Site Loader

электростатическое поле | это… Что такое электростатическое поле?

электростати́ческое по́ле

электрическое поле неподвижных электрических зарядов.

* * *

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

ЭЛЕКТРОСТАТИ́ЧЕСКОЕ ПО́ЛЕ, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними.
Электростатическое поле характеризуется напряженностью электрического поля (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) Е, которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД), помещенный в данную точку поля. Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.
Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени.

Стационарные электростатические поля создаются неподвижными электрическими зарядами.
Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора (см. КОНДЕНСАТОР (электрический)) вдали от краев его обкладок.
Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле — это потенциальное поле, энергетической характеристикой которого является электростатический потенциал (
см.
ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКИЙ) , связанным с вектором напряженности Е соотношением:
Е = -gradj.
Для графического изображения электростатического поля используют силовые линии (см. СИЛОВЫЕ ЛИНИИ) (линии напряженности) — воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.
Для электростатических полей соблюдается принцип суперпозиции (см. СУПЕРПОЗИЦИИ ПРИНЦИП). Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности.
Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд — заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).

Поле, создаваемое уединенным точечным зарядом q, является сферически симметричным. Модуль напряженности уединенного точечного заряда в вакууме с помощью закона Кулона (см. КУЛОНА ЗАКОН) можно представить в виде:
Е = q/4peоr2.
Где eо — электрическая постоянная, = 8,85.10-12Ф/м.
Закон Кулона, установленный при помощи созданных им крутильных весов (см. Кулона весы (см.
КУЛОНА ВЕСЫ)), — один из основных законов, описывающих электростатическое поле. Он устанавливает зависимость между силой взаимодействия зарядов и расстоянием между ними: сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Эту силу называют кулоновской, а поле — кулоновским. В кулоновском поле направление вектора зависит от знака заряда Q: если Q > 0, то вектор направлен по радиусу от заряда, если Q см. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ) среды) меньше, чем в вакууме.
Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Электрическое поле можно характеризовать значением потока вектора напряженности электрического поля, который можно рассчитать в соответствии с теоремой Гаусса (
см.
ГАУССА ТЕОРЕМА). Теорема Гаусса устанавливает связь между потоком напряженности электрического поля через замкнутую поверхность и зарядом внутри этой поверхности. Поток напряженности зависит от распределения поля по поверхности той или иной площади и пропорционален электрическому заряду внутри этой поверхности.
Если изолированный проводник поместить в электрическое поле, то на свободные заряды q в проводнике будет действовать сила. В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, компенсирует полностью внешнее поле, т. е. установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в ноль: во всех точках внутри проводника Е = 0, то есть поле отсутствует. Силовые линии электростатического поля вне проводника в непосредственной близости к его поверхности перпендикулярны поверхности. Если бы это было не так, то имелась бы составляющая напряженности поля, вдоль поверхности провод­ника и по поверхности протекал бы ток. Заряды располагаются только на поверхности проводника, при этом все точки поверхности проводника имеют одно и то же значение потенциала. Поверхность проводника является эквипотенциальной поверхностью (
см.
ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ). Если в проводнике есть полость, то электрическое поле в ней также равно нулю; на этом основана электростатическая защита электрических приборов.
Если в электростатическое поле поместить диэлектрик, то в нем происходит процесс поляризации — процесс ориентации диполей (
см.
ДИПОЛЬ) или появление под воздействием электрического поля ориентированных по полю диполей. В однородном диэлектрике электростатическое поле вследствие поляризации (см. Поляризация диэлектриков) убывает в ? раз.

Напряженность электрического поля — как найти? Правила и примеры

Покажем, как применять знание физики в жизни

Начать учиться

Если потереть ручку о синтетический свитер — к ней начнут притягиваться кусочки бумаги, причем без прямого контакта. Все дело в электрическом поле, которое позволяет заряженным телам взаимодействовать на расстоянии. Этот материал о том, что такое напряженность электрического поля и каковы взгляды на нее в современной физике.

Что такое электрическое поле

Долгое время ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено.

Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает вокруг заряженных тел и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Тела, имеющие одноименные заряды, будут отталкиваться, а разноименные — притягиваться.

Полезные подарки для родителей

В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые заряженные объекты.

Важно!

Иногда можно услышать оборот «напряжение электрического поля», но это ошибка — правильно говорить «напряженность».

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые взаимодействуют. Вокруг каждого существует свое электрическое поле. Тогда существует некая точка или область, в которой одновременно существует электрическое поле нескольких зарядов. Чему равна общая напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав векторно напряженности, создаваемые каждым зарядом в отдельности в той же точке. Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

  • расстояние между зарядами очень мало — порядка 10-15м;

  • речь идет о сверхсильных полях с напряженностью более 1020в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: где q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Важно!

Сила взаимодействия двух точечных зарядов остается прежней при появлении сколь угодно большого количества других зарядов в данном поле.

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Яна Кононенко

К предыдущей статье

Мощность

К следующей статье

Манометр

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Электрическое поле

область вокруг заряженной частицы, в пределах которой другие заряженная частица испытает электростатическое сила отталкивания или притяжения называется электрическим полем. Электрическое поле также называют электростатическим полем. Электростатическая сила или электрическая сила создается статическими электрическими зарядами т.е. электроны и протоны.


Электрический напряженность поля

сила или напряженность электрического поля в любой точке в электрическом поле называется электрическим полем сила.

Для описания электрического поля мы необходимо указать его силу. Сила электрического поля в любой точке электрического поля определяется размещение единичного заряда в этой точке. Когда единица заряд помещен в электрическое поле, он испытает электрическая сила. Эта электрическая сила либо привлекательным или отталкивающим.

количество электрической силы, действующей на единичный заряд, помещенный в любая точка в пределах электрического поля называется электрическим полем силы или напряженности электрического поля.

Если количество силы, действующей на единицу заряда в данной точке меньше, напряженность электрического поля в этой точке меньше. Аналогично, если сила, действующая на единицу заряд в данной точке велик, напряженность электрического поля в этот момент высока. Напряженность или напряженность электрического поля – векторная величина; она имеет как величину, так и направление.

Электрический напряженность поля может быть математически определена как сила на плата за единицу

 

As мы знаем, что сила измеряется в ньютонах, а заряд измеряется в кулонах. Следовательно, напряженность электрического поля равна измеряется в ньютонах на кулон (N/C).

Типы электрического поля

Электрические поля имеют четыре типы:

  • Однородное электрическое поле
  • Неоднородное электрическое поле
  • Статическое электрическое поле
  • Изменяющееся во времени электрическое поле

Униформа электрическое поле – это электрическое поле, в котором в каждой точке внутри электрического поля имеет постоянное электрическое поле сила.

Неоднородный электрическое поле – это электрическое поле, в котором при любых двух точки внутри электрического поля не имеет постоянной напряженность электрического поля.

напряженность электрического поля, не зависящая от относительно времени называется статическим электрическим полем. Этот статический электрическое поле создается статическими электрическими зарядами.

напряженность электрического поля, которая изменяется по отношению к время называется изменяющимся во времени электрическим полем.

Physics4Kids.com: Электричество и магнетизм: электрические поля


Ученые поняли, почему силы действуют так, как они действуют, когда объекты соприкасаются. Их смущала идея о силах, которые действуют на расстоянии, не касаясь друг друга. Подумайте о таких примерах, как гравитационная сила, электрическая сила и магнитная сила. Чтобы помочь им объяснить, что происходит, они использовали идею « поле «. Они представляли, что вокруг объекта есть область, и все, что войдет, почувствует силу. Мы говорим, например, что Луна имеет вокруг себя гравитационное поле , и если вы приблизитесь к Луна, она потянет тебя на свою поверхность.

Электрическое поле описывает напуганную область вблизи любого электрически заряженного объекта. Ученые не используют слово «фанки», но это работает. Его также можно назвать электростатическим полем . Любой другой заряд, попадающий в эту область, будет ощущать силу, и исходный объект также будет ощущать эту силу (третий закон Ньютона). Это как паук, сидящий в центре паутины.

Нормальное поле представляет собой вектор и представлено стрелками. Гравитационное поле Земли (или любой планеты) будет изображено в виде стрелок, указывающих на землю. Вектор поля показывает направление воздействия на объект, попадающий в поле. Гравитация действует вниз.

С электрическим полем дело обстоит немного сложнее, так как есть два вида зарядов, и одни комбинации притягивают , а другие отталкивают . Чтобы быть в согласии друг с другом, физики решили, что они всегда будут использовать положительные заряды для определения направления действия поля. Итак, если центральный заряд был положительным, и вы поместили рядом с ним другой положительный заряд, этот второй заряд оттолкнется наружу. Таким образом, векторы поля для центрального положительного заряда направлены наружу. Если центральный заряд отрицателен, положительный заряд, расположенный поблизости, будет притягиваться к центральному заряду, поэтому векторы поля для центрального отрицательного заряда указывают внутрь.

Поскольку поля напрямую связаны с силами, которые они оказывают, их сила уменьшается с расстоянием и увеличивается с размером заряда, создающего поле. Когда вы кладете заряды рядом друг с другом, их поля взаимодействуют и меняют форму. Это приводит к изменениям PE объектов и создает силы отталкивания или притяжения.

Электрические поля также могут создаваться магнитными полями. Магнетизм и электричество всегда связаны. Мы поговорим о магнитных полях в следующем разделе.




Или поищите на сайтах по конкретной теме.


  • Обзор
  • Сборы
  • Проводники
  • Электрические поля
  • Магнитные поля
  • Текущий
  • Сопротивление
  • Закон Фарадея
  • Закон Кулона
  • Магниты
  • Питание постоянного тока
  • Питание переменного тока
  • Дополнительные темы


История электричества (видео НАСА/WhyFiles)



Encyclopedia.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *