Сборка устройства Хендершота. — Гордиев Узел — LiveJournal
Устройство состоит из двух одинаковых волнообразных катушек, намотанных вокруг конденсаторов.Катушка
Диаметр катушки 150 мм (Ø 5 15/16 дюйма) измеренный по центрам палочек, состоит из 57 деревянных палочек толщиной 3 мм (1/8 дюйма) длиной три дюйма – 75 мм. Палочки равномерно распределены по окружности.
Все катушки мотаются в одну сторону, волнами внутрь и наружу. Палочки должны быть хорошо закреплены на основании и катушка должна быть жёсткой.
L3 начинается от основания и состоит из 64 витков эмалированного медного провода №24 (примерно Ø 0.5 мм).
Катушки L2 и L1 по 12 витков каждая. Провод № 20 (примерно Ø 0.8 мм), уходит 25 футов (~ 9 метров).
Катушка L4 из 14 витков, наматывается поверх L3. Она обычная прямая — не волнистая. Провод №18 = Ø 1,0 мм.
Хендершот помечал катушки проводом разного цвета, L3 жёлтая, L4 красная, чтобы не путать.
Катушка L4 подключается к конденсатору.
Конденсатор
Внутри катушки располагается кусок трубы из нержавейки Ø 5 дюймов (130 мм), можно из алюминия; на её внешнюю сторону, вручную, наматывается конденсатор из фольги. Хендершот использовал фольгу из разобранных электролитических конденсаторов. Труба диаметром 133мм, высотой 70 мм, толщина стенки 0,8 мм. (оригинальные размеры в дюймах: 5 ¼* 2 ¾*0.032)
Нержавейку Хендершот использовал потому, что в первом устройстве он взял банку из-под кофе, на которую и намотал фольгу от электролитического конденсатора, но кислота из конденсатора разъела жесть.
Конденсаторы помещаются внутрь катушек, центрируются и фиксируются парафином.
Получается ёмкость ~0.0078 микрофарад. Оба конденсатора должны быть одинаковой ёмкости.
(В одном из текстов Хендершот упоминает ёмкость 1.3 мкф – на схеме таки и написано «возможно 1.3 мкф»)
Намотка конденсатора состоит из четырёх слоёв. Первый слой на банку — бумага. Второй слой из двух частей (В и С) по одному метру и с разрывом в 20 мм между ними. От места разрыва идут отводы проводов обкладок. Затем ещё слой бумаги. Поверх бумаги ещё слой фольги, никуда не подключенный (А), длиной 2.5 метра.
Размеры в оригинале: А = 91 ¼ дюйма длина и 2 ¾ “ ширина, В = 40”, C = 40 ¾ “ , зазор = ¾ “
Обкладки конденсатора подключаются к катушке L4.
Сборка
Также для сборки устройства потребуются 2 трансформатора с отношением обмоток 1:5 и конденсаторы на 40 и 80 мкф. На 450 вольт, неполярные.
(в одной из схем полярные, подключенные последовательно — встречно одноименными полюсами, «минусами»)
Катушки Ch2 и Ch3 наматываются на мягком трансформаторном железе. Во время работы слегка гудят. Частота гудения зависит от зазора, который можно регулировать. Эти части для сборки устройства Хендершот покупал в обычном радиомагазине своего времени. Катушки от зуммера для телефона, трансформаторы от телевизора (24 в на 120 в). Уникальными являются только катушки с конденсаторами внутри, остальное все покупное. В первых опытах Хендершот и эти катушки использовал от радиоприемников того времени. Резонансная частота контуров была 80кГц. Почему потом заменил катушки на самодельные – неизвестно.
Собранное устройство либо будет работать сразу, либо вообще не будет. Почему, никто не знает.
Скачать: https://yadi.sk/i/E2mCYkLWboM7R
Ссылка по теме: http://alexxfoxx.livejournal.com/169638.html
39. Переменный ток. Резистор, конденсатор и катушка в цепи переменного тока.
Элементы цепи переменного тока
Резистор в цепи постоянного тока
По закону Ома, в замкнутой цепи постоянного тока
напряжение на зажимах источника меньше ЭДС
U = IR; U = E — Ir
Резистор в цепи переменного тока
Рассмотрим схему, состоящую из источника переменного
тока, резистора и идеальных проводов.
Предположим, что напряжение на резисторе
изменяется по гармоническому закону
U = U0 cos ω t .
Найдем силу тока, протекающего через резистор.
По закону Ома для участка цепи
I=U/R ==> I = I0 cos ω t
Амплитуда силы тока I0 = U0/R
Ток и напряжение изменяются по
одинаковому гармоническому закону
(косинуса), то есть совпадают по фазе.
Это означает, что, например, в тот
момент времени, когда в цепи максимальна
сила тока, напряжение на резисторе также
максимально.
Конденсатор в цепи переменного тока
Включим конденсатор в цепь постоянного тока.Некоторый заряд перетечет от источника тока на обкладки конденсатора.В цепи возникает кратковременный импульс зарядного тока. Конденсатор заряжается до напряжения источника, после чего ток прекращается. Через конденсатор постоянный ток течь не может!
Рассмотрим процессы, происходящие при включении конденсатора в цепь переменного тока
зарядный ток
.
Через диэлектрик, разделяющий обкладки конденсатора, электрический ток протекать, как и прежде, не может. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора в цепи появится переменный ток.
Если напряжение в цепи изменяется по гармоническому закону,
U = U0cos ωt
то заряд на обкладках конденсатора изменяется
также погармоническому закону
q=Cu = CU0cos ωt
и силу тока в цепи можно найти как производную заряда
i = q/
i= -CU0 ω sin ωt = CU0ω cos(ωt+π/2),
i= I0ω cos(ωt+π/2)
Амплитуда силы тока I0 = CU0ω
Из полученной формулы видно, что в любой момент времени
фаза тока больше фазы напряжения на π/2.
В цепи переменного напряжение на конденсаторе тока отстает по фазе от тока на π/2, или на четверть периода.
Емкостное сопротивление
Величину
называют емкостным сопротивлением.
Связь между амплитудными значениями силы тока и напряжения формально совпадает с законом Ома для участка цепи
Такое же соотношение выполняется для действующих значений силы тока и напряжения.
Емкостное сопротивление конденсатора зависит от частоты переменного напряжения. С увеличением частоты колебаний напряжения емкостное сопротивление уменьшается, поэтому амплитуда силы тока увеличивается прямо пропорционально частоте I0 = CU0ω.
При уменьшении частоты амплитуда силы тока уменьшается и при ω=0 обращается в 0. Отметим, что нулевая частота колебаний означает, что в цепи протекает постоянный ток.
Катушка индуктивности в цепи переменного тока
Мы предполагаем, что катушка индуктивности обладает пренебрежимо малым активным сопротивлением R. Такой элемент включать в цепь постоянного тока нельзя, потому что произойдет короткое замыкание.
В цепи переменного тока мгновенному нарастанию силы тока препятствует ЭДС самоиндукции. При этом для сверхпроводника ei+u=0.
Используя закон Фарадея для самоиндукции ei= -Li/ ,
можно показать, что, если сила тока в цепи изменяется по гармоническому закону
i= I0cos(ωt),
уравнением
U = — I0 Lωsin ωt = I0 Lω cos(ωt+π/2),
то есть колебания напряжения опережают по фазе колебания силы тока на π/2.Произведение U0 = I0Lω является амплитудой напряжения:
U = U0 cos(ωt+π/2)
Индуктивное сопротивлени
Величину
Урок 9. конденсатор и катушка индуктивности в цепи переменного электрического тока — Физика — 11 класс
Физика, 11 класс
Урок 9. Конденсатор и катушка индуктивности в цепи переменного электрического тока
Перечень вопросов, рассматриваемых на уроке:
Процессы, происходящие в цепи переменного электрического тока при наличии конденсатора и катушки индуктивности;
Устройство и принцип действия генератора переменного тока и трансформатора;
Автоколебания;
Проблемы передачи электроэнергии и способы повышения эффективности её использования.
Глоссарий по теме
Автоколебания – незатухающие колебания в системе, поддерживаемые за счет постоянного источника энергии.
Электрические машины преобразующие механическую энергию в электрическую называются генераторами.
Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.
Коэффициент трансформации – величина равная отношению напряжений в первичной и вторичной обмотках трансформатора.
Основная и дополнительная литература по теме урока:
Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.
Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.
Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.
Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004
Основное содержание урока
Переменный ток, которым мы пользуемся, вырабатывается с помощью генераторов переменного тока на электростанциях. Для передачи произведенной электроэнергии строятся линии электропередачи. В каждом населенном пункте имеются трансформаторы. Какую роль играют трансформаторы при передаче электроэнергии? Об этом мы поговорим на данном уроке.
В июле 1832 года Фарадей получил анонимное письмо, в котором автор описывал устройство созданного им генератора постоянного тока. Ознакомившись с содержанием письма Фарадей тут же отослал его в редакцию научного журнала. Автор этого письма не назвал себя, его фамилия осталась неизвестной.
Электрические машины преобразующие механическую энергию в электрическую называются генераторами. Впоследствии генераторы постоянного тока непрерывно совершенствовались. Потом, когда начали использовать переменный ток они уступили место генераторам переменного тока. Переменный ток в основном вырабатывается генераторами переменного тока. Простой моделью генератора может служить прямоугольная рамка, вращающаяся в магнитном поле. При вращении рамки, магнитный поток пронизывающий площадь поверхности, ограниченную рамкой, меняется по гармоническому закону:
N- число витков.
Возникает ЭДС индукции который меняется по гармоническому закону.
ЭДС индукции в рамке равна:
Если с помощью контактных колец и скользящих по ним щёток соединить концы рамки с электрической цепью, то в цепи возникнет переменный ток.
В современной энергетике для производства электроэнергии используются электромеханические индукционные генераторы. Принцип действия таких генераторов основан на явлении электромагнитной индукции. Основными частями генератора являются статор и ротор. Неподвижная часть генератора называется статором, а вращающаяся – ротором.
Постоянный ток не может идти по цепи содержащей конденсатор, т. к. цепь оказывается разомкнутой. При включении конденсатора в цепь переменного тока конденсатор будет периодически заряжаться и разряжаться с частотой равной частоте приложенного напряжения. В результате периодически меняющихся процессов зарядки и разрядки конденсатора в цепи течет переменный ток. Лампа накаливания, включенная в цепь переменного тока последовательно с конденсатором кажется горящей непрерывно, т.к. при высокой частоте колебаний силы тока человеческий глаз не способен заметить периодического ослабления нити накала. Конденсатор оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.
Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора называют ёмкостным сопротивлением.
Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току. Чем больше ёмкость конденсатора и частота колебаний, тем больше ток перезарядки. При наличии в цепи переменного тока конденсатора колебания силы тока опережают по фазе колебания напряжения конденсаторе на 90º. Сдвиг фазы колебаний силы тока на 90º относительно фазы колебания напряжения на конденсаторе приводит к тому, что мощность переменного тока в течение одной четверти периода имеет положительный знак, а в течение второй четверти – отрицательный. Поэтому среднее значение мощности за период равно нулю.
Индуктивность в цепи, так же, как и ёмкость, влияет на силу переменного тока. Объясняется это явлением самоиндукции. В любом проводнике, по которому протекает переменный ток, возникает ЭДС самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при этом вихревое электрическое поле тормозит движение электронов. Лишь спустя некоторое время сила тока достигает максимального значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она приобрела бы при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и его частотой колебаний.
Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
Если частота равна нулю, то индуктивное сопротивление тоже равно нулю. Поэтому постоянный ток как бы не «замечает» катушку индуктивности в цепи.
Колебания напряжения на катушке опережают по фазе колебания силы тока на 90º.
Сдвиг фазы колебаний приводит к тому, что средняя мощность за период колебаний равна нулю.
Генератор на транзисторе используется для создания высокочастотных электромагнитных колебаний.
Для потребления электрической энергии нужно доставить его от источника к потребителю. Для этого строят линии электропередачи. При передаче электроэнергии на расстояние возникают потери энергии вследствие нагревания проводов. Тепловые потери можно определить используя закон Джоуля – Ленца:
Из этой формулы следует, что для уменьшения потерь энергиинужно уменьшить сопротивление или повысить напряжение. Уменьшения сопротивления проводов ЛЭП требует увеличения их площади поперечного сечения, что приведет к увеличению массы проводов. Увеличение массы проводов связано с большими расходами на укрепление столбов линии электропередачи, для их удержания и на производство металла для них. Наиболее эффективным является увеличение напряжения.
Для изменения напряжения в сети используют трансформаторы. Трансформатор был изобретен в 1876 году Яблочковым и в 1882 году усовершенствован Усагиным. Простейший трансформатор состоит из двух катушек, надетых на общий замкнутый стальной сердечник. Эти катушки называются обмотками трансформатора. Обмотка трансформатора, подключаемая к источнику переменного напряжения, называют первичной, а другая к которой присоединяют нагрузку – вторичной. Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в трансформаторе возникает переменное магнитное поле. Это поле пронизывает обе обмотки и в них возникает вихревое электрическое поле, которое действуя на заряженные частицы во вторичной обмотке способствует возникновению в ней переменного напряжения.
Величина равная отношению напряжений в первичной и вторичной обмотках трансформатора называют коэффициентом трансформации. Его обозначают буквой «k».
k– коэффициент трансформации.
U1 иU2 – напряжения на первичной и на вторичной обмотке.
N1 и N2— число витков на первичной и на вторичной обмотке.
Если k < 1 — трансформатор повышающий,
k > 1 — трансформатор понижающий.
КПД трансформатора равен отношению мощности в нагрузке к мощности, подаваемой из сети на первичную обмотку:
Для передачи электроэнергии на расстояние напряжение повышают с помощью трансформатора, а для потребления — понижают. В массивных проводниках при изменении магнитного поля возникают индукционные токи (токи Фуко), которые нагревают проводник. Чтобы эти индукционные токи не нагревали сердечник трансформатора его делают не сплошным, а из отдельных пластин, скрепленных вместе.
Закон Ома гласит: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.
Из формулы закона Ома для переменного тока мы видим, что при постоянной амплитуде напряжения, амплитуда силы тока зависит от частоты. Амплитуда силы тока будет максимальной, если полное сопротивление минимально. Полное сопротивление цепи минимально при равенстве индуктивного и ёмкостного сопротивления. В этом заключается условие возникновения резонанса в электрической цепи.
Резонанс в электрической цепи – это явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний контура.
Явление резонанса широко используется в радиотехнике, в схемах настройки радиоприемников. Меняя электроемкость конденсатора в колебательном контуре можно настроить его на нужную волну, т.е. выделить частоту на которой работает передающая станция
Разбор тренировочных заданий
1. Каково амплитудное значение ЭДС, возникающей в рамке из 50 витков, если она вращается с циклической частотой 180 рад/с в магнитном поле индукцией 0,4 Тл? Площадь рамки 0,02 м2.
Дано:
N=50
ω=180 рад/с
B=0,4 Тл
S=0,02 м2
_________
Ԑm=?
Решение:
Ответ: 72 В.
2. Катушка с индуктивностью 0,08 Гн присоединена к источнику переменного тока частотой 1000 Гц. При этом вольтметр показывает 100 В. Определить амплитуду тока в цепи. Ответ округлить до десятых.
Дано:
L=0,08 Гн
ν= 1000 Гц
U=100 В
__________
Im=?
Решение:
Напишем закон Ома для переменного тока
Т.к. ХC и R равны нулю, то
Учитывая, что , получаем:
Найдем амплитудное значение напряжения:
Подставим числовые данные в формулу для расчета амплитуды силы тока:
Ответ: Im = 0,3 А.
Физика Переменный ток. Активное сопротивление. Конденсатор и катушка индуктивности в цепи переменного тока
Описание видеоурока
Огромное практическое значение имеют незатухающие вынужденные колебания. Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. Переменный ток, используемый потребителями, представляет собой не что иное, как вынужденные электромагнитные колебания. Частота переменного тока показывает число колебаний за 1 секунду. Стандартная частота промышленного тока равна 50 Герц. Значит, на протяжении 1 с ток 50 раз течет в одну сторону и 50 раз в другую. Частота 50 Герц принята для промышленного тока во многих странах мира. Сила тока и напряжение меняются со временем по гармоническому закону. Это вытекает из следующих рассуждений. Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводников будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Если время распространения изменений поля в цепи гораздо меньше периода колебаний напряжения, то можно считать, что электрическое поле во всей цепи меняется почти мгновенно при изменении напряжения на концах цепи. Переменное напряжение, использующее потребителями в осветительной сети, создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генераторов переменного тока. Поток магнитной индукции, который пронизывает проволочную рамку, пропорционален косинусу угла альфа между нормалью к рамке и вектором магнитной индукции. При равномерном вращении рамки угол альфа увеличивается прямо пропорционально времени. Поэтому поток магнитной индукции меняется гармонически. Согласно закону электромагнитной индукции, ЭДС индукции в рамке равна взятой со знаком минус скорости изменения потока магнитной индукции по времени. Иначе ЭДС электромагнитной индукции равна производной потока магнитной индукции по времени. При изменении напряжения по гармоническому закону напряженность электрического поля в проводнике изменяется по такому же закону. Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения. Цепи с резистором. Цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением, называемым активным сопротивлением. При наличии нагрузки, обладающей активным сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения. В цепи переменного тока промышленной частоты, равной 50 Герц, сила тока и напряжение изменяются сравнительно быстро. Мощность в цепи постоянного тока на участке с сопротивлением равна по определению произведению квадрата силы тока на сопротивление. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление, определяется произведением квадрата мгновенного значения силы тока на сопротивление. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду. Человеку необходимо знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов.
Здесь изображен график зависимости мгновенной мощности от времени. На протяжении одной четверти периода мощность больше половины амплитудного значения. Но на протяжении следующей четверти периода мощность меньше этой величины. На протяжении одной четверти периода эта функция пробегает ряд положительных значений. Половина квадрата амплитуды силы тока в колебательном электромагнитном контуре есть среднее за период значение квадрата силы тока. Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током, равнялась энергии, выделяемой за то же время переменным током. Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Нам важны общие характеристики колебаний, такие как амплитуда, период, частота, действующие значения силы тока и напряжения и средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока. Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения. Мощность в цепи переменного тока определяется действующими значениями силы тока и напряжения. Мощность равна произведению силы тока и напряжения. Фактически цепь, содержащая конденсатор, оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Поэтому постоянный ток не может существовать в цепи, содержащей конденсатор. Переменный ток способен течь в цепи, содержащей конденсатор. Проведем опыт. Составим последовательную цепь из конденсатора и лампы накаливания. Постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. При включении постоянного напряжения лампа не светится. Но при включении переменного напряжения лампа загорается. При этом емкость конденсатора достаточно велика. Происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, текущий в цепи при перезарядке конденсатора, нагревает нить лампы. Рассмотрим цепь, содержащую только конденсатор, где сопротивлением проводов и обкладок конденсатора можно пренебречь. Напряжение на конденсаторе совпадает по значению с напряжением на концах цепи. Следовательно, заряд конденсатора меняется по гармоническому закону. Сила тока представляет собой производную заряда по времени. Приведем графики зависимости силы тока и напряжения от времени. Видно, что колебания силы тока опережают колебания напряжения на конденсаторе на пи вторых. Амплитуда силы тока равна произведению максимального напряжения емкости конденсатора и циклической частоты колебаний. Величину икс-цэ, равную обратному произведению циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления в законе Ома. Это и позволяет рассматривать емкостное сопротивление как сопротивление конденсатора переменному току. Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. С увеличением емкости конденсатора емкостное сопротивление уменьшается. Уменьшается оно и с увеличением частоты.
Индуктивность в цепи влияет на силу переменного тока. Это можно доказать с помощью простого опыта. Составим цепь из катушки большой индуктивности и электрической лампы накаливания. С помощью переключателя можно подключить эту цепь или к источнику постоянного напряжения, или к источнику переменного напряжения с равными значениями. Лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Здесь проявляется самоиндукция. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь со временем сила тока достигает наибольшего установившегося значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет достигать тех значений, которые оно бы приобрело с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения. При изменении силы тока по гармоническому закону ЭДС самоиндукции будет равна противоположному значению производной индуктивности. Так как удельная работа кулоновского поля равна напряжению на концах катушки, то напряжение на концах катушки оказывается гармонически связанным с амплитудным значением напряжения контура. Следовательно, колебания напряжения на катушке опережают колебания силы тока на пи-пополам. В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю. В момент, когда напряжение становится равным нулю, сила тока будет максимальной. Величину икс-эл, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Амплитуда силы тока в катушке можно найти отношением амплитуды напряжения на индуктивное сопротивление. Так выглядит закон Ома для цепи постоянного тока с катушкой. Индуктивное сопротивление увеличивается с ростом частоты, значит, катушка хорошо проводит низкочастотные колебания и плохо – высокочастотные, а для постоянного тока оно равно нулю. Рассмотрим использование частотных свойств конденсатора и катушки индуктивности. Реальные электрические цепи содержат все виды сопротивлений: активное, индуктивное, емкостное, поэтому ток в реальной цепи зависит от ее полного эквивалентного сопротивления.
Конденсатор хорошо проводит высокочастотные колебания и плохо – низкочастотные колебания. Катушка наоборот: хорошо проводит низкочастотные колебания и плохо – высокочастотные колебания. Эти свойства позволяют создать различные частотные фильтры – схемы, позволяющие выделить из всего сигнала низкочастотные и высокочастотные составляющие.
Колебательный контур обладает замечательным свойством – пропускать колебания только определенной частоты, зависящей от емкости конденсатора и индуктивности катушки, под действием резонанса. Эти свойства контура широко применяются в радио- и телеприёмной и передающей аппаратуре для селекции сигналов.
Задача
Конденсатор включен в цепь переменного тока с частотой 200 Герц. Напряжение в цепи 40 Вольт, сила тока 0,64 Ампера. Какова емкость конденсатора?
Вспомнив закон Ома для цепи с колебательным контуром, выразим емкость конденсатора как отношение силы тока к напряжению и циклической частоте. Чтобы определить циклическую частоту, необходимо частоту переменного тока разделить на два-пи. Получаем результат 0,5 микрофарад есть емкость конденсатора.
10. Реальная катушка и реальный конденсатор в цепи переменного тока. Определения, основные соотношения и особенности цепи. Понятие об активной, реактивной и полной мощностях.
Любой промышленный или бытовой потребитель электрической энергии, т.е. элемент реальной электрической цепи переменного тока, в котором происходят два энергетических процесса — преобразования и периодического обмена электрической энергии, может быть представлен на электрической схеме замещения в виде так называемого реального элемента Z. В отличие от идеальных элементов (активного R и реактивного Х), в которых по определению происходит только один энергетический процесс (преобразования или обмена электрической энергией), в реальном элементе происходят одновременно оба энергетических процесса.
Поэтому такой реальный элемент Z на схеме замещения можно представить как комбинированный, т.е. состоящий из двух идеальных элементов: активного — R и реактивного – Х (индуктивного — Lили ёмкостного – C ).
Реальный элемент: Z [ R , X ]
Z { R , L } — катушка, (реальная катушка с тепловыми потерями),
Z { R , C } — конденсатор, (реальный конденсатор с тепловыми потерями).
— катушка (реальная катушка с тепловыми потерями):
— конденсатор (реальный конденсатор с тепловыми потерями):
1. Катушка (активно-индуктивный r- l элемент) в цепи переменного тока
Реальная катушка Z наряду с индуктивностью L [Гн], связанной с наличием переменного магнитного поля в катушке, обладает активным сопротивлением R , обусловленным сопротивлением провода, из которого изготовлена катушка: R = ρ l /S [Ом].
На этом сопротивлении в катушке происходят тепловые потери электрической энергии Р = I 2 R [Вт] (так называемые “джоулевы потери”), поэтому такая катушка на схеме замещения может быть представлена в виде последовательного, а иногда параллельного, соединения активного R и индуктивного L идеальных элементов:
При включении активно-индуктивной цепи в сеть переменного тока на напряжение u в ней протекает ток i = Im Sin ωt и по второму правилу Кирхгофа для мгновенных значений напряжений можно записать:u=u R + u L ,
— или, переходя к действующим значениям напряжений, можно записать в векторной форме: , U — напряжение на зажимах питающей сети (напряжение цепи),
— U R = I R — напряжение на активном элементе (активная составляющая)
— UL = I X L — напряжение на индуктивном элементе (индуктивная составляющая)
Полученные соотношения можно представить на плоскости в виде векторной диаграммы:Векторы напряжений U, UR = I R и U L = I X L образуют прямоугольный треугольник напряжений, поэтому можно записать:
U 2 = (I R)2+ (I X L)2 или откуда получаем выражение закона Ома для активно-индуктивной (R-L) цепи переменного тока: —
здесь — полное сопротивление активно-индуктивной (R- L) цепи.
Из треугольника напряжений можно получить скалярные прямоугольные треугольники — треугольник сопротивлений (если стороны треугольника напряжений разделить на силу тока I) и треугольник мощностей (если стороны треугольника напряжений умножить на силу тока I). Из этих треугольников можно получить дополнительные количественные соотношения, необходимые для расчета электрической цепи: