Как конденсатор проводит ток
Главная Контент Каморка инженера Разное В учебниках такого не найдешь: Как работает конденсатор и другие электронные компоненты. Конденсатор , по своей сути, — это 2 кусочка фольги обкладки с бумажкой между ними. Про такие конденсаторы, как: слюдяные, фторопластовые, керамические, электролиты и пр. Так вот, бумажка ток не проводит, потому и конденсатор ток не проводит.
Поиск данных по Вашему запросу:
Как конденсатор проводит ток
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Постоянный ток
- Конденсатор
- Primary Menu
- Конденсатор
- ГОСТ IEC 60252-2-2011 Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы
- Что такое конденсатор? Какой принцип работы конденсатора?
- Электрический конденсатор
- Конденсатор в цепи постоянного и переменного тока
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Катушка индуктивности в цепи переменного тока
Постоянный ток
Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком.
Переменный же ток может идти по цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта. Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания рис. При включении постоянного напряжения переключатель повернут влево, цепь подключена к точкам АА» лампа не светится.
Но при включении переменного напряжения переключатель повернут вправо, цепь подключена к точкам ВВ» лампа загорается, если емкость конденсатора достаточно велика. Как же переменный ток может идти по цепи, если она фактически разомкнута между пластинами конденсатора заряды перемещаться не могут? Все дело в том, что происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, идущий в цепи при перезарядке конденсатора , нагревает нить лампы.
Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь рис. Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на рис. Величину X c , обратную произведению С циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и позволяет рассматривать величину Х с как сопротивление конденсатора переменному току емкостное сопротивление.
Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение X c. С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты. В заключение отметим, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля.
В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.
Как связаны между собой действующие значения силы тока и напряжения на конденсаторе в цепи переменного тока! Выделяется ли энергия в цепи, содержащей только конденсатор, если активным сопротивлением цепи можно пренебречь! Выключатель цепи представляет собой своего рода конденсатор. Почему же выключатель надежно размыкает цепь!
Если рассматривать постоянный ток, то он не всегда может быть идеально постоянным: напряжение на выходе источника может зависеть от нагрузки или от степени разряда аккумулятора или гальванической батареи. Даже при постоянном стабилизированном напряжении ток во внешней цепи зависит от нагрузки, что и подтверждает закон Ома. Получается, что это тоже не совсем постоянный ток, но переменным такой ток назвать тоже нельзя, поскольку направления он не меняет. К тому же, эти изменения должны быть периодическими, то есть повторяющимися через определенный промежуток времени, называемый периодом.
Если же напряжение или ток меняется как попало, не заботясь о периодичности и иной закономерности, такой сигнал называется шумом. Примеры некоторых периодических электрических сигналов показаны на рисунке 1. Для постоянного тока имеется всего две характеристики: это полярность и напряжение источника.
В случае с переменным током этих двух величин явно недостаточно, поэтому появляются еще несколько параметров: амплитуда, частота, период, фаза, мгновенное и действующее значение. Наиболее часто в технике приходится сталкиваться с колебаниями синусоидальной формы, причем, не только в электротехнике. Представьте себе автомобильное колесо.
При равномерном движении по хорошей ровной дороге центр колеса описывает прямую, параллельную дорожному покрытию.
В то же время, любая точка на периферии колеса перемещается по синусоиде относительно только что упомянутой прямой. Сказанное может подтвердить рисунок 2, на котором показан графический метод построения синусоиды: кто хорошо учил черчение, тот прекрасно представляет, как выполняются подобные построения.
Из школьного курса физики известно, что синусоида является наиболее распространенной и пригодной для изучения периодической кривой. В точности также синусоидальные колебания получаются в генераторах переменного тока, что обусловлено их механическим устройством. Нетрудно заметить, что величина тока изменяется по времени, поэтому ось ординат обозначена на рисунке как i t , — функция тока от времени. Полный период тока обозначен сплошной линией и имеет период T. Если начать рассмотрение от начала координат, то видно, что сначала ток увеличивается, доходит до Imax, переходит через нуль, уменьшается до -Imax, после чего увеличивается и доходит до нуля.
Далее начинается следующий период, что показано пунктирной линией. Последний имеет смысл лишь в том случае, когда имеется два синусоидальных тока. Если синусоидальный ток один, то можно двигать его по оси ординат как угодно, и от этого ничего не изменится. Период — T время, за которое синусоида совершит одно полное колебание. То же относится и к колебаниям другой формы, например, прямоугольным или треугольным.
Еще один параметр любого периодического сигнала, в том числе и синусоиды это частота, сколько колебаний проделает сигнал за 1 секунду. Например, частота осветительной сети 50Гц, то есть за секунду проходит ровно 50 периодов синусоиды. При этом, если время выражено в секундах, то результат получится в Герцах. В электричестве чаще применяются более высокие частоты: КГц — килогерцы, МГц — мегагерцы тысячи и миллионы колебаний в секунду и т. Все сказанное для тока справедливо и для переменного напряжения: достаточно на рис 6 просто поменять букву I на U.
Этих разъяснений вполне достаточно для того, чтобы вернуться к опытам с конденсаторами и объяснить их физический смысл. Конденсатор проводит переменный ток, что было показано в схеме на рисунке 3 см. Яркость свечения лампы увеличивается при подключении дополнительного конденсатора. При параллельном включении конденсаторов их емкости просто складываются, поэтому можно предположить, что емкостное сопротивление Xc зависит от емкости.
Из формулы следует, что с увеличением емкости конденсатора и частоты переменного напряжения реактивное сопротивление Xc уменьшается. Эти зависимости показаны на рисунке 5. Рисунок 5. Зависимость реактивного сопротивления конденсатора от емкости. Теперь вспомним опыт с конденсатором и электросчетчиком, почему он не крутится?
Дело в том, что счетчик считает активную энергию, когда потребителем является чисто активная нагрузка, например, лампы накаливания, электрочайник или электроплита. У таких потребителей напряжение и ток совпадают по фазе, имеют один знак: если перемножить два отрицательных числа напряжение и ток во время отрицательного полупериода результат по законам математики все равно положительный.
Поэтому мощность таких потребителей всегда положительна, то есть уходит в нагрузку и выделяется в виде тепла, как показано на рисунке 6 пунктирной линией. В эти моменты мощность получается отрицательной. Другими словами, когда мощность положительная, конденсатор заряжается, а когда отрицательная — запасенная энергия отдается обратно в источник. Поэтому в среднем получается по нулям и считать тут просто нечего.
Конденсатор, если конечно он исправный, не будет даже нисколько нагреваться. Поэтому, часто конденсатор называют безваттным сопротивлением , что позволяет применять его в бестрансформаторных маломощных блоках питания. Хотя такие блоки не рекомендуется использовать ввиду их опасности, все-таки иногда это делать приходится.
Перед тем, как устанавливать в такой блок гасящий конденсатор , его следует проверить простым включением в сеть: если за полчаса конденсатор не нагрелся, то его смело можно включать в схему. В противном случае его придется просто без сожаления выбросить. При изготовлении и ремонте различных устройств, хоть и не очень часто, но приходится мерить переменные напряжения и даже токи.
Если синусоида ведет себя так неспокойно, то вверх, то вниз, что будет показывать обычный вольтметр? Поскольку верхняя и нижняя часть абсолютно одинаковы, но имеют разные знаки, среднее значение синусоиды равно нулю, и мерить его совсем не нужно, и даже просто бессмысленно.
Поэтому измерительный прибор показывает нам среднеквадратичное значение напряжения или тока. Среднеквадратичным называется такое значение периодического тока, при котором на одной и той же нагрузке выделяется то же количество теплоты, что и на постоянном токе. Иными словами лампочка светит с той же яркостью.
Именно эти значения показывает измерительный прибор. Их можно подставлять в формулы при расчете по закону Ома или при расчете мощности. Но это далеко не всё, на что способен конденсатор в сети переменного тока. В следующей статье будет рассмотрено использование конденсаторов в импульсных схемах , фильтрах верхних и нижних частот, в генераторах синусоиды и прямоугольных импульсов.
Быстрое изменение силы тока и его направления, характеризующее переменный ток, приводит к ряду важнейших особенностей, отличающих действие переменного тока от тока постоянного. Некоторые из этих особенностей отчетливо выступают при следующих опытах. Прохождение переменного тока через конденсатор. Пусть в нашем распоряжении имеется источник постоянного тока с напряжением 12 В аккумуляторная батарея и источник переменного тока с напряжением также 12 В. Присоединив к каждому из этих источников маленькую лампочку накаливания, мы увидим, что обе лампочки горят одинаково ярко рис.
Включим теперь в цепь как первой, так и второй лампочки конденсатор большой емкости рис. Мы обнаружим, что в случае постоянного тока лампочка не накаливается вовсе, а в случае переменного тока накал ее остается почти таким же, как раньше. Отсутствие накала в цепи постоянного тока легко понять: между обкладками конденсатора имеется изолирующая прослойка, так что цепь разомкнута. Накал же лампочки в цепи переменного тока кажется поразительным. Прохождение переменного тока через конденсатор: а лампочки, включенные в цепь тока постоянного справа или переменного слева , накаливаются одинаково; б при включении в цепь конденсатора емкости постоянный ток прекращается, переменный ток продолжает идти и накаливать лампочку.
Конденсатор
Что такое электрический ток? Это направленное движение заряженных частиц носителей заряда, в частности, электронов под действием электрического поля. Для того, чтобы в цепи шёл ток — цепь должна быть замкнутой. Что такое постоянный ток? Это движение электронов всё время в одну сторону, по кругу.
Так вот, бумажка ток не проводит, потому и конденсатор ток не проводит. Если у нас цепь, в которой течет ток переменный.
Primary Menu
Регистрация Вход. Ответы Mail. Вопросы — лидеры Решите задачу по физике 1 ставка. Какая польза народному хозяйству от астрономии и теории эволюции? Независимые ученые узнали, что Человечество не вызвало Глобального Потепления. А Кто вызвал? Бес или Бог? По какой такой причине материя стремится занять все доступное пустое пространство собой? Почему нельзя провести ток одним проводом? Лидеры категории Антон Владимирович Искусственный Интеллект.
Конденсатор
Конденсатор в цепи постоянного тока не проводит ток, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора. В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом. Отсюда также следует, что реактивное сопротивление конденсатора равно: Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно в идеальном случае. При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь.
Конденсатор — это прибор двухполюсник, предназначенный для накопления электрического заряда и энергии электрического поля.
ГОСТ IEC 60252-2-2011 Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы
Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может. Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила. В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i , сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться.
Что такое конденсатор? Какой принцип работы конденсатора?
Проходит ли ток через конденсатор? Что вам в них? Схемы принципиальные Библиотечка литературы Радиолюбительская хрестоматия Новости электроники Карта сайта Магазинчик на сайте Загрузка Топ 10! Программа «Электрик» предназначена в помощь электрикам всех уровней в быту. Электронная система оповещения персонала при чрезвычайной ситуации Во многих учреждениях сейчас установлены автоматические системы пожарной сигнализации.
И это не смотря на то, что цепь фактически разомкнута: между обкладками конденсатора диэлектрик, который не проводит ток! Как же.
Электрический конденсатор
Как конденсатор проводит ток
Регистрация Вход. Ответы Mail. Вопросы — лидеры Задача по физике 1 ставка.
Конденсатор в цепи постоянного и переменного тока
Конденсатор является пассивным электронным компонентом. Ёмкость конденсатора измеряется в фарадах. Первые конденсаторы, состоящие из двух проводников, разделенных непроводником диэлектриком , упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше [3]. Конденсатор является пассивным электронным компонентом [4].
Выпрямитель выдает пульсирующее напряжение постоянного тока, которое не годится для питания большинства электронных цепей, поэтому в блоках питания, как правило, после выпрямителя стоит фильтр. Фильтр преобразует пульсирующее напряжение в гладкое напряжение постоянного тока.
Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Переменный же ток может идти по цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта. Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания рис.
Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:. Не-а, не горит. Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!
Может ли постоянный ток протекать через конденсатор
Конденсатор в цепи переменного тока ведет себя не так, как резистор. Проходящий через конденсатор ток прямопропорционален скорости изменения напряжения. Это противостояние изменению напряжения является еще одной формой реактивного сопротивления, которое по своему действию противоположно реактивному сопротивлению катушки индуктивности. Математическая взаимосвязь между проходящим через конденсатор током и скоростью изменения напряжения на нем выглядит следующим образом:. Емкость С измеряется в Фарадах, а мгновенный ток i — в амперах. Чтобы показать, что происходит с переменным током, давайте проанализируем простую емкостную схему:.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Научный форум dxdy
- Сопротивление конденсатора
- Переменный ток
- Ответы на вопросы «Электромагнетизм. § 40. Конденсатор в цепи переменного тока»
- Емкостное сопротивление конденсатора
- Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.
- Почему конденсатор пропускает переменный ток
- Конденсатор в цепи постоянного и переменного тока
- Резисторы, конденсаторы, диоды
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Конденсатор в цепи переменного тока. Практические пояснения
Научный форум dxdy
О чем говорят животные. Ты уже знаешь, что конденсатор в простейшем виде представляет собой две пластинки, разделенные диэлектриком. Если конденсатор включить в цепь постоянного тока, то ток в этой цепи прекратится.
Да это и понятно: через изолятор, которым является диэлектрик конденсатора, постоянный ток течь не может. Включение конденсатора в цепь постоянного тока равнозначно разрыву ее мы не принимаем во внимание момент включения, когда в цепи появляется кратковременный ток заряда конденсатора. Иначе ведет себя конденсатор в цепи переменного тока. Ввпомни: напряжение на зажимах источника переменного тока периодически меняется. Значит, если включить конденсатор в цепь, питаемую от такого источника тока, его обкладки будут попеременно перезаряжаться с частотой этого тока.
В результате в цепи будет протекать переменный ток. Конденсатор подобно резистору и катушке оказывает переменному току сопротивление, но разное для токов различных частот. Он может хорошо пропускать токи высокой частоты и одновременно быть почти изолятором для токов низкой частоты. Иногда радиолюбители вместо наружных антенн используют провода электроосветительной сети, подключая приемники к ним через конденсатор емкостью пФ.
Случайно ли выбрана такая емкость конденсатора? Нет, не случайно. Конденсатор такой емкости хорошо пропускает токи высокой частоты, необходимые для работы приемника, но оказывает большое сопротивление переменному току частотой 50 Гц, текущему в сети.
В этом случае конденсатор становится своеобразным фильтром, пропускающим ток высокой частоты и задерживающим ток низкой частоты. Сопротивление конденсатора переменному току зависит от его емкости и частоты тока: чем больше емкость конденсатора и частота тока, тем меньше его емкостное сопротивление. Это емкостное сопротивление конденсатора можно с достаточной точностью определить по такой упрощенной формуле:.
И вот результат: конденсатор емкостью пФ оказывает току высокой частоты в раз меньшее сопротивление, чем току низкой частоты. Конденсатор меньшей емкости оказывает переменному току сети еще большее сопротивление.
Сопротивление конденсатора
Импульсные блоки питания Линейные блоки питания Радиолюбителю конструктору Светодиоды, ламы и свет 3D печать и 3D модели Конденсаторы, как и резисторы, относятся к наиболее многочисленным элементам радиотехнических устройств. Тогда же говорил, что емкость конденсатора будет тем значительнее, чем больше площадь его обкладок и чем тоньше слой диэлектрика между ними. Основной единицей электрической емкости является фарада сокращенно Ф, названная так в честь английского физика М. Однако 1 Ф — это очень большая емкость. Земной шар, например, обладает емкостью меньше 1 Ф. В электро- и радиотехнике пользуются единицей емкости, равной миллионной доле фарады, которую называют микрофарадой сокращенно мкФ.
Постоянный ток не может существовать в цепи, содержащей конденсатор. Ведь фактически при этом цепь оказывается разомкнутой, так как обкладки.
Переменный ток
На практике же, все выпускаемые конденсаторы представляют собой многослойные рулоны лент электродов в форме цилиндра или параллелепипеда, разделенных между собой слоями диэлектрика. По принципу работы он схож с батарейкой только на первый взгляд, но все же он сильно отличается от него по принципу и скорости заряда-разряда, максимальной емкости. Заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток будет зарядки максимальным, но по мере накопления заряда, ток будет уменьшаться и пропадет полностью после полного заряда. При зарядке на одной пластине будут собираться отрицательно заряженные частицы- электроны, а на другой — ионы, положительно заряженные частицы. Диэлектрик выступает препятствием для их перескакивания на противоположную сторону конденсатора. При зарядке растет и напряжение с нуля перед началом зарядки и достигает в самом конце максимума, равного напряжению источника питания. Разрядка конденсатора.
Ответы на вопросы «Электромагнетизм. § 40. Конденсатор в цепи переменного тока»
Регистрация Вход. Ответы Mail. Вопросы — лидеры Магнитный воин -какие силы стоят за эффектом Джанибекова? Решите задачу по физике 1 ставка. Какая польза народному хозяйству от астрономии и теории эволюции?
Постоянный ток не может идти по цепи, содержащей конденсатор.
Емкостное сопротивление конденсатора
Связь с антенной для уменьшения влияния антенны на качественные показатели работы входной цепи делают слабой. Слабой связи в схемах, показанных на рис. Головка считывания информации с магнитного барабана включена в цепь эмиттера полупроводникового триода JITi с заземленной базой. Благодаря большой емкости конденсатора С в цепи база — эмиттер происходит сглаживание входного сигнала. Отделение постоянного тока от переменных токов может быть осуществлено при помощи конденсаторов. Так, например, если в цепи имеется источник постоянного тока, дающий одновременно также и переменный ток рис.
Конденсатор в цепи переменного тока. Емкостное сопротивление конденсатора.
На рис. После включения цепи вольтметр, включенный в цепь, покажет полное напряжение генератора. Стрелка амперметра установится на нуле — ток через изоляцию конденсатора протекать не может. Но проследим внимательно за стрелкой амперметра при включении незаряженного конденсатора. Если амперметр достаточно чувствителен, а емкость конденсатора велика, то нетрудно обнаружить колебание стрелки: сразу после включения стрелка сойдет с нуля, а затем быстро вернется в исходное положение. Цепь электрического генератора, содержащая конденсатор Этот опыт показывает, что при включении конденсатора при его зарядке в цепи протекал ток — в ней происходило передвижение зарядов: электроны с пластины, присоединенной к положительному полюсу источника, перешли на пластину, присоединенную к отрицательному полюсу. Как только конденсатор зарядится, движение зарядов прекращается. Отключая генератор и повторно замыкая его на конденсатор, мы уже не обнаружим движения стрелки: конденсатор остается заряженным, и при повторном включении движения зарядов в цепи не происходит.
электрический ток. Следовательно, постоянный ток не может протекать по цепи, содержащей конденсатор. Иначе обстоит дело с переменным током.
Почему конденсатор пропускает переменный ток
Это детали, пожалуй, наиболее часто применяемы. В транзисторном приемнике средней сложности, например, их может быть штук. Используют их для ограничения тока в цепях, для создания на отдельных участках цепей падений напряжений, для разделения пульсирующего тока на его составляющие, для регулирования громкости, тембра звука и т. Для резисторов сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер, используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов.
Конденсатор в цепи постоянного и переменного тока
ВИДЕО ПО ТЕМЕ: как поднять напряжение с помощью конденсатора
Но прежде, чем расстаться с постоянным током, я хочу немного рассказать о конденсаторе. Любая схема или почти любая электронного устройства содержит хотя бы один конденсатор. Что он собой представляет? Возьмем две металлические пластины, положим между ними тонкую пластину из изолятора и получим конденсатор. На схеме конденсатор так, примерно, и изображают: две пластины в профиль , к которым подходят два проводника. Поскольку между пластинами изолятор, не проводящий постоянный электрический ток, то зачем бы нам конденсатор в цепи постоянного тока?
Мы знаем, что конденсатор не пропускает через себя постоянного тока.
Резисторы, конденсаторы, диоды
Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор. Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала. Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен.
Последний раз редактировалось profrotter Убрал лишний мягкий знак в «зарядиться». Здравствуйте, уважаемые форумчане.
электричества — Как протекает ток через конденсатор?
Задавать вопрос
спросил
Изменено 5 лет, 3 месяца назад
Просмотрено 4к раз
$\begingroup$
Я просто хочу знать, как заряд течет через пустое пространство между параллельными пластинами конденсатора?
- электричество
$\endgroup$
1
$\begingroup$
Конденсатор состоит из двух проводящих пластин, обращенных друг к другу через узкий зазор, с проводами, соединенными с каждой пластиной. представьте, что мы посылаем взрыв электронов в провод, ведущий к пластине слева. Когда они втекают в пластину, они создают электростатическое поле в зазоре между двумя пластинами, которое отталкивает любые свободные электроны на пластине справа, и эти электроны затем вытекают из пластины и из провода. Как только напряженность поля перестает меняться во времени, электроны больше не выталкиваются из пластины, и ток затухает. Таким образом, конденсатор обеспечивает передачу коротких импульсов тока в ответ на приложенное напряжение, изменяющееся во времени. это означает, что конденсатор является проводником для быстро меняющихся сигналов переменного тока, в то время как он является полным блоком для постоянного тока (поскольку между двумя пластинами нет физической связи).
$\endgroup$
1
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.напряжение — Какой ток может обеспечить конденсатор?
\$\начало группы\$
Допустим, цепь соединена последовательно
- Конденсатор (120 В — 10000 мкФ)
- Нагрузка (8 Ом)
- Источник питания постоянного тока (100 В — 5 А)
После зарядки конденсатора до 100 В от источника питания, какой ток будет в цепи при разрядке?
Будет ли это максимальный ток источника питания (5 А) или по закону Ома 100/8= 12,5 А?
Конденсатор будет работать как отдельная цепь с нагрузкой или максимальный ток цепи исходит от источника питания?
- напряжение
- конденсатор
- ток
- постоянный ток
\$\конечная группа\$
16
\$\начало группы\$
Когда конденсатор в вашей цепи заряжен, ток не течет.
Если конденсатор полностью разряжен, то ток в начале будет 100 В/8 Ом = 12,5 А, но, поскольку блок питания может выдавать только 5 А, вы получите только 5 А во время фазы заряда. Когда конденсатор заряжается, ток становится равным нулю.
\$\конечная группа\$
3
\$\начало группы\$
В вашей схеме оба переключателя должны быть замкнуты, чтобы зарядить конденсатор. Если один или оба переключателя разомкнуты, конденсатор не будет разряжаться, но сохранит напряжение, которое было на нем при размыкании переключателя. Повторное замыкание обоих переключателей позволит продолжить зарядку до тех пор, пока напряжение на конденсаторе не достигнет 100 В. Ваша схема не позволит разрядиться. 9{-(t-t_{0})/RC} A, v_{C}>60 V$$
\$\конечная группа\$
4
\$\начало группы\$
Если конденсатор изначально полностью разряжен, а затем переключатель между блоком питания и конденсатором замкнут (другой переключатель разомкнут), то это не приведет к зарядке конденсатора, но напряжение на обеих пластинах конденсатора достигнет 100 В.
Теперь, если при замыкании переключателя между конденсатором и нагрузкой напряжение питания моментально снизится до 40 В (5 А * 8 Ом = 40 В), если в БП есть ограничение по току. Если нет ограничения тока, блок питания может перегореть или быть поврежденным. Если предположить, что блок питания имеет ограничение по току, то следующее, что произойдет, будет заключаться в том, что конденсатор начнет заряжаться линейным образом, напряжение на нагрузке останется постоянным на уровне 40 В, а выходное напряжение блока питания будет расти, пока не достигнет максимума 100 В. где он стабилизируется. С этого момента конденсатор продолжает заряжаться, а напряжение на нагрузке и ток через нее экспоненциально снижаются до 0 В и 0 А соответственно.
Таким образом, максимальный ток через нагрузку равен максимальному току, который может обеспечить блок питания, который составляет 5 А.
Все это происходит потому, что токи в двух выводах конденсатора всегда должны быть равны друг другу, и поэтому блок питания должен подавать на конденсатор тот же ток, что и конденсатор на нагрузку.