Онлайн калькулятор расчета параметров 555 таймера
Для реализации логических цепей, участвующих в работе сигнализаций, датчиков, преобразователей, усилители применяются специальные таймеры. Данное устройство позволяет генерировать на выходе импульсы прямоугольной формы с определенными параметрами. За счет чего такое приспособление выступает и в роли таймера, и в роли генератора импульсов. Для того чтобы рассчитать периоды положительного и отрицательного импульса, необходимо оперировать величиной сопротивлений и емкостью конденсатора.
Схема 555 таймераПосмотрите на рисунок, здесь приведена принципиальная схема работы 555 таймера (аналог микросхема КР1006ВИ1 )
Выводы:
1 — Земля.
2 — Запуск.
3 — Выход.
4 — Сброс.
5 — Контроль.
6 — Останов.
7 — Разряд.
8 — Плюс питания.
Как видите, конструктивно он состоит из резисторов R1, R2 и конденсатора C.
Поэтому, чтобы рассчитать длительность высокого и низкого уровня, необходимо воспользоваться такими расчетными формулами:
Длительность высокого уровня импульса на выходе работы схемы вычисляется по формуле:
T1 = 0,7 * (R1+R2) * C, где
R1 и R2 – величина сопротивления соответствующих резисторов, указанных на схеме;
C – емкость конденсатора.
Для вычисления низкого уровня импульса на выходе работы схемы используется формула:
T2 = 0,7 * R1 * C
Для определения величины полного периода применяется формула:
T = 0,7 * C * (2*R1+R2)
Для расчета частоты смены импульсов на выходе таймера 555 используется формула:
F = 1.45 / ((R1+2*R2)*C)
Подбирая параметры сопротивлений и емкости в цепи, вы сможете собрать 555 таймер с требуемыми величинами высокого и низкого сигнала на выходе. Чтобы не считать параметры по формулам выше, вы можете воспользоваться нашим онлайн-калькулятором.
Расчёт параметров таймера NE555
- Подробности
- Категория: Разное
Таймер NE555 может работать как моностабильный мультивибратор, а также как генератор прямоугольных импульсов c выходным током 200 мА(max).
I потребления = I вых + 3 мА(maх).
Напряжение питания от 4,5B(min) до 16B(max).
Точность параметров таймера — не более 1% от расчетного значения и не зависит от напряжения питания.
Блок схема таймера NE555.
1 Земля. |
Подключается к минусу питания схемы. |
8 Питание. |
Напряжение питания таймера NE 555 постоянное и может быть в интервале от 4,5B(min) до 16B(max). |
2 Запуск. |
При подаче на этот вход импульса лог. «0», происходит запуск таймера и на выводе №3 появляется напряжение лог. «1» на время, которое задается внешним сопротивлением R1+R2 и конденсатором С. Данный режим работы называется моностабильным. |
7 Разряд. |
Вывод соединен с коллектором транзистора эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер. Транзистор закрыт, когда на выходе таймера лог. «1» и открыт, когда на выходе лог. «0». |
3 Выход. |
Логическая 1 равена Uпит — 1,7В. Логический ноль равен 0,25В. Время переключения 100 нс. |
6 Стоп. |
При подаче на этот вывод импульса лог. «1» (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение лог. «0». |
4 Сброс. |
При подаче на этот вывод напряжения лог. «0» (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение лог. «0». Если в схеме нет необходимости в режиме сброса, то вывод «сброс» необходимо подключить к плюсу питания. |
Контроль. |
Применение вывода расширяет функциональность таймера. Изменением напряжения от 45% до 90% на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. |
Введите значения R1, R2 и С и нажмите «Расчет»
Расчет таймера NE555(КР1006ВИ1) — Микроконтроллеры и Технологии
Заполните одно из значений ниже, и нажмите кнопку «Рассчитать» и калькулятор определит вам целый ряд возможных вариантов для сопротивлений резисторов R1, R2 и значение емкости конденсатора C
Назначение выводов:
Вывод №1 — Земля(GND).
Вывод подключается к минусу питания или к общему проводу схемы.
Вывод №2 — Запуск(TRIG).
Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного мультивибратора. Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.
Вывод №3 — Выход(OUT).
Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.
Вывод №4 — Сброс(RST).
При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.
Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.
Если этот вывод не используется, то его лучше подключить через конденсатор 0,01мкФ к общему проводу.
Вывод №6 — Стоп(THR).
Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.
Вывод №7 — Разряд(DISC).
Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.
Напряжение питания таймера составляет от 4,5 до16 вольт.
555-й таймер. Часть 1. Как устроен и как работает таймер NE555. Расчёт схем на основе NE555
Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / oС, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.
Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.
Итак, функциональная схема таймера показана на рисунке 1.
Ноги:
1. GND — земля/общий провод.
2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).
3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.
4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).
5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).
6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.
7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)
8. Vcc — напряжение питания.
Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).
Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).
Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.
Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.
Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.
На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.
При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).
Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.
Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.
Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.
Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U0.
Вспоминаем, как связаны ток и напряжение на конденсаторе: i=C*dU/dt. Ток через резистор: i=(Vп-U)/R. Поскольку это один и тот же ток, который течёт через резистор и заряжает конденсатор, то мы можем составить простое дифференциальное уравнение, описывающее процесс заряда нашего конденсатора: C*dU/dt=(Vп-U)/R.
Преобразуем наше уравнение к виду: RC*dU/dt + U = Vп
Это дифференциальное уравнение имеет решение, вида: U=U0+(Vп-U0)*(1-e-t/RC) ( формула 1 )
Теперь вернёмся к нашей схеме. Зная, что U0=0, напряжение питания равно Vcc, а конечное напряжение равно 2/3 Vcc, найдём время заряда:
2/3 Vcc = Vcc*(1-e-t/RC)
2/3 = 1-e-t/RC
1-2/3 = e-t/RC
ln(1/3) = -t/RC
Отсюда получаем длительность импульса нашего одновибратора:
t = RC*(-ln(1/3)) ≈ 1,1*RC
А теперь мы нашу схему немного изменим. Добавим в неё ещё один резистор, и чуть изменим подключение ног (смотрим рисунок 3).
Так, что у нас получилось? На старте конденсатор Ct разряжен (напряжение на нём меньше 1/3 Vcc), значит сработает компаратор запуска и сформирует высокий уровень на входе S нашего триггера. Напряжение на 6-й ноге меньше 2/3 Vcc, значит компаратор, формирующий сигнал на входе R2, — выключен (на его выходе низкий уровень, то есть сигнала Reset нет).
Следовательно сразу после включения наш триггер установится, на его выходе появится логический 0, на выходе таймера установится высокий уровень, транзистор на 7-й ноге закроется и конденсатор Ct начнёт заряжаться через резисторы R1, R2. При этом напруга на 2-й и 6-й ногах начнёт расти.
Когда эта напруга вырастет до 1/3 Vcc — пропадёт сигнал Set (отключится компаратор установки триггера), но триггеру пофиг, на то он и триггер, — если уж он установился, то сбросить его можно только сигналом Reset.
Сигнал Reset сформируется верхним на нашем рисунке компаратором, когда напряжение на конденсаторе, а вместе с ним на 2-й и 6-й ногах, достигнет значения 2/3 Vcc (то есть как только напряжение на конденсаторе станет чуть больше — сразу сформируется Reset).
Этот сигнал (Reset) сбросит наш триггер и на его выходе установится высокий уровень. При этом на выходе таймера установится низкий уровень, транзистор на 7-й ноге откроется и конденсатор Ct начнёт разряжаться через резистор R2. Напряжение на 2-й и 6-й ногах начнёт падать. Как только оно станет чуть меньше 2/3 Vcc — верхний компаратор снова переключится и сигнал Reset пропадёт, но установить триггер теперь можно только сигналом Set, поэтому он так и останется в сброшенном состоянии.
Как только напряжение на Ct снизится до 1/3 Vcc (станет чуть ниже) — снова сработает нижний компаратор, формирующий сигнал Set, и триггер снова установится, на его выходе снова появится ноль, на выходе таймера — единица, транзистор на 7-й ноге закроется и снова начнётся заряд конденсатора.
Далее этот процесс так и будет продолжаться до бесконечности — заряд конденсатора через R1,R2 от 1/3 Vcc до 2/3 Vcc (на выходе таймера высокий уровень), потом разряд конденсатора от 2/3 Vcc до 1/3 Vcc через резистор R2 (на выходе таймера низкий уровень).
Таким образом наша схема теперь работает как генератор прямоугольных импульсов, то есть мультивибратор в автоколебательном режиме (когда импульсы сами возникают, без каких-либо внешних воздействий).
Осталось только посчитать длительности импульсов и пауз. Для этого снова воспользуемся формулой 1, которую мы вывели выше.
При заряде конденсатора напряжением Vcc через R1,R2 от 1/3 Vcc до 2/3 Vcc, имеем:
2/3 Vcc = 1/3 Vcc + (Vcc-1/3 Vcc)*(1-e-t/(R1+R2)C)
1/3 = 2/3*(1-e-t/(R1+R2)C)
1/2 = 1-e-t/(R1+R2)C
e-t/(R1+R2)C = 1/2
t/(R1+R2)C = -ln(1/2)
Отсюда получаем длительность импульса нашего мультивибратора:
tи = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)C
Аналогично находим длительность паузы, только теперь у нас начальный уровень 2/3 Vcc, конденсатор мы не заряжаем от Vcc, а разряжаем на землю (т.е. вместо Vп в формулу нужно подставить ноль, а не Vcc) и разряд идёт только через резистор R2:
1/3 Vcc = 2/3 Vcc + (0-2/3 Vcc)*(1-e-t/R2*C)
2/3*(1-e-t/R2*C) = 1/3
1-e-t/R2*C = 1/2
e-t/R2*C = 1/2
t/R2*C = -ln(1/2)
Отсюда получаем длительность паузы мультивибратора:
tп = -ln(1/2)*R2*C ≈ 0,693*R2*C
Ну и дальше уже несложно посчитать для нашего мультивибратора период импульса и частоту:
T = tи + tп = -ln(1/2)*(R1+2*R2)*C ≈ 0,693*(R1+2*R2)*C
f = 1/T
Продолжение: Генератор прямоугольных импульсов с регулируемой скважностью, на 555-м таймере.
Понимание микросхемы IC 555 таймера.
555 Таймер IC является одним из наиболее часто используемых ИМС среди студентов и любителей. Есть много применений этой микросхемы, в основном используется в качестве вибраторов, АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР, МОНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР и БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА. В данной статье попробуем охватить различные аспекты таймера 555 IC и объяснить его работу в деталях. Так что давайте сначала определим понятия, что такое нестабильные, одностабильные и бистабильные вибраторы.
АСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР
Это означает, что не будет никакого стабильного уровня на выходе. Так что на выходе будет, колебания между высоким и низким уровнем. Эти параметры нестабильного выхода используется как часы для прямоугольной формы выхода для многих приложений.
ОДНОСТАБИЛЬНЫЙ МУЛЬТИВИБРАТОР
Это означает, что будет одно устойчивое состояние и одно неустойчивое состояние. В устойчивом состоянии может быть выбран высокий или низкий уровень самим пользователем. Если стабилизированный выход выбирается высокой, то Таймер всегда пытается поставить высокий уровень на выходе. Поэтому, с низким состоянием уровня Таймер выключается на короткое время и это состояние называют неустойчивым в течении этого времени. Если в стабильное состояние выбирается минимальное значение, и прерывание выхода переходит в состояние высокого на короткое время до прихода низкого значения.
[Узнать больше о одностабильный мультивибратор: 555 Таймер Одностабильный Мультивибратор схема]
БИСТАБИЛЬНОГО МУЛЬТИВИБРАТОРА
Это означает выходное состояние стабильно. С каждым прерыванием выход изменяется и остается как есть. Например выход считается высоким сейчас с перерывом она снижается и остается низким. В следующий перерыв он идет высоким.
[Узнать больше о бистабильного мультивибратора: 555 Таймер IC Бистабильного Мультивибратора цепи]
Важные характеристики Таймера IC 555
NE555 IC и 8 пин устройства. Важные электрические характеристики Таймер заключаются в том, что он не должен включаться выше 15В, это означает, что источник напряжения не может быть выше 15В. Во-вторых, мы не можем сделать больше, чем 100мА с чипа. Если не будете следовать этим, микросхема будет сожжена или повреждена.
Объяснение работы
Таймер в основном состоит из двух основных конструкционных элементов, и они являются:
1.Компараторов (два) или два ОУ
2.Один SR мультивибратор (выбор сброса триггера)
Как показано выше есть только два важных компонента в Таймере, это два компаратора и триггер. Необходимо понять что такое компаратор и триггер.
Компараторы: это просто устройство, которое сравнивает напряжение на входных клеммах (инвертирующий (-VE) и неинвертирующий (+VE)). Поэтому в зависимости от разницы в положительной клеммой и отрицательной клеммой на входе в порт, определяется выход компаратора .
Для примера рассмотрим, положительная входная клемма напряжения будет +5В и отрицательной входной клемме будет напряжение +3В. Разница в том, 5-3=+2В. Поскольку разница положительная, мы получаем положительный выброс напряжения на выходе компаратора.
Другой пример: если положительная клемма напряжения +3В, а на отрицательной входной клемме будет напряжение +5В. Разница +3-+5=-2В, так как разница входного напряжения отрицательна. Выход компаратора будет отрицательным пиком напряжения.
Если для примера рассмотрим положительный входной терминал качестве входных и отрицательного входного разъема в качестве эталона, как показано на рисунке выше. Так что разница напряжения между входным и другим крупным положительным получим положительный выход компаратора. Если разница отрицательная, то мы получим отрицательный или землей на выход компаратора.
SR мультивибратор: эта ячейка памяти может хранить один бит данных. На рисунке мы видим таблицу истинности.
Существует четыре состояния мульвибратора для двух входов; однако мы должны понимать, что только два состояния триггера для этого случая.
S | R | Q | Q’ (Q штрих) |
0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 |
Теперь как показано в таблице, для входов сброса и установки мы получаем соответствующие результаты. Если есть импульс на набор PIN-кода и низкий уровень у сброса, то триггер сохраняет значение одного и влияет на высокую логику в Q терминалов. Это состояние продолжается до сброса, PIN получает импульс во время набора и имеет низкую логику. Это приведет к сбросу триггера поэтому выход Q выключается и это состояние продолжается до тех пор, пока триггер устанавливается снова.
Таким образом триггер хранит один бит данных. Вот другое дело, Q и Q-штрих всегда напротив.
В таймере, компаратор и триггер объединены.
Рассмотрим 9В подается на Таймер, из-за делителя напряжения, образованного резисторами внутри таймера, как показано в блок-схеме; там будет напряжение на контактах компаратора. Так из-за делителя напряжения сети у нас будет +6В на отрицательной клемме первого компаратора. И +3В на плюсовую клемму второго компаратора.
Первый и другой контакт -это один выход компаратора подключен к сбросу контакта мультивибратора, поэтому если у компаратора, один выход переходит из низкий, то триггер будет сброшен. А с другой стороны второй выход компаратора соединен с мультивибратором, так что если второй выход компаратора переходит из низкого значения мультивибратор хранит по одному.
На напряжение не менее +3В на контакт триггера (отрицательный вход второго компаратора), выход компаратора переходит из низкого в высокий, как обсуждалось ранее. Этот импульс определяет мультивибратор и сохраняет одно значение.
Теперь, если мы применяем напряжение выше чем +6В на контакте порога (плюсовой вход одного компаратора) , выход компаратора переходит от низкого к высоким. Этот импульс сбрасывает RS и RS запоминает ноль.
Другое дело происходит во время сброса триггера, когда он сбрасывает разряда получается контакт подключен к земле под именем получает включен Q1 . Транзистор T1 включается, поскольку элементы Q штрих находится на высокой отметке сброса и подключен к базе T1.
В нестабильной конфигурации подключенная емкость сюда сбрасывает в этот момент и поэтому на выходе таймера будет низким в течение этого времени. В нестабильной конфигурации время в течении заряда конденсатора на контакт триггера напряжение будет меньше, чем +3V и поэтому триггер сохраняет одно значение и на выходе будет высоким.
В нестабильной конфигурации, как показано на рисунке,
Частота выходного сигнала зависит от RA, RB резисторов и конденсатора C. уравнения дается в виде,
Частота(F) = 1/(период времени) = 1.44/((RA+RB*2)*C).
Здесь RA, RB являются значения сопротивлений и C значение емкости. Поставив сопротивление и емкость значения в вышеприведенное уравнение, мы получим частоты выходной квадратной волны.
Высокий уровень логики времени установленно как, TH= 0.693*(RA+RB)*C
Низкий уровень логики времени установленно как, TL= 0.693*RB*C
Скважностью импульсов выходного прямоугольного сигнала заданной как, Скважность= (RA+RB)/(RA+2*RB).