ± 0,1 0,35
Трение скольжения 0,5 ± 0,1 2,6 ± 0,1 0,19
Трение качения 0,1 ± 0,1 2,6 ± 0,1 0,04

Вывод:

а) Вес тела больше чем максимальная сила трения покоя.

б) Максимальная сила трения покоя больше чем сила трения скольжения.

в) Сила трения скольжения больше чем сила трения качения.

г) При неизменном весе тела, наименьшее значение коэффициент трения имеет при качении тела, а наибольшее в случае покоя.

3. Определите коэффициент трения скольжения при движении бруска вдоль поверхности резины, нешлифованной деревянной рейки, наждачной бумаги.

Оборудование: динамометр, брусок деревянный, грузы с двумя крючками – 2 шт., отрез линолеума, деревянная нешлифованная рейка, наждачная бумага.

Порядок выполнения работы.

1. Вычислите цену деления шкалы динамометра.
2. Измерьте вес бруска при помощи динамометра. Результат измерения веса запишите в таблицу.
3. Измерьте силу трения скольжения бруска с грузами по поверхности резины, деревянной нешлифованной линейки и по поверхности наждачной бумаги. Для этого перемещайте брусок с грузами равномерно по столу при помощи динамометра. Результат измерения запишите в таблицу.
4. Вычислите коэффициент трения скольжения.
5. Сделайте вывод.

Цена деления шкалы динамометра, ц.д = 0,1 Н.

Виды трущихся поверхностей Fтр,H P, H µ
Дерево по дереву (гладкая поверхность) 0,5 ± 0,1 2,6 ± 0,1 0,19
Дерево по дереву (нешлифованная деревянная рейка) 0,9 ± 0,1 2,6 ± 0,1 0, 35
Дерево по линолеуму 1,1 ± 0,1 2,6 ± 0,1 0, 42
Дерево по наждачной бумаге   2,6 ± 0,1  

Вывод:

1. Сила трения:

а) зависит от рода трущихся поверхностей.
б) зависит от шероховатости трущихся поверхностей.
в) чем больше шероховатости поверхности, тем коэффициент трения больше.

2. Способы увеличения или уменьшения силы трения скольжения:

Увеличить: увеличить шероховатость трущихся поверхностей, насыпать между трущихся поверхностей частицы (стружку, опилки, песок).

Уменьшить: шлифовка, полировка трущихся поверхностей, нанесение смазки.

Задание группе II.

Измерение коэффициент трения скольжения, используя наклонную плоскость

Оборудование: линейка деревянная от трибометра, брусок деревянный, линейка измерительная, штатив.

Порядок выполнения работы.

1. Используя штатив, закрепите линейку под углом к столу.
2. Положите брусок на закрепленную под углом деревянную линейку.
3. Меняя угол наклона линейки, найдите такой максимальный угол, при котором брусок еще покоится.
4. Измерьте длину основания линейки и высоту подъема линейки.
5. Рассчитайте значение коэффициента трения скольжения дерева о дерево по формуле:

6. Рассчитайте погрешность измерения.
7. Вывод.

Экспериментальные данные.

Измерили высоту подъема и длину основания линейки.

Вывод:

1. Коэффициент трения равен 0,3.
2. Погрешность измерения равна 0,0016.

2. Измерение коэффициента трения скольжения, через опрокидывание бруска

Оборудование: брусок деревянный, линейка деревянная от трибометра, нить, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Брусок с привязанной к длинной грани нитью поставьте торцом на горизонтальную поверхность стола и тяните за нить. Если нить закреплена невысоко над поверхностью стола, то брусок будет скользить. При определенной высоте h точки А крепления нити сила натяжения нити F опрокидывает брусок.

Условия равновесия для этого случая относительно точки – угла опрокидывания:

Fh – mga/2 = 0;

Согласно II закону Ньютона: F – Fтр = 0;

N – mg = 0.

Обработка результатов.

1. Рассчитайте по формуле значение коэффициента трения скольжения дерева о дерево.
2. Определите погрешность измерений.
3. Запишите полученный ответ с учетом допущенных погрешностей измерений.
4. Сделайте вывод.

Экспериментальный расчет.

a = 45 ± 1 мм, h = 80 ± 1 мм.

Вывод:

1. Коэффициент трения равен 0,28.
2. Инструментальная погрешность измерения равна 0,0098.

3. Измерение коэффициента трения скольжения с помощью карандаша.

Оборудование: карандаш, линейка деревянная от трибометра, линейка ученическая.

Порядок выполнения работы.

Теоретическое обоснование: Поставьте карандаш на стол вертикально, нажмите на него, наклоните и наблюдайте характер его падения. При небольших углах наклона к вертикали карандаш не проскальзывает относительно поверхности стола при любой величине силы, прижимающей его к столу. Проскальзывание начинается с некоторого критического угла, зависящего от силы трения.

Записываем второй закон Ньютона в проекциях на координатные оси при угле наклона, равном критическому. (Силой тяжести mg, действующей на карандаш, по сравнению с большой силой F пренебрегаем).

Обработка результатов:

1. Рассчитайте по формуле значение коэффициента трения скольжения дерева о дерево.
2. Определите погрешность измерений.
3. Запишите полученный ответ с учетом допущенных погрешностей измерений.
4. Сделайте вывод.

Экспериментальный расчет.

1. Обработка результатов

α = 300,

µ= tgα = sina /cosa

µ = 0,58

Вывод:

1. Коэффициент трения равен 0,58.

III. Подведение итогов практикума:

Сила трения скольжения зависит:

а) От рода трущихся поверхностей.
б) От шероховатости трущихся поверхностей.
в) Прямо пропорционально от силы давления.
г) Коэффициент трения скольжения при взаимном движении тела по поверхности является величиной постоянной не зависящей от силы нормального давления.
д) Чем больше шероховатости поверхности, тем коэффициент трения больше.

Приложение.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *