Site Loader

Содержание

В розетке постоянный ток или переменный, сколько вольт

Люди давно привыкли к благам электричества и многим все равно, какой ток в розетке. На планете 98% вырабатываемой электроэнергии – это переменный ток. Его намного легче производить и передавать на значительные расстояния, чем постоянный. При этом напряжение может многократно изменяться по величине в сторону понижения и повышения. Сила тока существенно влияет на потери в проводах.

Передача электроэнергии на расстояние

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов. Многие потребители работают при постоянном напряжении в 6-12 вольт. Особенно это относится к электронике. Но питание приборов должно приводиться к одному типу. Поэтому для всех потребителей ток в розетке должен быть переменным, с одним напряжением и частотой.

Различие между токами

Переменный ток периодически изменяется по величине и направлению. С генераторов электростанции выходит переменный ток с напряжением 220-400 тыс. вольт. До многоэтажного дома оно снижается до 12 тыс. вольт, а затем на трансформаторной подстанции преобразуется до 380 вольт.

Ввод в частный дом может быть трехфазным или однофазным. Три фазы заходят в многоэтажный дом, а затем в каждую квартиру с межэтажного щитка, через пакетный выключатель снимается 220 вольт между нейтральным проводом и фазой.

Схема подключений в квартире от однофазной сети переменного тока

В квартире напряжение подается на счетчик, а с него поступает через отдельные автоматы на соединительные коробки каждого помещения. С коробок делается разводка по комнате на две цепи осветительных приборов и розеток. В схеме рисунка на каждое помещение приходится по одному автомату. Возможен другой способ подключений, когда на осветительную и розеточную цепи устанавливается по одному защитному устройству.

В зависимости от того, на сколько ампер рассчитана розетка, она может быть в группе или к ней подключается отдельный автомат. Постоянный ток отличается тем, что его направление и свойства не изменяются со временем. Он применяется во всей электронике дома, светодиодной подсветке и в бытовых приборах. При этом многие не знают, какой ток в розетке. Он приходит из сети переменным, а затем преобразуется в постоянный внутри электроприборов, если в этом есть необходимость.

Если сделать схему снабжения квартиры постоянным током, обратное его преобразование в переменный обойдется значительно дороже.

Преобразователь постоянного тока

Параметры розеток

Определяющими характеристиками для розеток являются уровень защиты и контактная группа. Для хозяина квартиры при выборе розетки необходимо учитывать:

  • место установки: внешняя, скрытая, в помещении или снаружи;
  • форма и соответствие друг другу вилки и розетки, безопасность использования;
  • характеристики сети, особенно, сколько ампер через нее может проходить.

Требования к штепсельным соединениям

Для подключения электроприбора к сети розетка с вилкой являются соответственно источником и приемником энергии, образуя штепсельное соединение. К нему предъявляются следующие требования.

  1. Надежный контакт. Слабое соединение приводит к разогреву и выходу его из строя. Важно также обеспечить надежную фиксацию от самопроизвольного отключения. Здесь удобно применять пружинящие контакты в розетке.
  2. Изоляция токонесущих частей друг от друга.
  3. Защита от прикосновения руками или разными предметами к деталям, находящимся под напряжением. Для защиты от детей в розетках предусматриваются специальные шторки, открывающиеся только тогда, когда вставляется вилка.
  4. Обеспечение полярности при подключении. Это важно, если через соединение течет постоянный ток или устройство применяется в сочетании с однополюсным выключателем. Конструкция розетки не допускает неправильного подключения.
  5. Наличие заземления для приборов 1 класса защиты. В розетках важно правильно подключить заземление.

Виды розеток

В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.

По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).

Разновидности розеток

Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).

Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.

Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока. Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО.

За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.

Розетка для электроплиты

Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.

Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки. Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.

Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.

Розетки расширенной функциональности

Сейчас выпускают новые типы розеток с новыми функциями:

  1. Встроенные таймеры отключения.
  2. Переключение типа тока.
  3. С индикацией величины нагрузки (цвет меняется от зеленого до красного).
  4. Со встроенным УЗО.
  5. С автоматической блокировкой.

Проверка подключения

Напряжение проверяется в розетке подключением вольтметра или тестера. При его наличии прибор укажет, сколько в ней вольт.

Тестер напряжения в розетке

Сила тока может определяться амперметром, подключенным последовательно с работающей нагрузкой.

Электрики проверяют наличие напряжения индикатором. Однополюсный – выполняется в виде отвертки с лампочкой. С его помощью можно найти фазу, но подключение нулевого провода он не покажет. Это можно сделать двухполюсным индикатором, подключив его между фазой и нулем. Легко можно проверить напряжение в розетке контрольной лампой, которому она должна соответствовать.

Монтаж. Видео

Про монтаж подрозетника в бетон рассказывается в этом видео.

В быту и промышленности преобладает переменный электрический ток. Его проще передавать на расстояния и изменять по величине. Для бытовых нужд переменный ток подается на освещение и к розеткам в доме, где подключаются электроприборы.

Оцените статью:

Какой ток в розетке — переменный или постоянный, и зачем это нужно знать: сколько ампер, какая его частота и как узнать самостоятельно

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.


Построение графика переменного тока

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т. е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют.

Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

График разности постоянного и переменного тока

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

Что такое переменный ток и переменное напряжение?

Ноябрь 15th, 2010 Айрат

Что такое переменный ток и переменное напряжение?

Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».

Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток. и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.

Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.

Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть»

А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц

Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз

Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.

Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.

Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).

Нет похожих постов.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться. На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток. Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.

Сила тока и напряжение в розетке

е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U

Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Рис. 64. Различное свечение ламп при одной и той же силе тока: а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

U = A / q

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

A = Uq, q = A / U.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение

Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер

Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа

Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники

Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Какой ток в домашней сети

Люди уже давно пользуются электричеством и практически никогда не задаются вопросом, какой ток в розетке – переменный или постоянный. Ответ достаточно простой, поскольку 98% всей производимой электроэнергии относится к переменному току. Такое преимущество объясняется легкостью производства и возможностью передачи на большие расстояния по сравнению с постоянным током. Во время передачи величина напряжения переменного тока может неоднократно повышаться или понижаться. Таким образом, большинство розеток работают с переменным током. Но, существует немало потребителей из области электроники, работающих от постоянного тока, напряжением от 6 до 12 вольт.

Постоянный ток

Понятие электрического тока заключается в упорядоченном движении заряженных частиц, на которые оказывают воздействие силы электрического поля или другие сторонние силы. Направлением тока считается направление, в котором двигаются положительно заряженные частицы.

Если значение силы электрического тока и его направление остаются неизменными, данный ток считается постоянным. Для его существования необходимы свободные заряженные частицы, а также источник тока, преобразующий энергию в энергетику электрического поля. Под действием сторонних сил в замкнутой цепи происходит перемещение заряженных частиц. Их возникновение обусловлено разными причинами. Например, для аккумуляторов и гальванических элементов это будут химические реакции. Генераторы вырабатывают ток с использованием проводника, движущегося в магнитном поле. В фотоэлементах свет воздействует на электроны полупроводников и металлов.

Постоянный ток применяется в промышленности, облегчая запуск оборудования с большим пусковым моментом. Электродвигатели постоянного тока используются для плавной регулировки скорости, с их помощью значительно сглаживается пусковой момент. Постоянный ток вырабатывается аккумуляторами и батарейками. Его величина может колебаться от 6 до 24 вольт.

Переменный ток

В отличие от постоянного тока, переменный обладает способностью изменяться по направлению и величине через одинаковые промежутки времени. Он вырабатывается генераторами переменного тока. В которых возникновение электродвижущей силы происходит под действием электромагнитной индукции.

Переменный ток широко применяется в различных областях, благодаря возможности преобразовывать его силу и напряжение с минимальными потерями энергии. Он может быть однофазным и трехфазным. В последнем случае электрическая система включает в себя три цепи с одинаковой частотой и ЭДС, сдвинутые между собой по фазе на 120 градусов.

С помощью переменного тока стала возможной передача электрической энергии на большие расстояния. Во время проводной передачи возникают определенные потери в количестве, пропорциональном квадрату тока. Чтобы снизить потери, необходимо уменьшение напряжения. Сниженный ток вызывает необходимость в существенном повышении напряжения. Поэтому электроэнергия передается на дальние расстояния только при наличии высокого напряжения. Преобразование токов до необходимых параметров осуществляется с помощью трансформаторов, представляющих собой электромагнитные аппараты понижающего или повышающего типа.

Виды и параметры розеток

Электрические розетки являются достаточно простыми устройствами. Тем не менее, они обладают важными функциями, прежде всего, обеспечивают надежный контакт между бытовыми приборами и электросетью. Розетки надежно защищают от прикосновений к токоведущим частям, обеспечивают надежную изоляцию. В большинстве современных моделей розеток присутствует функция защитного заземления, выполняемая отдельным контактом.

Все электрические розетки разделяются на несколько типов. В соответствии с применяемым креплением, они могут быть открытыми или скрытыми. Например, наружная проводка требует накладных розеток открытого типа. Они просты в установке и не требуют отверстий для подрозетников. Встроенные модели розеток отличаются привлекательны внешним видом, надежным креплением и высокой степенью защиты от поражения электротоком за счет расположения токоведущих частей в глубине стены.

Розетки различаются между собой и по величине тока. Большинство современных розеток рассчитано на ток в 6, 10 и 16 ампер. Максимальный ток старых советских моделей составлял всего 6,3 ампера. Потребители с повышенной мощностью подключаются к специальным розеткам, обладающих высокой стойкостью к большим токам. Как правило, это стационарное оборудование. Максимально допустимый ток розетки должен соответствовать мощности потребителя, подключаемого к электрической сети.

Как измерить переменное напряжение в розетке

Жизнь современного человека невозможно представить без электрического тока, все коммуникации так или иначе связаны с этим источником энергии. Многие жители многоквартирного дома, пользуясь бытовыми приборами, никогда не задумываются о том, какой ток в розетке, постоянный он или переменный, а знать это обязательно, так как перед подключением какого-либо устройства нужно понимать, предназначено оно для работы в данной сети или требует установки дополнительного оборудования. В этой статье подробно рассмотрены вопросы: какое напряжение в розетке, что такое переменный и постоянный ток, а также какая сила тока в розетке и бытовом освещении.

Переменный ток

Существует классификация типов тока на два вида:

  1. Постоянный ток, когда положительные и отрицательные заряды двигаются в одном направлении от источника питания к потребителю;
  2. Переменный ток. В данном случае сила тока будет такой же, что и в первом пункте, но направление движения зарядов разное. Благодаря своим физическим свойствам, частицы двигаются в обоих направлениях, независимо от вида потребляющего прибора и его расположения.

Практически все электростанции производят электрический ток переменного типа, так как его генерация и транспортировка гораздо легче и выгоднее. От стадии производства до конечного потребителя электричество проходит множество трансформаций с повышением и понижением напряженности. На генерирующей станции ток вырабатывается номиналом 12 кВт, затем происходит его трансформирование специальной установкой, которая повышает указанное значение до 400 кВт. Это делается для того, чтобы устранить потери напряжения во время передачи тока на большие расстояния по специальным магистралям, к тому же переменные токи двигаются в обоих направлениях, поэтому для их беспрепятственного передвижения по проводнику нужно высокое напряжение.

Трансформатор играет роль буфера, который накапливает определенное количество переменного тока и повышает его силу в несколько раз. Раньше эти установки были громоздкими и занимали много места, но благодаря современным технологиям, трансформаторные приборы могут располагаться прямо на линиях электропередач с фиксацией на опорах.

В отличие от переменного, постоянный ток имеет одно направление, и при его транспортировке происходят большие потери напряжения, в результате до потребителя доходит заряд не 220 В, а намного ниже, что пагубно влияет на бытовые приборы и электродвигатели. С этой точки зрения, намного выгоднее и безопаснее было сделать в сетях розеток для бытового или промышленного пользования переменный ток. Конечно, встречаются линии, которые снабжены постоянным напряжением, но это бывает крайне редко, в основном на предприятиях с высокоточным оборудованием.

Таким образом, ответ на вопрос «в розетке постоянный ток или переменный» однозначный: в бытовых сетях – переменный, в промышленности – и первый, и второй.

Сила тока

Чтобы ответить на вопрос, сколько ампер в розетке, необходимо обозначить, что такое сила тока. Это величина, которая исчисляется нормативом прохождения заряда через проводник за определенный интервал времени, обозначается эта величина буквой А, что значит Ампер. Для бытовых и промышленных розеточных сетей существует стандарт, согласно которому в таких магистралях течет ток, равный 220 Вольт, это означает, что энергия имеет силу, равную 1 Ампер. В зависимости от типа розетки и класса подключаемого прибора, эта величина может меняться в большую сторону, так как потребляемый ток у каждого оборудования разный, соответственно, и сила напряжения будет увеличиваться.

Таким образом, можно сделать вывод, что в большинстве случаев в розеточных сетях протекает ток напряжением 220 вольт и силой 1 Ампер в спокойном режиме. При включении в розетку какого-либо потребителя заряды стремятся на обмотку двигателя и приводят его в движение. При этом необходимо учитывать, что чем выше производительность оборудования, его мощность, тем больше энергии нужно для его работы, следовательно, и проседание всей линии будет соответствующее.

Виды розеток

Существует множество классификаций розеток, в зависимости от их расположения, номинальной мощности, уровня защиты от влаги и пыли и других параметров, среди них можно выделить следующие:

  1. Розетки с наружным расположением. Это тип проводной арматуры, который фиксируется на поверхности и подключается за счет подводки проводника наружным способом. Сети, организованные таким методом, чаще всего можно встретить в деревянных домах, в которых, согласно технике пожаробезопасности, запрещено монтировать скрытую проводку;
  2. Розетки скрытого монтажа. В данном случае установка арматуры осуществляется путем врезки ее в плоскость стены и подключения к проводнику, при этом фиксация проводится путем прикручивания плоскости розетки к закладной конструкции внутри стены, которая называется «корзинка».

В обоих случаях необходимо учитывать номинальную мощность изделия и ток, на который оно рассчитано, а также тип напряжения. Чаще всего производители обозначают вид тока волнистой линией, что означает переменный ток, и сплошной ровной полосой, что значит постоянное напряжение.

Важно! Не стоит пытаться подключить оборудование, предназначенное для определенного типа энергии в противоположный, так как это может спровоцировать аварийную ситуацию и выход из строя всей системы.

Также розетки подразделяются на простые и с повышенным уровнем защиты от пыли и влаги, в таких устройствах имеются специальные шторки, которые предотвращают попадание грязи внутрь изделия. Подключение подобных приборов ничем не отличается от обычных, различие заключается только в самом корпусе.

Большинство современных бытовых приборов комплектуется стандартными вилками еврообразца, но встречается и оборудование с тонкими или плоскими контактами для подключения к сети. Поэтому стоит учитывать данный факт, прежде чем выбирать ту или иную розетку и устанавливать ее.

Также существуют специальные розетки, которые питают только определенный тип приборов, например, электрическую плиту с тремя плоскими контактами. В такое устройство можно подключать единственное оборудование, поэтому такой тип розеток называется «специальные».

В большинстве современных приборов обязательным условием является устройство заземления, поэтому розетки комплектуются дополнительным контактом в виде металлической рейки на корпусе. Когда вилка вставляется в розетку, металлические пластины замыкаются между собой, что образует непрерывную сеть.

Требования к сети

Для качественной работы всей системы электропитания необходимо учитывать множество факторов, такие как:

  1. Сколько вольт в розетке. Если бытовой прибор рассчитан на работу при воздействии тока, равного 220 Вольт, то важно соблюдать это правило, так как при присоединении к большему или меньшему напряжению оборудование может полностью выйти из строя;
  2. Стабильность напряжения. Многие приборы чувствительны к перепадам напряжения, поэтому, если установлено, что в данной местности неустойчивая работа трансформатора, то лучше установить стабилизатор, который возьмет на себя работу по выпрямлению тока;
  3. Изолированность проводов внутри розетки. Из-за плотного размещения контактов внутри коробки часто бывает, что наружная изоляция нагревается и оплавляется. Это приводит к возникновению короткого замыкания между положительными и отрицательными зарядами;
  4. Плотность примыкания между вилкой и розеткой. Как ни странно, но это также влияет на качество и долгосрочность работы устройства, так как при недостаточном соприкосновении контактов будет возникать нагрев проводов, это тепло будет передаваться на пластиковые элементы, что их разрушит.

Таким образом, для правильного выбора розетки и верного монтажа необходимо учитывать тип тока, постоянный или переменный, устройство и назначение оборудования, а также напряжение в сети.

Видео

Большинство домашних мастеров хотя бы в общих чертах знает характеристики электрической сети. Однако есть те, кто даже примерно не предполагает, какой ток в розетке, каково его напряжение. На самом деле это не праздный вопрос. Многие хотят узнать, какой ток опаснее для здоровья человека – переменный или постоянный, каковы его сила и влияние на организм. Сегодняшняя статья ответит на все эти вопросы.

Что такое переменный ток: определение

Этот термин слышал каждый, а вот что он означает, знают не все. Переменным называется хаотичное движение заряженных частиц, меняющее свою полярность от плюса к минусу с определенной частотой, которая измеряется в герцах (Гц). Если нарисовать график, то подобная величина будет выглядеть как синусоида, периодически пересекающая ось координат «Х». Если же говорить о трехфазном токе, то он протекает не по одному проводнику, а по трем. Синусоиды фаз в идеале совершенно идентичны, но сдвинуты во отношению друг к другу на 120 градусов.

Переменный ток встречается повсеместно. Он вырабатывается на электростанциях генераторами с различными приводами. Такой ток прост в передаче на различные расстояния и из него довольно просто получить постоянный, чего не скажешь об обратной трансформации. Для «транспортировки» с наименьшими потерями напряжение повышается до 25 кВ, вследствие чего, по законам физики, снижается сила тока, измеряемая в амперах (А). Когда он достигает нужной точки, то попадает на первичную трансформаторную подстанцию. На ней напряжение понижается до 6 кВ и отправляется дальше. Последний трансформатор еще понижает напряжение до привычных 0.4 кВ (400В). Именно этот ток по трем фазам попадает в многоквартирные дома. Здесь фазы равномерно распределяются, в результате чего в каждое жилище подводится 1 фаза, способная обеспечить помещения электрическим напряжением 220 В.

Так какой ток в розетке? Конечно же, переменный. Именно на нем работает практически вся бытовая техника. Если же устройству требуется постоянный ток, используются специальные трансформаторы с выпрямителями (диодными мостами), которые называются адаптерами. Подобными блоками питания часто оборудуются телевизоры, компьютеры, музыкальные центры.

Постоянный ток: особенности

Его сила и направление неизменны. Здесь проводники переносят определенный заряд – положительный или отрицательный. В быту за выработку постоянного тока отвечают не только адаптеры. Его можно получить из аккумуляторных батарей, гальванических элементов. Величины напряжения постоянного тока в быту невелики – обычно от 1.5 В до 24 В.

В промышленности его используют для двигателей с большими пусковыми токами. Это позволяет обеспечить плавную регулировку скорости вращения. Здесь прямой ток вырабатывается специальными генераторами, создающими вихревые потоки электромагнитного поля.

Что следует знать о силе тока и напряжении

Мало знать, какой ток в розетке – переменный или постоянный. Требуется учитывать множество других факторов. Многие считают, что чем выше его напряжение, тем он опаснее. На самом же деле все обстоит совершенно наоборот. Как уже говорилось, с повышением напряжения падает сила тока, а при поражении, для организма опасен именно этот параметр. Но данное утверждение верно только для постоянной величины. Переменный ток не имеет определенной силы – этот параметр будет зависеть от нагрузки. Чем больше приборов включено в электрическую розетку 220 вольт, тем выше данная величина в проводнике. Ограничителем повышения этого параметра будет служить защитная автоматика, которая не позволит силе тока возрасти до критических пределов, отключив питание домашней сети.

Какой ток идет в розетке: характеристики бытового напряжения

Стандартное напряжение бытовой сети между фазой и нейтралью 220-240 В. Сила тока зависит от количества потребителей и их характеристик. Попробуем рассчитать параметры при подключении стиральной машины с водонагревателем, мощностью 2.5 кВт. Чтобы узнать, какая сила тока в розетке будет присутствовать при подключении подобного оборудования, необходимо уточнить некоторые величины. Для вычислений понадобится коэффициент мощности. Он указывается в технической документации и на шильдике прибора. Если этот показатель отсутствует, за расчет принимается величина в 0.95.

Чтобы узнать силу тока, возникающую в момент включения водонагревателя, необходимо умножить напряжение на коэффициент мощности, после чего на полученное значение разделить 2.5 кВт, которые потребляет стиральная машинка. Вычисления будут выглядеть следующим образом: 2500 Вт / (220 × 0.95) = 11,96 А. Получается, что обычная дешевая электрическая розетка 220 В не подойдет для подобного оборудования – ее максимум составляет 10 А. Придется приобрести более дорогое изделие, которое способно выдержать до 16 А.

Защитная автоматика: как она может спасти жизнь

Переписав все данные бытовых приборов, подключаемых к определенной линии, можно определить, какой ток в бытовых розетках образуется при включении всего оборудования одновременно. Это позволит подобрать защитные устройства с подходящими параметрами. Многие недооценивают роль УЗО в схеме электроснабжения, считая, что вполне достаточно обычного автоматического выключателя. Однако эти устройства имеют совершенно разное назначение.

Автоматический выключатель предназначен для принудительного или аварийного размыкания цепи в случае возникновения перегрузки или короткого замыкания. Но он не способен защитить человека от поражения электрическим током в случае повреждения изоляции токоведущего проводника и его соприкосновении с открытыми участками тела. Зато эту работу с успехом выполняет УЗО. Если в помещении оборудованы розетки с заземлением, то при пробое возникает утечка тока, которую фиксирует устройство защитного отключения, моментально прерывая подачу электроэнергии. Проблема УЗО лишь в том, что оно не реагирует на короткое замыкание, вследствие чего может сгореть. Именно по этой причине устройство защитного отключения монтируется в паре с автоматическим выключателем.

Напряжение сети и его изменения

Понятно, что вопрос, сколько ампер ток в розетке, некорректен – это величина изменяемая. Но почему может падать или резко повышаться напряжение в сети? Чаще всего причин возникновения подобных проблем бывает две – изношенный трансформатор на подстанции, требующий замены и неквалифицированные электромонтеры, которые производили расключение фаз перед сдачей дома в эксплуатацию. Если с первым вариантом все более или менее ясно, то на втором стоит остановиться более подробно.

Причины перекоса фаз и его последствия для бытовой техники

Если на площадке расположены три квартиры, то расключение производится следующим образом – общий ноль на все помещения и по одной из трех фаз на каждое. При этом на каждом этаже производится замена стояка. Если на первом третья фаза подключена к двухкомнатной квартире, на втором она пойдет на четырехкомнатную, еще выше это будет питание однокомнатной. Такое чередование позволяет равномерно распределить нагрузку. Если же одну фазу пустить по всем четырехкомнатным квартирам подъезда, да еще и представить холодную зиму с необходимостью использования электрических радиаторов, несложно понять, каким образом перегружается сеть. В этом случае напряжение на линии может упасть. Вследствие перекоса фаз дополнительная нагрузка будет осуществляться и на трансформатор.

Теперь представим, что люди возвращаются с работы (обычно в одно и то же время), на улице потеплело, потому в нескольких квартирах разом выключили радиаторы. Результат предсказуем – скачок напряжения и возможный выход из строя бытовых приборов. Часто подобное случается в квартирах с неправильно подобранной автоматикой и отсутствием розеток с заземлением.

Несколько советов по выбору розеток УЗО и АВ

Первым делом следует выписать отдельно мощности всех бытовых приборов, разделив их на группы, от которых они будут запитаны. Вычислив, какой ток в розетке будет максимальным, можно определить параметры автоматического выключателя и УЗО, требуемого для конкретной линии. Если планируется общее устройство защитного отключения, то все показатели силы тока складываются. Такое вполне допустимо, но следует помнить, что на каждую группу должен стоять отдельный автоматический выключатель. Он устанавливается после УЗО, которое запитывается от прибора учета электроэнергии. Здесь между счетчиком и устройством защитного отключения необходима установка общего автомата. Он защитит УЗО в случае короткого замыкания или нагрева проводки. Еще одно место обязательной установки автоматического или пакетного выключателя – перед электросчетчиком. Им пользуются в случае необходимости замены или обслуживания прибора учета.

Подводя итоги

Информация по вопросу, какой ток в розетке, прояснилась – переменный. Его величина не определена и зависит только от потребляемой мощности включенных в сеть бытовых приборов. Напряжение в сети – 220-240 В. Домашнему мастеру, не занимающемуся вопросами электротехники профессионально, этих характеристик вполне достаточно. Если же потребуется вычислить силу тока в домашней сети при полной нагрузке, всегда можно воспользоваться представленными в статье расчетами. Подобное может понадобиться для выбора защитной автоматики с необходимыми параметрами, а также при полной замене электропроводки.

Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках?  Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

 

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

 

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе — отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

 

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Как определить переменное или постоянное напряжение. Переменный ток и постоянный ток: отличие

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает — это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Представить жилище современного человека без электрических розеток невозможно. И поэтому многие хотят знать больше о силе, несущей цивилизации тепло и свет, заставляющей работать все наши электроприборы. И начинают с вопроса: какой ток в нашей розетке, постоянный или переменный? И какой из них лучше? Чтобы ответить на вопрос, какой ток в розетке и чем обусловлен этот выбор, выясним, чем они отличаются.

Источники постоянного напряжения

Все эксперименты, проводимые учеными с электрическим током, начинались именно с него. Первые, еще примитивные, источники электроэнергии, подобные современным батарейкам, способны были выдавать именно постоянный ток.

Его основная особенность – неизменность величины тока в любой момент времени. Источниками, кроме гальванических элементов, являются специальные генераторы, аккумуляторы. Мощным источником постоянного напряжения является атмосферное электричество – разряды молний.

Источники переменного напряжения

В отличие от постоянного, величина переменного напряжения изменяется во времени по синусоидальному закону. Для него существует понятие периода – времени, за которое происходит одно полное колебание, и частоты – величины, обратной периоду.

В электрических сетях России принята частота переменного тока, равная 50 Гц. Но в некоторых странах эта величина равна 60 Гц. Это нужно учитывать при приобретении бытовых электроприборов и промышленного оборудования, хотя большая его часть прекрасно работает в обоих случаях. Но лучше в этом убедиться, прочитав инструкцию по эксплуатации.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Преимущества постоянного тока

Энергию от источников переменного напряжения нельзя хранить. Его можно использовать для зарядки аккумуляторной батареи, но выдавать она будет только постоянный ток. А что будет, если в силу каких-то причин остановится генератор на электростанции или оборвется линия питания села? Его жителям придется пользоваться фонариками на батарейках, чтобы не остаться в темноте.

Но и на электростанциях тоже есть источники постоянного напряжения – мощные аккумуляторные батареи. Ведь для того, чтобы запустить остановившееся из-за аварии оборудование, необходимо электричество. У механизмов, без которых запуск оборудования электростанции невозможен, электродвигатели питаются от источников постоянного напряжения. А также – все устройства защиты, автоматики и управления.

Также на постоянном напряжении работает электрифицированный транспорт: трамваи, троллейбусы, метро. Электродвигатели постоянного тока имеют больший вращающий момент на низких скоростях вращения, что необходимо электропоезду для успешного трогания с места. Да и сама регулировка оборотов двигателя, а, следовательно, и скорости движения состава, проще реализуется на постоянном токе.

И . Прежде чем подробно разбирать эти термины следует вспомнить, что понятие электрического тока заключается в упорядоченном движении частиц, имеющих электрические заряды. Если электроны постоянно осуществляют движение в одном направлении, то ток носит название постоянного. Но, когда электроны в один момент времени двигаются в одном направлении, а в другой момент осуществляется движение в другом направлении, то это является упорядоченным движением заряженных частиц, двигающихся без остановки. этот ток называют переменным. Существенным различием между ними считают то, что у постоянного значения «+» и «-» постоянно находятся на одном определенном месте.

Что такое постоянное напряжение

В качестве примера постоянного напряжения служит обычная батарейка. На корпусе любой батарейки есть обозначения «+» и «-». Это говорит о том, что при постоянном токе эти значения имеют постоянное местоположение. У переменного наоборот, значения «+» и «-» изменяются через определенные короткие промежутки времени. Поэтому обозначение постоянного тока применяется в виде одной прямой линии, а обозначение переменного — в виде одной волнистой линии.

Отличие постоянного тока от переменного

Большинство устройств, использующих постоянный ток, не позволяют при подключении источника питания путать контакты, поскольку в таком случае прибор может просто выйти из строя. При переменном этого не произойдет. Если вставить вилку в розетку любой стороной, то прибор все равно будет работать. Кроме того, существует такое понятие, как частота переменного тока. Она показывает, сколько раз в течение секунду меняются местами «минус» с «плюсом». Например, частота в 50 герц означает, изменение полярности напряжения за секунду 50 раз.

На представленных графиках видно изменение напряжения в различные временные моменты. На графике слева, для примера показано напряжение на контактах лампочки карманного фонарика. На отрезке времени с «0» до точки «а» напряжение вообще отсутствует, так как фонарик выключен. В точке времени «а» возникает напряжение U1, которое не меняется в промежутке времени «а» — «б», когда фонарик включен. При выключении фонарика в момент времени «б» напряжение снова становится равным нулю.

На графике переменного напряжения можно наглядно увидеть, что напряжение в различных точках, то поднимается до максимума, то становится равным нулю, то падает до минимума. Это движение происходит равномерно, через одинаковые промежутки времени и повторяется до тех пор, пока не отключат свет.

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению — это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

Несмотря на то, что электрический ток является незаменимой частью современной жизни, многие пользователи не знают о нем даже основополагающих сведений. В данной статье, опустив курс базовой физики, рассмотрим, чем отличается постоянный ток от переменного, а также какое он находит применение в современных бытовых и промышленных условиях.

Вконтакте

Различие типов тока

Что такое ток, рассматривать здесь не будем, а сразу перейдем к основной теме статьи. Переменный ток отличается от постоянного тем, что он непрерывно изменяется по направлению движения и своей величине .

Изменения эти осуществляются периодами через равные временные отрезки. Для создания подобного тока применяют специальные источники или генераторы, выдающие переменную ЭДС (электродвижущую силу), которая регулярно изменяется.

Основополагающая схема упомянутого устройства для генерации переменного тока довольно проста. Это рамка в виде прямоугольника, изготавливаемая из медных проволок, которая закрепляется на ось, а затем при помощи ременной передачи вращается в поле магнита. Кончики этой рамки припаиваются к медным контактным колечкам, скользящим по непосредственно контактным пластинкам, вращаясь синхронно с рамкой.

При условии равномерного ритма вращения начинает индуцироваться ЭДС, которая периодически изменяется. Измерить ЭДС, возникшую в рамке, возможно специальным прибором. Благодаря появлению реально определить переменную ЭДС и вместе с ней переменный ток.

В графическом исполнении эти величины характерно изображаются в виде волнообразной синусоиды . Понятие синусоидального тока зачастую относится к переменному току, поскольку подобный характер изменения тока является наиболее распространенным.

Переменный ток – алгебраическая величина, а его значение в конкретный временной момент именуется мгновенным значением. Знак непосредственно самого переменного тока определяется по направлению, в котором в данный временной момент проходит ток. Следовательно, знак бывает положительным и отрицательным.

Характеристики тока

Для сравнительной оценки всевозможных переменных токов применяют критерии, именуемые параметрами переменного тока , среди которых:

  • период;
  • амплитуда;
  • частота;
  • круговая частота.

Период – отрезок времен, когда производится законченный цикл изменения тока. Амплитудой называют максимальное значение. Частотой переменного тока назвали количество законченных периодов за 1 сек.

Перечисленные выше параметры дают возможность отличать различные виды переменных токов, напряжений и ЭДС.

При расчете сопротивления разных цепей воздействию переменного тока допустимо подключить еще один характерный параметр, именуемый угловой либо круговой частотой . Этот параметр определяется скоростью вращения вышеупомянутой рамки под определенным углом в одну секунду.

Важно! Следует понимать, чем отличается ток от напряжения. Принципиальная разница известна: ток является количеством энергии, а напряжением называется мера .

Переменный ток получил свое название, потому что направление движения у электронов безостановочно изменяется, как и заряд. У него встречается различная частота и электрическое напряжение.

Это и является отличительной чертой от постоянного тока, где направление движения электронов неизменно . Если сопротивление, напряжение и сила тока неизменны, а ток течет только в одну сторону, то такой ток является постоянным.

Для прохождения постоянного тока в металлах потребуется, чтобы источник постоянного напряжения оказался замкнут на себя при помощи проводника, которым и является металл. В отдельных ситуациях для выработки постоянного тока применяют химический источник энергии, который называется гальваническим элементом.

Передача тока

Источники переменного тока – обычные розетки. Они располагаются на объектах разнообразного назначения и в жилых помещениях. К ним подключаются различные электрические приборы, которые получают необходимое для их работы напряжение.

Использование переменного тока в электрических сетях является экономически обоснованным, поскольку величина его напряжения может преобразовываться к уровню необходимых значений. Совершается это при помощи трансформаторного оборудования с допускаемыми незначительными потерями. Транспортировка от источников электроснабжения к конечным потребителям является более дешевой и простой.

Передача тока к потребителям начинается непосредственно с электростанции, где используется разновидность чрезвычайно мощных электрических генераторов. Из них получают электрический ток, который по кабелям направляется к трансформаторным подстанциям. Зачастую подстанции располагают неподалеку от промышленных либо жилых объектов электрического потребления. Полученный подстанциями ток преобразуется в трехфазное переменное напряжение.

В батарейках и аккумуляторах содержится постоянный ток , который отличается устойчивостью свойств, т.е. они не изменяются со течением времени. Он используется в любых современных электрических изделиях, а еще в автомобилях.

Преобразование тока

Рассмотрим отдельно процесс преобразования переменного тока в постоянный. Данный процесс производится при помощи специализированных выпрямителей и включает три шага:

  1. Первым шагом подключается четырехдиодный мост заданной мощности. Это в свою очередь позволяет задать движение однонаправленного типа у заряженных частиц. Кроме того, он понижает верхние значения у синусоид, свойственных переменному току.
  2. Далее подключается фильтр для сглаживания либо специализированный конденсатор. Это осуществляется с диодного моста на выход. Сам же фильтр способствует исправлению впадин между пиковыми значениями синусоид. А подключение конденсатора значительно снижает пульсации и приводит их к минимальным значениям.
  3. Затем производится подключение устройств, стабилизирующих напряжение, с целью снижения пульсаций.

Данный процесс, в случае необходимости, способен производиться в двух направлениях, конвертируя постоянный и переменный ток.

Еще одной отличительной чертой является распространение электромагнитных волн по отношению к пространству. Доказано, что постоянный тип тока не позволяет электромагнитным волнам распространяться в пространстве, а переменный ток может вызывать их распространение. Кроме того, при транспортировке переменного тока по проводам индукционные потери значительно меньше, нежели при передаче постоянного тока.

Обоснование выбора тока

Разнообразие токов и отсутствие единого стандарта обуславливается не только потребностью в различных характеристиках в каждой индивидуальной ситуации. В решении большинства вопросов перевес оказывается в пользу переменного тока. Подобная разница между видами токов обуславливается следующими аспектами:

  • Возможность передачи переменного тока на значительные расстояния. Возможность преобразования в разнородных электрических цепях с неоднозначным уровнем потребления.
  • Поддержание постоянного напряжения для переменного тока оказывается в два раза дешевле, нежели для постоянного.
  • Процесс преобразования электрической энергии непосредственно в механическую силу осуществляется со значительно меньшими затратами в механизмах и двигателях переменного тока.

Какое напряжение в розетке?

В розетке постоянный ток или переменный?

Люди, мало-мальски знакомые с электротехникой, без труда ответят на вопрос о том, какой ток в розетке. Конечно же переменный. Этот вид электричества гораздо проще производить и передавать на большие расстояния, а потому выбор в пользу переменного тока очевиден.

Виды тока

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

Обратите внимание! Постоянный ток используется во всех электронных приборах.

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

Параметры домашней электрической сети

Основными параметрами электричества являются его напряжение и частота. Стандартное напряжение для домашних электросетей — 220 вольт. Общепринятая частота — 50 герц. Однако в США используется другое значение частоты — 60 герц. Параметр частоты задается генерирующим оборудованием и является неизменным.

Напряжение в сети конкретного дома или квартиры может быть отличным от номинала (220 вольт). На данный показатель влияет техническое состояние оборудования, сетевые нагрузки, загруженность подстанции. В результате напряжение может отклоняться от заданного параметра в ту или другую сторону на 20–25 вольт.

Скачки напряжения отрицательно сказываются на работоспособности электробытовой техники, поэтому подключения в домашней сети рекомендуется осуществлять через стабилизаторы напряжения.

Токовая нагрузка

Все розетки имеют определенную маркировку, по которой можно судить о допустимой токовой нагрузке. Например, обозначение «5A» указывает на максимальную силу тока в 5 ампер. Допустимые показатели следует соблюдать, поскольку в противном случае возможен выход оборудования из строя, в том числе его возгорание.

Маркировка на розетках показана на рисунке внизу:

Ко всем легально продаваемым электроприборам прилагается паспорт, где указана потребляемая мощность или номинал токовой нагрузки. Крупнейшими потребителями электроэнергии являются такие электробытовые приборы, как кондиционеры, микроволновые печи, стиральные машины, кухонные электроплиты и духовки. Таким приборам для нормальной работы понадобится розетка с нагрузкой не меньше 16 ампер.

Если же в документации к электробытовой технике отсутствуют сведения о потребляемых амперах (сила тока в розетке), определение нужных величин осуществляется по формуле электрической мощности:

Показатель мощности имеется в паспорте, напряжение сети известно. Чтобы определить потребление электричества, нужно показатель мощности (указывается только в ваттах) разделить на величину напряжения.

Разновидности розеток

Розетки предназначены для создания контакта между электрической сетью и бытовой техникой. Они изготовлены так, чтобы обеспечить надежную защиту от случайных прикосновений к токоведущим элементам. Современные модели чаще всего оснащены защитным заземлением, представленным в виде отдельного контакта.

По способу монтажа существует два вида розеток — открытые и скрытые. Выбор разновидности розетки во многом определяется типом монтажа. К примеру, при организации наружной проводки используют накладные открытые розетки. Такая фурнитура проста в монтаже и не нуждается в нишах для подрозетников. Встроенные же модели более привлекательны с эстетической точки зрения и более безопасны, поскольку токоведущие элементы находятся внутри стены.

Розетки отличаются по токовой величине. Большая часть устройств предназначена для работы с 6, 10 или 16 амперами. Старые образцы советского производства рассчитаны только на 6,3 ампера.

Обратите внимание! Максимально возможный для розетки ток должен находиться в соответствии с мощностью потребителя, подключаемого к электросети.

Методы измерения напряжения и тока

Чтобы измерить показатели напряжения и тока применяются следующие способы:

  1. Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
  2. Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
  3. Мультиметр (мультитестер). С помощью специального тестера проводятся измерения любого типа тока, присутствующего в розетке — как переменного, так и постоянного. Также мультиметром проверяют уровень напряжения.
  4. Контрольная лампа. С помощью лампы определяют наличие электричества в розетке при условии, что лампочка в контрольном приборе соответствует напряжению в тестируемой розетке.

Перечисленной выше информации вполне достаточно для общего понимания принципов организации электрической сети в доме. Приступать к проведению любых электротехнических работ следует только с соблюдением всех мер безопасности и при наличии соответствующей квалификации.

Определение тока или напряжения в розетке

Людям, знающим основы электротехники известно, что в розетке возникает переменный ток. Подобным типом электроэнергии намного проще управлять, в том числе передавать его на дальние расстояния.

В розетке ток или напряжение (+ какое напряжение)

Существует три основных параметра электрической сети:

  • Ток – измеряется в Амперах (А).
  • 2. Частота – в Герцах (Гц).
  • 3. Напряжение – в Вольтах (В).

Величина частоты зависит от генерирующих устройств, поэтому остается постоянной. Напряжение в сети может отличаться от номинального из-за возникновения помех. На показатель оказывает влияние состояние оборудования, нагрузка, а также загруженность трансформаторной подстанции. Параметр может отклоняться от основного в пределах 20 – 25 Вольт.

Важно! Если в электрической сети отмечаются скачки напряжения, то от этого страдает работоспособность техники, и без подключения стабилизаторов не обойтись.

Какое напряжение (постоянное или переменное) и сила тока в квартире, можно узнать по соответствующим маркировкам на розетках заводов-изготовителей.

На розетках указывается символика, по которой можно понять, какая допустимая нагрузка может проходить через устройство. Для того, чтобы исключить выход из строя технического оборудования, необходимо придерживаться предельно допустимых значений. Приборами, потребляющими большое количество электроэнергии, являются кондиционеры, печи СВЧ, плиты и стиральные агрегаты. В связи с этим обстоятельством обойтись без розетки номиналом меньшим, чем 16А, не представляется возможным.
Измерение напряжения в розетке возможно с помощью индикатора, тестера либо посредством эмпирического отслеживания. Стандартное напряжение в бытовой сети составляет 220 Вольт – какой ток? В данном случае речь идёт о номинальном показателе для жилых помещений при однофазной проводке.

Как определить, какой ток в розетке

Какое напряжение в розетке и сила тока – постоянное или переменное, можно определить несколькими способами:

  • Амперметром. Это специализированный прибор для измерения силы показателя. Значения можно увидеть на шкале посредством соединения розетки, потребителя и амперметра.

  • Мультиметр. Это комбинированное устройство, объединяющее в своей цепи омметр, вольтметр и амперметр.
  • Расчетным способом. Для того, чтобы определить, какой ток в розетке, необходимо знать показатель мощности прибора. В сеть подается ток с напряжением в 220В, поэтому расчет силы прост: значение мощности разделить на напряжение. Так несложно вычислить ток при включении утюга, мощностью 2,0 кВт, получается, 9.09 Ампер. Таким образом, если напряжение в сети 220 В, то какой по показателю ток протекает в сети, зависит от мощности.

Стоит отметить! Погрешность при измерениях зависит от класса точности устройств, перечисленных в пунктах 1 и 2.

Переменный

Почти 98% электроэнергии вырабатываемой домашней электросетью – переменный ток. Этот ток изменяет как направление, так и величину. При передаче электроэнергии внутри сети, напряжение либо увеличивается, либо уменьшается, в связи чем розетки выпускаются для переменного показателя. Существуют электроприборы, питающиеся от источника постоянного показателя, поэтому их следует привести к одному типу с использованием преобразователей.

Основные преимущества переменного тока:

  • Передача на длинные расстояния.
  • Позволяет использовать стандартное генераторное оборудование.
  • Отсутствует полярность при подключении.

Однако у данного тока также имеется ряд недостатков:

  • Потери в цепи обязывают подбирать розетки с учётом понижающего коэффициента 0,7.
  • Возникает электромагнитная индукция, в связи, с чем электричество не всегда распределяется равномерно.
  • Проверка и измерение значений осуществляются по сложной схеме.
  • Увеличение показателя сопротивления, так как кабель не задействован в полном объеме.

Постоянный

При упорядоченном движении заряженных частиц в едином направлении, ток называется постоянным, и возникает он в сети с неизменным напряжением при стабильной полярности зарядов. Используется в промышленных автономных установках, что исключает необходимость передачи электроэнергии на большие расстояния.

Использование постоянного показателя предусматривается в автономных системах, к примеру, в автотранспорте, летательных средствах, морской технике и электропоездах. Широкое использование он получил при организации питания микросхем электроники, средств связи и иной техники, где количество помех максимально сводится к минимуму, вплоть до их полной ликвидации.

В некоторых случаях он нашел применение в сварочных агрегатах, а также в железнодорожных локомотивах, медицине при введении в организм лекарственных препаратов посредством электрофореза.

Почему в розетке переменный ток

Еще в позапрошлом веке Тесла выдвинул гипотезу, что электричество в жилых помещениях (квартирах и домах) должно быть переменным. Ученый обосновал, что применение токов этого вида наиболее приемлемо, исходя из следующих заключений:

  • Передается по проводам с наименьшими потерями.
  • Легко поддается трансформации.
  • Намного безопаснее по отношению к постоянному.

Постоянный ток отличают противоположные свойства:

  • Проходит по проводке с большими потерями.
  • Процесс трансформации из одного напряжения в иное проходит сложно.

Основной вывод – использование тока переменного значения непосредственно связано с безопасностью и потерями в линиях электрических проводов. Для снижения расходов на электроэнергии напряженье должно быть высоким. На вышках электропередач проходит ток высокого напряжения 1000В, 10000В, а также 500000В. Хотя это и представляет опасность для жизни, но обуславливает экономичность. Для трансформации электроэнергии обустраивают трансформаторные будки, откуда ток на выходе имеет напряжение 380В или 220В.

Можно привести пример: в качестве трансформатора берется зарядное устройство для мобильного телефона, и она полностью безопасна, так как в ней встроен преобразователь.

Стоит лишь закоротить розетку, то ток с переменным значением автоматически перекрывается и электрической дуги не образовывается. По этим причинам использование переменного показателя гораздо выгоднее и безопаснее.

Какой ток в батарейках

Из розетки выходит ток переменного значения, так как направление потока электронов меняется. У такого рода тока частота и напряжение разных значений. Следовательно, в розетках – 220В при 50Гц. Нагляднее это выглядит так: в одну секунду поток электронов меняется 50 раз, при этом заряды тоже изменяются с положительных на отрицательные.

Особенно это заметно при включении или подаче электричества в флуоресцентные лампы. При разгоне электронов лампа мерцает, а это означает, что это меняется поток. Максимальный напор потенциала напряжения составляет 220В, при котором осуществляется движение электронов.

Заряд изменяется при переменном токе. Получается, что напряжение бывает либо 100% или 0%. При показателе 100 % необходимо, чтобы провод был большого диаметра, а если заряд непостоянный, то достаточно провода небольшого сечения. По такому проводнику можно переправить большое количество вольт, после чего трансформатор забирает в себя излишки, и остается 220В на выходе.

Внимание! В батарейках или в аккумуляторах постоянный ток, так как направление электронов не изменяется. Зарядка предназначена для его трансформации из переменного в постоянный, в таком виде его выдают аккумуляторы.

Какой ток в 220В и больше

Значение проходящей электроэнергии из розетки определяется в Амперах, при этом напряжение на выходе составляет 220 В. Получается, что сила тока – физическая величина, равная отношению заряда, который проходит через проводник за определенное время. Если к розетке нет подключения, то электрическая цепь считается разорванной.

Когда проводка не защищена автоматикой, то мощность находится под контролем, поэтому значение Ампер в розетке разное при напряжении 220В. Показатель силы в этом случае постоянно растёт до тех пор, пока электрическое оборудование не выйдет из строя.

Профессионалы советуют выбирать розетки на 16 и более Ампер, так как они надежнее, проводка выполняется из кабеля на 2,5 мм2. При выборе розетки, рассчитанной на меньшее количество Ампер, защита может не срабатывать, что нередко приводит к авариям на линии.

Уровень напряжения – одни из критериев качества электроснабжения. Каждый из бытовых электроприборов рассчитан на продолжительную нормальную работу при условии питания его от напряжения, находящегося в пределах допустимых значений. В данной статье рассмотрим вопрос о том, какое напряжение в бытовой сети является оптимальным для работы электроприборов.

Уровень напряжения в электрической сети

Прежде всего, следует отметить, что на уровень напряжения в электрической сети влияет множество различных факторов. Электричество от источника – электростанции к конечному потребителю, в частности в жилые дома, приходит, пройдя несколько этапов преобразования. На первом этапе напряжение повышается для передачи его на большие расстояния, по энергосистеме. По мере приближения к конечному потребителю, электричество проходит несколько этапов преобразования напряжения до значений, используемых в быту.

Фиксированное значения напряжения в различных участках энергосистемы невозможно обеспечить, так как в энергетической системе постоянно происходят различные процессы: увеличивается или снижается нагрузка, соответственно изменяется и количество вырабатываемой электроэнергии на электростанциях, возникают аварийные ситуации на различных участках электрической сети, которые в той или иной мере влияют на уровни напряжения. Поэтому на каждом этапе преобразования электроэнергии осуществляется регулировка уровня напряжения, как в сторону увеличения, так и в сторону уменьшения.

Основной задачей регулировки напряжения обеспечить уровень напряжения на тех или иных участках электрической сети в пределах допустимых значений. То же самое касается конечного этапа, который обеспечивает понижение напряжения величины, используемой в быту – 220/380 В.

В наиболее часто используемой для электроснабжения потребителей однофазной электрической сети напряжением 220 В нормально допустимые отклонения напряжения находятся в пределах +/- 5 %. То есть диапазон напряжения 209-231 В является нормальным, может быть постоянным, соблюдение напряжения сети в пределах данных значений является одним из критериев качественного электроснабжения.

Но, как и упоминалось выше, в электрической сети могут возникать аварийные режимы работы, которые могут влиять на уровни напряжения в электрической сети. В связи с этим существует еще одна норма – предельно допустимые отклонения напряжения, которые составляют +/- 10 % или 198-242 В.

Данные отклонения напряжения допускаются на незначительное время, как правило, на время ликвидации аварийной ситуации в электрической сети или на время оперативных переключений, в процессе которых происходит временное изменение значений напряжения электросети.

Какое напряжение в бытовой сети оптимальное для работы электроприборов?

Выше приведены общие нормы напряжения электрической сети. Что касается бытовых электроприборов, то в большинстве случаев они проектируются для нормальной работы в диапазоне предельно допустимых отклонений напряжения, то есть 198-242 В. При этом электроприборы не должны выходить из строя в случае непродолжительного превышения напряжения выше 242 В.

Если рассматривать диапазоны допустимых напряжений в паспортах бытовых электроприборов, то можно выделить две группы электроприборов. К первой группе можно отнести те электроприборы, которые меньше всего подвержены перепадам напряжения – это электрический чайник, электропечь, бойлер, электрический обогреватель и другие электроприборы, в которых основным конструктивным элементом является тепловой нагревательный элемент.

Ко второй группе можно отнести электроприборы, которые наиболее подвержены перепадам напряжения – это, прежде всего, компьютерная техника, блоки питания различной техники, аудио- и видеотехника и различные дорогостоящие электроприборы, конструктивно имеющие электронные схемы, преобразователи.

В паспорте электроприборов первой группы в большинстве случаев можно увидеть рекомендуемое рабочее напряжение 230 В. По сути данные электроприборы будут работать и при более низком напряжении, но при этом они будут работать менее эффективно.

Электроприборы второй группы, как более подверженные к перепадам напряжений, проектируется с учетом работы в широких диапазонах. Часто диапазоны рабочих напряжений выходят ниже предельно допустимых. Например, блок питания аудио- видеоаппаратуры, зарядное устройство мобильного телефона рассчитано для работы в пределах 100-240 В.

Отдельно следует выделить бытовые приборы, конструктивно имеющие электродвигатель, насос или компрессор. Перечисленные элементы рассчитаны для работы при номинальном напряжении, как правило, это 220-230 В.

В случае понижения напряжения в электрической сети увеличивается ток нагрузки в электродвигателе (насосе, компрессоре), что в свою очередь приводит к перегреву его обмоток и снижению срока службы изоляции. В данном случае, чем ниже напряжение в электрической сети, тем меньше срок службы данных электроприборов, в частности их конструктивных элементов – электродвигателей (насосов, компрессоров).

Учитывая диапазоны допустимого напряжения всех электроприборов, используемых в быту, можно сделать вывод, что наиболее оптимальным напряжением в электрической сети является напряжение величиной 230 В. При таком значении напряжения будут нормально работать электроприборы с электродвигателями, нагревательными элементами, а также электроприборы, конструктивно имеющие электронные схемы и преобразователи.

Рассматривая вопрос о том, какое напряжение в бытовой сети оптимальное для работы электроприборов, следует учитывать, что важен не только уровень напряжения, но и его стабильность.

Под стабильностью подразумевается отсутствие скачков напряжения, как в сторону увеличения, так и в сторону уменьшения. Перепады напряжения негативно влияют на работу электроприборов и, в конечном счете, могут привести к выходу их из строя.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке – переменный или постоянный?

Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.

Какой ток в розетках постоянный или переменный?

98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.

  • легко передавать на большие расстояния;
  • простое генераторное оборудование, упрощение устройства электродвигателей;
  • отсутствие полярности.
  • расчеты проводятся на максимальное значение, по факту используется не более 70%;
  • электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
  • сложность проверки и измерения параметров;
  • увеличивается сопротивление, так как используется не весь кабель.

Для чего нужно знать сколько ампер в розетках в квартире

Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.

Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.

Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.

Сила тока в розетке

Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.

Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.

220 В

Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.

На этот показатель влияют:

  • техническое состояние,
  • нагрузки сети,
  • загруженность электростанций.

Более 220 В

Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме подключенных электроприборов. Например микроволновая печь, стиральная машина подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Полезное видео

В чем сила, брат? А сила тока в розетке?

Для того, чтобы разобраться в данном вопросе, необходимо для начала отыскать в книгах или чертогах разума следующую информацию:

  • закон Ома
  • сопротивление амперметра, вольтметра, мультиметра
  • подключение амперметра, мультиметра в цепь для измерения силы тока

Хоть электрика опасная и строгая наука, но опытные, умудренные опытом спецы любят шутить на профессиональные темы. Например, в кабинетах или мастерских можно встретить различные смешные и не очень плакаты, относящиеся к теме электрики:

  • “не чапай – лясне”
  • “электрик! не трогай оголенные провода мокрыми руками, от этого они ржавеют и портятся”

Пару слов о физике процесса и законе Ома

Так вот, закон Ома. Закон Ома – сиди дома. Основополагающий закон, зная который, можно уже что-то сообразить. ПрименИм для цепей постоянного и переменного тока. Разница лишь в сопротивлении: для переменного тока это будет полное сопротивление Z, в которое входит активная, индуктивная и емкостная составляющие. Для постоянного тока сопротивление только активное. Сама формула следующая: I=U/R для постоянки, и I=U/Z для переменки. Хотя переменки это в школе, а у нас переменный ток. Более подробно про закон Ома в другом материале. У нас все же тема про розетки.

Значит розетка – это источник переменного напряжения в домашней сети, к которому мы подключаем нагрузку (чайник, стиралка, утюг, фен или удлинитель, к которому подключено несколько приборов разом). Ток появляется, когда есть напряжение и есть нагрузка. Если выключить в квартире освещение и все приборы, то счетчик не будет вращаться, так как отсутствует ток и мощность равна нулю. Если мы включаем бытовой прибор, то “деньги начинают кАпать”. Напряжение же в розетке есть всегда, если оно приходит от щитка и включен питающий автомат.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало – это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр – это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение. Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром.

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя. А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему – потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

  • Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
  • Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная – малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
  • Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер. Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока – подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

За какой провод можно браться в розетке под напряжением? Фазный или нулевой?

Раз уж мы в разделе электробезопасность, то обсудим и вопрос касания нулевого и фазного провода в розетке. Случайно или специально электричество разбираться не будет, результат будет одинаков.

Коснулись сразу фазного и нулевого

Ток протек через Вас такой величины, как U/R. Где R – Ваше внутреннее сопротивление, которое зависит от различных факторов. То есть ток потечет и Вам будет печально или посмертно. Путей протекания тока через человека несколько.

Коснулись фазного проводника:

Если Вы парите в воздухе как птичка или стоите на сухой деревянной подставке плюс не касаетесь другими частями тела заземленных предметов, плюс еще куча факторов, которые вы “учли” (хотя скорее всего не учли, а просто так сложились обстоятельства) => Тогда Вас не ударит током.

Замечание: Допусти, ситуация сложилась так, что Вы выжили. И вы всем говорите, что вот так можно делать. Кто-то Вас послушает и повторит, но с более печальным исходом. То ли из-за влажного пола или рук, то ли из-за случайного касания заземленного корпуса оборудования. Значит, Вы обрекли человека на беду, только лишь, потому, что использовали “эффект выжившего”. Это не круто.

Коснулись рабочего нуля:

С вами ничего не случится, только если нагрузка в сети симметричная по всем трем фазам, и ток в нулевом проводе не течет (подробнее про смещение нейтрали), а это редкий случай, который иногда может встретиться на производстве.

Всегда проще обесточить сеть и произвести необходимые работы, чем подвергать свою жизнь риску. Как говорится, правила техники безопасности пишутся кровью. Но я не отрицаю, что находились люди, которые брались за фазный, нулевой провода и ничего им не было. Просто игры с электричеством не приведут ни к чему хорошему. Это как идти с закрытыми глазами через автобан ночью без опознавательных знаков.

Лично я всегда использую следующее правило: хочешь ковыряться в розетках или выключателях в квартире – отключи вводной автомат и следи, чтобы его никто не включил.

Сохраните в закладки или поделитесь с друзьями

Какой ток в домашней розетке — переменный или постоянный?

Современные электроприборы сконструированы максимально дружелюбными к пользователю и чтобы их использовать совершенно не обязательно знать какой ток в розетке, куда они подключаются. Подобные познания могут никогда не пригодится в повседневной жизни – обычно достаточно знать, что в розетке есть ток, благодаря которому работают все бытовые приборы.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа. Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники.

Постоянный и переменный ток

Это одна из важнейших характеристик электрического тока. Каждый электроприбор рассчитан под определенный его вид и при неправильном подключении в лучшем случае просто не будет работать.

Любой из этих токов создается электромагнитным полем, что заставляет двигаться свободные электроны в металлах или других проводниках. Но при постоянном они все время летят в одну сторону, а переменный ток дергает их туда-сюда. В любом случае они двигаются и совершают работу, но устройства для преобразования электрической энергии в механическую приходится делать разными. То есть электродвигатель, к примеру, можно сделать как от постоянного, так и от переменного тока, но первый нельзя включать во вторую цепь.

Если большинство электроприборов работает от постоянного тока, то для передачи электроэнергии на большие расстояния выгоднее использовать переменный – он не так чувствителен к сопротивлению проводников. Поэтому не может быть двух мнений по поводу какой ток в бытовой розетке: постоянный или переменный – всегда используется второй вариант.

В этом видео описываются исторические предпосылки использования переменного тока в электросетях:

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться. На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток. Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Заземление

Розетка без провода заземления не редкость для старых домов, потому что раньше в быту практически не использовались мощные электроприборы. Современные требования к безопасности электроприборов гораздо жестче, поэтому розетки устанавливаемые без заземления просто не могут быть использованы даже в проекте.

Смысл заземления в дополнительной защите. Если используется розетка без защитного заземления, то в большинстве случаев корпус приборов подключен к рабочему нолю. Как итог – если фаза попадает на корпус устройства (при пробое изоляции), то происходит короткое замыкание и выбивает защитные пробки. Это приводит к порче прибора, и сравнительно безопасно для человека, при одном условии – если он на момент замыкания не касался устройства. В противном случае, пока не сработает защита, человека бьет ток короткого замыкания, который в десятки раз выше номинального.

Розетки с заземлением разделяют ноль на рабочий, необходимый для функционирования устройства, и защитный. Корпус теперь, соединен с заземлением, а ноль работает в штатном режиме. Если на корпус попадает фаза, то розеточный заземляющий контакт «уводит» ее от человека, даже если он на этот момент касается устройства, а защитная автоматика выключает питание. Человека током не бьет, короткого замыкания не происходит и устройство по возможности остается в сохранности. Остается только найти место где повредилась изоляция и устранить неисправность.

Как итог, вопроса что лучше ставить – розетки работающие без заземления или все-таки с ним, не существует – ПУЭ однозначно требуют поставить устройство второго типа.

Напряжение электрического тока

Если не использовать такие научные термины как «напряженность электрического поля» и «разность потенциалов», то понять какое напряжение в сети и почему оно именно такое помогут следующие аналогии:

Потенциальная и кинетическая энергия – пример очень упрощенный, но смысл в том, что напряжение показывает, какие силы могут быть задействованы при перемещении электрического заряда. Главное отличие в том, что потенциальная энергия переходит в кинетическую, а напряжение всегда стабильно. Использовать эту аналогию можно потому, что пока в розетку не включен никакой прибор, то в ней есть напряжение, готовое начать двигать заряженные частицы, но нет электрического тока. Движение электрического тока начинается только при подключении к проводам нагрузки (или при замыкании ноля и фазы).

Чем больше напряжение, тем выше его «проталкивающая» способность – это значит, что при достаточно больших его значениях ток «пробьет» диэлектрик между проводами. В обычных условиях диэлектриком между проводами является воздух, поэтому чем больше напряжение, тем выше вероятность возникновения молнии (замыкания) между ними. Это свойство используется в пьезозажигалках и механизмах розжига промышленных печей, только в первых расстояние между контактами 0,5 мм и напряжение в несколько Вольт, а во втором случае – между контактами 10-15 сантиметров, а напряжение около 10 тысяч Вольт.

Для линий электропередач между городами используется напряжение 150-600 тыс. Вольт, в пригороде это 4-30 тыс. Вольт, а у потребителей напряжение в розетке уже 100-380 Вольт. В разных странах действуют свои стандарты, поэтому перед поездкой стоит уточнять этот момент.

Частота электрического тока

Один из параметров переменного тока, показывающий сколько раз за секунду он поменяет направление движения от плюса к минусу. Полный цикл изменений – от ноля к плюсу, затем к минусу и обратно к нолю называется Герц. Во всем мире используется два стандарта частоты – 50 и 60 Герц.

От частоты, как и от напряжения, зависят потери тока при его передаче – чем выше частота, тем меньше потерь. Поэтому первый вариант используется при напряжении сети около 220 Вольт, а второй – при 110.

Частота тока зависит от того, с какой скоростью крутятся генераторы на вырабатывающих электричество станциях. Она всегда остается неизменной – в отличие от напряжения допускается погрешность в 0,5-1 Герц.

Сила тока

На крышке розетки можно увидеть надпись 6, 10 или 16А. Это не значит, что сила тока в розетке будет достигать таких величин – это максимальные его значения, на которые рассчитаны розеточные контакты. Соответственно, чтобы узнать, какая сила тока, а точнее – сколько ампер в розетке на данный момент, следует установить в электрическую цепь измерительное устройство – амперметр.

К примеру, если электрочайник потребляет 2000 Ватт, то надо 2000 разделить на 220. Получается примерно 9 Ампер – сила тока, в 18 раз большая чем нужно, чтобы убить человека.

Сложнее подсчитать ампераж, к примеру, компьютера. Во-первых, при его работе в сеть включено сразу несколько устройств. Во вторых – энергосберегающие технологии используют ресурсы процессора по минимуму, разгоняя его только при решении сложных задач. Поэтому сила тока будет периодически изменяться.

Это все основные характеристики электрического тока, которые достаточно знать, чтобы получить про него хотя бы общее представление. При поездке в другую страну, где могу действовать иные нормативы, достаточно будет выяснить какие там в сети напряжение и частота. Если они отличаются от тех, на которые рассчитана зарядка телефона (или другие устройства, которые могут быть взяты в поездку), то дополнительно придется решать, как быть в этой ситуации.

Какой ток в аккумуляторе постоянный или переменный


В чем разница между постоянным и переменным током

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает —  это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.                                                                                                                                    Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении  любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос.                                                                                                                        Важная особенность постоянного электрического тока — это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках.                                                                                        Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств. 

 

Переменный ток           

 (Alternating Current) или АС английская аббревиатура  обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических  аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~».                               Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.                                                                         На рисунке обратное направление – это область графика ниже нуля.

 Теперь давай разберемся, что такое частота.  Частота это — период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.                                                                                                                                       Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.        Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.  Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?  Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.                                                                                                                    Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.            

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Отличие переменного тока от постоянного

Август 20, 2014

49077 просмотров

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ». Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

Почему автомобильные генераторы вырабатывают переменный ток?

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

Смотрите также: Сколько стоит зарядить электромобиль?

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

Смотрите также: Разряд автомобильного аккумулятора: причины и как его избежать

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

Итог. Почему генераторы на авто вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнее, выносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

Видите? В конце концов, в этом есть смысл!

Аккумуляторы постоянного тока тенденции развития.

Под выражением «постоянный ток» понимается движение заряженных частиц в одну сторону — от отрицательного электрода к положительному.

Переменный ток — такое движение заряженных частиц, что и его направление, и получаемое напряжение меняются с определенной периодичностью.

Переменный ток может создаваться генератором или преобразователем.

Разнообразные источники тока, работающие по принципу сохранения и последующей отдачи энергии — то есть аккумуляторы — могут выдавать только постоянный ток.

Выражение «аккумуляторы переменного тока» можно считать оксюмороном.

Впрочем, его иногда используют для обозначения источника бесперебойного питания. Как известно, ИБП применяются в тех случаях, когда важно обезопасить технику от скачков напряжения в сети.

Например, персональный компьютер может быть подключен к сети через индивидуальный ИБП.

Аккумулятор ИБП создает постоянный ток. Однако компьютер работает на переменном токе.

Для того, чтобы обеспечить работоспособность техники в схему ИБП включается инвертор.

Так как на выходе получается переменный ток, создается впечатление, что ИБП и есть аккумуляторы переменного тока.



Как заряжать телефон постоянного тока от источника переменного тока?

Позвольте мне начать с того, что этот пост был вдохновлен потрясающей демонстрацией физики, которую я видел в секции Северной Каролины Американской ассоциации учителей физики. Версия демонстрации (которую я покажу ниже) была создана учителем физики средней школы Джеффом Регестером. Фактически, вы можете увидеть его страницу об адаптерах питания переменного тока здесь (включая эту демонстрацию).

AC против постоянного тока

Вы не можете жить без зарядного устройства для смартфона.Я это понимаю. Однако для зарядного устройства требуется источник постоянного тока. DC означает постоянный ток (это означает, что вы не можете сказать «постоянный ток» — это все равно, что сказать «постоянный ток»). Это тип тока, который вы получаете, когда подключаете батарею к лампочке. Это означает, что ток в цепи движется в одном направлении, и, надеюсь, ток в основном постоянный. Многим устройствам в вашем доме нужен постоянный ток.

Rhett Allain

Когда вы подключаете какие-либо предметы к розетке в вашем доме, вы не получаете постоянного тока. Бытовые розетки AC — переменный ток.Этот ток имеет частоту 60 Гц и будет выглядеть примерно так (если вы построите график зависимости тока от времени).

Этот переменный ток хорошо работает с чем-то вроде лампы накаливания, но не подходит для аккумулятора вашего смартфона.

Но почему мы используем переменный ток вместо постоянного? Есть две причины. Во-первых, если у вас переменный ток, вы можете легко изменить напряжение с помощью трансформатора (по сути, это всего две катушки с разным числом витков).Во-вторых, с переменным током вы можете использовать очень высокое напряжение для передачи по линии электропередачи. Высокое напряжение означает низкий ток в линиях электропередач. Оказывается, вы теряете много энергии, когда передаете большие токи. Таким образом, переменный ток позволяет легче распределять электроэнергию на большие расстояния.

Мостовой выпрямитель

Если бы только был способ взять источник переменного тока и произвести постоянный ток. Ну конечно есть — выпрямитель мостовой. На самом деле это довольно простая схема, но она зависит от одного ключевого элемента — диода.Диод — это твердотельное устройство, которое, по сути, только одно. Когда ток проходит через диод в одну сторону, это похоже на то, что диода вообще нет. Когда ток проходит через диод в противоположном направлении, он имеет почти бесконечное сопротивление. В результате ток может проходить через диод только в одном направлении. Это как односторонний клапан на водопроводной трубе, за исключением тока.

В чем разница между питанием переменного и постоянного тока?

Электричество В чем разница между питанием переменного и постоянного тока?

| Обновлено 27.04.2021Автор / Редактор: Люк Джеймс / Erika Granath

Электроэнергия бывает двух видов: переменного тока (AC) и постоянного тока (DC). Оба они необходимы для функционирования нашей электроники, но знаете ли вы разницу между ними и то, к чему они применяются?

Связанные компании

И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.

(Источник: Unsplash)

Что такое переменный ток?

Электропитание переменного тока (AC) — это стандартное электричество, которое выходит из электрических розеток и определяется как поток заряда, который демонстрирует периодическое изменение направления.

Поток переменного тока изменяется с положительного на отрицательный из-за электронов — электрические токи возникают из-за потока этих электронов, который может двигаться в положительном (вверх) или отрицательном (вниз) направлении.Это известно как синусоидальная волна переменного тока, и эта волна возникает, когда генераторы переменного тока на электростанциях создают мощность переменного тока.

Основной доклад на PCIM Digital Days 2021

Не пропустите ключевой доклад «HVDC Grid Challenges Locks and Opportunities» от Седдика Бача, научного директора программы, SuperGrid Institute, на PCIM Digital Days с 3 по 7 мая 2021 года.

Откройте для себя вся программа!

Генераторы переменного тока вырабатывают переменный ток путем вращения проволочной петли внутри магнитного поля.Волны переменного тока образуются, когда провод движется в области с разной магнитной полярностью — например, ток меняет направление, когда провод вращается от одного полюса магнитного поля к другому. Это волнообразное движение означает, что мощность переменного тока может распространяться дальше, чем мощность постоянного тока, что является огромным преимуществом, когда речь идет о доставке энергии потребителям через розетки.

Что такое питание постоянного тока?

Электропитание постоянного тока (DC), как можно понять из названия, представляет собой линейный электрический ток — он движется по прямой линии.

Постоянный ток может поступать из нескольких источников, включая батареи, солнечные элементы, топливные элементы и некоторые модифицированные генераторы переменного тока. Электропитание постоянного тока также может быть «получено» из переменного тока с помощью выпрямителя, преобразующего переменный ток в постоянный.

Питание

постоянного тока гораздо более стабильно с точки зрения подачи напряжения, а это означает, что большая часть электроники полагается на него и использует источники питания постоянного тока, такие как батареи. Электронные устройства также могут преобразовывать мощность переменного тока из розеток в мощность постоянного тока с помощью выпрямителя, часто встроенного в источник питания устройства.Трансформатор также будет использоваться для повышения или понижения напряжения до уровня, подходящего для рассматриваемого устройства.

Однако не все электрические устройства используют питание постоянного тока. Многие устройства, особенно бытовые приборы, такие как лампы, стиральные машины и холодильники, используют переменный ток, который подается непосредственно из электросети через розетки.

Зачем нужны два разных типа питания?

Хотя многие современные электронные и электрические устройства предпочитают питание постоянного тока из-за его плавного потока и равномерного напряжения, мы не могли бы обойтись без переменного тока.Оба типа власти важны; одно не «лучше» другого.

Фактически, AC доминирует на рынке электроэнергии; все электрические розетки подают питание в здания в виде переменного тока, даже если может потребоваться немедленное преобразование тока в мощность постоянного тока. Это связано с тем, что постоянный ток не способен преодолевать такие же большие расстояния от электростанций до зданий, как переменный ток. Также намного проще генерировать переменный ток, чем постоянный ток, из-за того, как работают генераторы, и система в целом дешевле в эксплуатации — с переменным током мощность может легко передаваться по национальным сетям через мили и мили проводов и опор.

DC в первую очередь вступает в игру, когда устройству необходимо сохранять энергию в батареях для будущего использования. Смартфоны, ноутбуки, портативные генераторы, фонарики, системы наружных камер видеонаблюдения … вы называете это, все, что работает от батарей, требует хранения постоянного тока. Когда батареи заряжаются от сети, переменный ток преобразуется в постоянный ток выпрямителем и сохраняется в батарее.

Однако это не единственный используемый метод зарядки. Если вы когда-либо заряжали свой телефон с помощью блока питания, например, вы используете источник питания постоянного тока, а не переменного тока.В этих ситуациях источникам питания постоянного и постоянного тока может потребоваться изменить выходное напряжение (в данном случае, блок питания) для использования устройства (в данном случае телефона).

Следуйте за нами в LinkedIn

Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.

Следуйте за нами здесь!

(ID: 46408650)

Сравнение переменного и постоянного тока

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая обслуживает так много наших потребностей. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока частотой 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано. Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между выводами колеблется, как показано на рисунке: напряжение переменного тока соответствует

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В — напряжение в момент времени t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменный ток равен

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — ток в момент времени t , а I 0 = V 0 / R — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на Рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку I = V / R . { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Установление соединений: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас интересует средняя мощность, а не ее колебания — например, 60-ваттная лампочка в вашей настольной лампе потребляет в среднем 60 Вт. Как показано на Рисунке 3, средняя мощность P ave составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это очевидно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно проверить с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующий ток I среднеквадратичное значение и среднее значение или среднеквадратичное напряжение В действующее значение , соответственно, равное

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднекв. = I среднеквадратичное значение В среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Обычно указываются I среднеквадратичное значение , В среднеквадратичное значение и P среднеквадратичное значение , а не пиковые значения.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичное значение равно 120 В. Обычный автоматический выключатель на 10 А прервет постоянное значение I среднеквадратичное значение более 10 А. Ваш 1,0-кВт микроволновая печь потребляет P, , средн. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на В среднеквадратичное значение дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

Разница между переменным и постоянным (ток и напряжение)

Разница между переменным током (переменный ток) и постоянным током

Переменный ток (переменный ток) и Постоянный ток (постоянный ток) — это два типа электрических токов, сосуществующих в нашей повседневной жизни. Оба они используются для подачи питания на электрические устройства. Но они очень разные. Розетки в нашем доме обеспечивают питание переменного тока, а батареи обеспечивают питание постоянного тока.Мы не можем подключить устройство постоянного тока к розетке переменного тока (ну, мы можем, но это не будет работать, и в худшем случае оно взорвется). Причина в различии между их поведением и тем, как они влияют на цепи.

Рис. 1. Разница между переменным и постоянным током

В этой статье мы кратко обсудим разницу между переменным током (AC) и постоянным током (DC) , но сначала давайте обсудим переменного тока и постоянный ток .

Электрический ток

Электрический ток — это движение или поток свободных электронов в проводящем материале под действием разности потенциалов.Материал, содержащий свободные электроны, называется проводником, и он используется для проведения электрического тока.

Свободные электроны, существующие в материале, возбуждаются при приложении напряжения или разности потенциалов, и они текут в определенном направлении, то есть от высокого потенциала к низкому. Высокий потенциал или напряжение обозначается положительным знаком (+), а низкий потенциал обозначается отрицательным знаком (-), и они формируют полярность электрического тока.

В зависимости от направления движения электрона или электрического тока он подразделяется на два основных типа; Переменный ток (AC) и Постоянный ток (DC)

Переменный ток (AC)

Когда направление электрического тока периодически меняет направление, говорят, что это Переменный ток . Поскольку направление тока периодически меняется, полярность напряжения также меняется на противоположную, т.е. высокий потенциал (+) и низкий потенциал (-) меняются местами.Поэтому переменный ток обозначается знаком волны (~). Количество раз, когда электрический ток меняет свое направление за одну секунду, называется его частотой и обычно составляет 50 Гц (Европа) или 60 Гц (США).

Поколение

Когда катушка или проволочная петля помещаются в переменное магнитное поле, в катушке индуцируется электрический ток. Этот принцип применяется в устройствах, называемых генераторами переменного тока, которые используются для генерации переменного тока.

Генератор состоит из катушки, которая вращается (с помощью любых средств, таких как водяная или паровая турбина) внутри стационарного магнитного поля. Вращение катушки изменяет силовые линии магнитного поля, воздействующие на катушку; поэтому в катушке индуцируется электрический ток. Поскольку вращающаяся катушка меняет полярность магнитного поля, электрический ток и напряжение, индуцируемые в катушке, периодически меняют свое направление.

Формы сигналов

Величина переменного тока и напряжения непрерывно изменяется во времени.Он колеблется между своей максимальной пиковой точкой и своей минимальной пиковой точкой вдоль общей контрольной точки. Результирующая форма волны может быть синусоидальной, прямоугольной, треугольной, зубчатой ​​и т. Д. Наиболее распространенная форма волны переменного тока, которую мы используем в наших домах, — это синусоидальная волна.

Частота и фаза

Мы уже знаем, что переменный ток имеет определенную частоту, и мы знаем, что частота влияет на реактивное сопротивление конденсатора и катушки индуктивности. Следовательно, переменный ток вносит в цепь реактивное сопротивление.Реактивное сопротивление вызывает разность фаз между волнами напряжения и тока. Мы также можем сказать, что по этой причине коэффициент мощности присутствует только в системах переменного тока. Поскольку коэффициент мощности определяется как cos (θ), где θ — это разность фаз между формой волны напряжения и формой волны тока

Разность фаз — это разность относительно временного сдвига между двумя волнами переменного тока. В таких случаях величина одной волны отстает от величины другой волны.Это вызывает потерю мощности в цепи. Чтобы обеспечить полную мощность нагрузки, переменное напряжение и ток должны быть синхронизированы (или синфазны). Таким образом, коэффициент мощности колеблется от cos 0 ° (коэффициент мощности = 1, разность фаз 0 °) до cos 90 ° (коэффициент мощности = 0, разность фаз 90 °).

Формулы переменного тока, напряжения, сопротивления и мощности

Переменный ток

Однофазные цепи переменного тока

  • I = P / (V x Cosθ)
  • I = (V / Z)

Трехфазные цепи переменного тока

Напряжение переменного тока

Однофазные цепи переменного тока

  • В = P / (I x Cosθ)
  • В = I / Z

Трехфазные цепи переменного тока

Сопротивление переменному току

  • Z = √ (R 2 + X L 2 )… В случае индуктивной нагрузки
  • Z = √ (R 2 + X C 2 )… In случай емкостной нагрузки
  • Z = √ (R 2 + (X L — X C ) 2 … В случае как индуктивной, так и емкостной нагрузки.

Питание переменного тока

Однофазные цепи переменного тока

  • P = V x I x Cosθ (в однофазных цепях переменного тока)

Трехфазные цепи переменного тока

Активная мощность

      √3 x V L x I L x Cosθ (в трехфазных цепях переменного тока)
    • P = 3 x V Ph x I Ph x Cosθ
    • P = √ (S 2 — Q 2 )
    • P = √ (VA 2 — VAR 2 )

    Реактивная мощность

    • Q = VI Sinθ
    • VAR = √ (VA 2 — P 14 2
    • ) 904 kVAR = √ (kVA 2 — kW 2 )

    Полная мощность

    • S = √ (P + Q 2 )
    • kVA = √kW 2 + kVAR 4 2 Комплексная мощность

      • S = VI
      • S = P + jQ… (In дуктивная нагрузка)
      • S = P — jQ… (емкостная нагрузка)

      Где

      • I = ток в амперах (A)
      • V = напряжение в вольтах (В)
      • P = мощность в ваттах (Вт)
      • R = сопротивление в Ом (Ом)
      • Cosθ = R / Z = коэффициент мощности
      • Z = импеданс = сопротивление цепей переменного тока
      • I Ph = фазный ток
      • I L = линейный ток
      • V Ph = фазное напряжение
      • V L = линейное напряжение
      • X L = индуктивное реактивное сопротивление = 2πfL… где L = индуктивность в Генри.
      • X C = емкостное реактивное сопротивление = 1 / 2πfC… где C = емкость в фарадах.

      Постоянный ток (DC)

      Тип электрического тока, направление которого не меняется, называется постоянным током или DC. Это однонаправленный ток, который течет только в одном направлении и, в отличие от переменного тока, не течет в обратном направлении. Поскольку направление тока не меняет полярность его напряжения также не меняют. Следовательно, постоянный ток всегда обозначается положительным (+) и отрицательным (-). Маркировка

      Поколение

      Постоянный ток может генерироваться разными способами.Тот же метод генерации переменного тока можно использовать для генерации постоянного тока, подключив устройство, называемое коммутатором. Коммутатор — это вращающееся устройство, обеспечивающее однонаправленность тока.

      Постоянный ток обычно генерируется с помощью батарей и элементов. Батареи содержат химическое вещество, которое при химической реакции выделяет электроны и подает их в электрическую цепь.

      Переменный ток также можно преобразовать в постоянный с помощью устройства, называемого выпрямителем.

      Форма волны

      У постоянного тока нет определенной формы волны, потому что он течет только в одном направлении. Если вы подключите постоянный ток к осциллографу, он покажет прямую линию. Однако, если напряжение пульсирует, скажем, в цифровой схеме, которая работает исключительно на постоянном напряжении, форма сигнала может выглядеть как последовательность импульсов или прямоугольные волны. Но форма волны никогда не опускается ниже 0 В.

      Формулы постоянного тока, напряжения, сопротивления и мощности

      Постоянный ток

      Напряжение постоянного тока

      • В = I x R
      • В = P / I
      • В = √ (P x R)

      Сопротивление постоянному току

      Питание постоянного тока

      Где

      • I = ток в амперах (A)
      • V = напряжение в вольтах (В)
      • P = мощность в ваттах (Вт)
      • R = сопротивление в Ом (Ом)

      Хранение и преобразование между переменным и постоянным током

      В повседневной жизни нам нужны оба типа электрического тока.Цифровые устройства, такие как смартфоны, ноутбуки, компьютеры и т. Д., Работают от постоянного тока, в то время как наши домашние и кухонные приборы, такие как вентиляторы, лампы, микшеры и т. Д., Работают от переменного тока.

      Переменный ток и постоянный ток взаимозаменяемы. Их можно легко преобразовать из одной формы в другую. Устройство, которое преобразует переменный ток в постоянный ток , называется выпрямителем , а устройство, которое преобразует постоянный ток в переменный ток , называется инвертором . Мы используем их оба для преобразования между источниками питания в соответствии с нашими потребностями.

      Розетки в нашем доме обеспечивают питание переменного тока, но когда нам нужно запитать устройство постоянного тока с помощью той же розетки, мы используем выпрямитель (например, блок питания в ПК или адаптер питания в кабеле ноутбука). Это помогает нам использовать один и тот же источник питания для питания обоих типов устройств. И мы также можем использовать источник постоянного тока для аккумуляторов для питания устройств переменного тока с помощью инверторов.

      Но существует ограничение переменного тока, то есть электрический ток может сохраняться только тогда, когда он находится в форме постоянного тока.Следовательно, переменный ток преобразуется в плавный постоянный ток перед зарядкой аккумулятора, например, в мобильных телефонах.

      Зарядное устройство обеспечивает мобильность и возможность беспроводной связи для устройства. Он также используется в качестве аварийного резервного питания в суровых условиях для питания важного оборудования, такого как больницы и т. Д.

      Преобразование и передача напряжения

      Линии передачи испытывают потери мощности (I 2 R) в виде тепла из-за величине тока, протекающего через них.Чтобы уменьшить ток, мы увеличиваем напряжение, чтобы поддерживать ту же мощность (P = I * V).

      В переменном токе напряжения можно легко преобразовать между высоким и низким напряжением с помощью устройства, называемого трансформатором . Мы используем повышающие трансформаторы на генерирующих станциях для повышения напряжения для передачи на большие расстояния. Кроме того, с помощью понижающего трансформатора , который обычно устанавливается на опорах электросети, те же самые напряжения снижаются до безопасных уровней для домашнего или коммерческого использования.

      Потери при передаче постоянного тока высокого напряжения очень малы, и для этого требуется только два провода, но его обслуживание и преобразование между высоким и низким напряжением очень дорого, поэтому он никогда не применялся. Напряжение постоянного тока опасно, чем переменное, потому что переменное напряжение колеблется, а постоянное — это постоянный поток тока, и он никогда не отпустит вас.

      Основные различия между переменным и постоянным током (напряжение и ток)

      В следующей таблице показано сравнение и основные различия между переменным током «AC» и постоянным током «DC».

      Характеристики Переменный ток — переменный ток Постоянный ток — постоянный ток
      Определение Электрический ток, который периодически течет вперед и назад. Электрический ток, который течет только в прямом направлении
      Символ
      Направление тока Он является двунаправленным, то есть может течь как в прямом, так и в обратном направлении. Он однонаправлен и течет только в одном направлении, т.е. вперед
      Напряжение и ток Ток и напряжение непрерывно меняются. Ток и напряжение постоянны.
      Полярность В переменном токе нет полярности, потому что он колеблется. Имеется фиксированная полярность постоянного тока, обозначенная положительным (+) и отрицательным (-) знаками.
      Перестановка клемм или полярность Перестановка клемм источника не повлияет на схему.
      Частота Частота переменного тока обычно составляет 50 или 60 Гц Частота постоянного тока равна 0.
      Комплексный импеданс Переменный ток вносит в цепь реактивное сопротивление, поэтому возникает комплексное сопротивление. Цепь постоянного тока имеет чисто резистивные нагрузки. Таким образом, полное сопротивление является чисто резистивным.
      Коэффициент мощности Коэффициент мощности переменного тока всегда равен или находится в диапазоне от 1 до 0. Частота равна 0, поэтому коэффициент мощности всегда равен 1.
      Поколение Переменный ток генерируется с помощью генератора переменного тока. Он генерируется с помощью коммутатора с генератором, солнечных батарей и химической реакции в батареях и элементах.
      Форма волны Переменный ток может быть синусоидальной, квадратной, треугольной, зубчатой ​​и т. Д. Он существует в виде одиночной линии или импульсной волны.
      Преобразование Выпрямитель используется для преобразования его в постоянный ток Инвертор используется для преобразования его в переменный ток
      Хранение Не может храниться Его можно напрямую хранить.
      Передача Есть некоторые потери при передаче на большие расстояния. Имеет очень низкие потери при передаче высокого напряжения на большие расстояния.
      Линии передачи Для передачи требуется минимум 3 отдельных проводника Для передачи требуется только 2 проводника
      Стоимость передачи и техническое обслуживание Это дорого, но обслуживание и преобразование напряжения проще чем DC Это дешевле, но его обслуживание довольно опасно и дороже, чем AC
      Hazard Переменный ток менее опасен, чем постоянный ток, потому что он достигает 0 В через определенные промежутки времени.(нельзя играть с высоким напряжением) Постоянный ток очень опасен и опасен для жизни, чем переменный ток, потому что он поддерживает постоянный ток.

      Похожие сообщения:

      БАЗОВЫЕ БЛОКИ ПИТАНИЯ — Wavelength Electronics

      Теория нерегулируемого источника питания

      Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки.Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».

      Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.

      При нерегулируемом источнике питания постоянного тока выходное напряжение зависит от размера нагрузки.Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.

      Рисунок 4: Блок-схема — нерегулируемая линейная подача

      Преимущества нерегулируемых источников питания в том, что они долговечны и могут стоить недорого. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.

      ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.

      Теория регулируемых источников питания

      Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения. Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.

      Рисунок 5: Блок-схема — Регулируемая поставка

      В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне.Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.

      Линейный, переключаемый или на батарейках?

      Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная является наименее сложной системой, но переключаемое и аккумуляторное питание имеет свои преимущества.

      Линейный источник питания
      Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума.Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность. Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.

      Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания.По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.

      Импульсный источник питания
      Импульсный источник питания (SMPS) сложнее сконструировать, но имеет большую гибкость в полярности и при правильной конструкции может иметь КПД 80% или более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.

      Рисунок 6: Блок-схема — регулируемое импульсное питание

      Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.

      Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения и намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, является более шумным и работает на высоких частотах, требующих уменьшения помех.

      Аккумуляторный
      Аккумуляторный источник питания — это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянного напряжения по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи — наименее эффективный метод питания оборудования. Для большинства аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование батареи, которая может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.

      Выбор источника питания
      • При выборе блока питания необходимо учитывать несколько требований.
      • Требования к мощности нагрузки или цепи, включая
      • Функции безопасности, такие как ограничения напряжения и тока для защиты нагрузки.
      • Физический размер и эффективность.
      • Помехозащищенность системы.

      переменного тока против мощности постоянного тока и война токов

      Многие из нас не понимают, как работает электричество.Достаточно того, что работает — вы включаете выключатель, и в комнате загорается свет. Поэтому может показаться удивлением узнать, что на самом деле существует два разных вида электричества, которые мы используем для питания многих устройств в нашей жизни. Они известны как переменный и постоянный ток или переменный и постоянный ток (не рок-группа 70-х годов).

      Проще говоря, постоянный ток течет только в одном направлении, а переменный ток течет вперед и назад. Например, фонарик работает на постоянном токе, а заряд идет от аккумулятора и питает лампочку.С другой стороны, потолочный светильник в вашем доме использует переменный ток, полярность которого постоянно меняется, поскольку он проходит через электрическую систему вашего дома.

      Но зачем нам два разных типа электричества и как были разработаны эти дуэльные системы? Ответ кроется в ожесточенном соперничестве между парой самых известных изобретателей в американской истории.

      Истоки постоянного тока

      До 1870-х годов люди полагались на газовые лампы, свечи или фонари, чтобы освещать свое окружение в ночное время.Были достигнуты успехи в элементарных батареях и электрическом освещении, но ничего достаточно практичного для повседневного использования. Все изменилось, когда Томас Эдисон изобрел лампу накаливания в 1879 году, которая была намного надежнее, чем все, что было раньше.

      С появлением электрических лампочек появилась возможность снабжать электроэнергией дома и даже целые города, и Эдисон стремился захватить растущий рынок. Его лампы работали от постоянного тока, вырабатываемого электростанциями, известными как динамо-машины, которые использовали паровые двигатели для выработки электроэнергии.Изобретатель возглавил создание многочисленных электростанций постоянного тока в Нью-Йорке в 1880-х годах через свою компанию Edison Electric, предшественницу General Electric.

      Электрическое освещение в домах и на предприятиях было откровением, но использование электричества постоянного тока имело свои недостатки. Электроэнергия поступала непосредственно от генерирующего объекта на 110 вольт, и могла пройти около мили или около того, прежде чем она потеряла слишком много напряжения. Это означало использование большого количества ценной недвижимости в городе для строительства электростанций, в то время как сельские общины вообще не участвовали в энергетической революции.

      Повышение переменного тока

      У одного из сотрудников Эдисона, молодого человека по имени Николай Тесла, возникла идея устранить некоторые недостатки постоянного тока. Тесла изобрел двигатель, вырабатывающий переменный ток. Переменный ток вырабатывается, что вполне уместно, с помощью генератора переменного тока, который вращает магнит внутри проволочной катушки, что создает электричество постоянно меняющейся полярности, когда провод взаимодействует с чередующимися сторонами магнитного поля.

      Помимо самой новой формы электричества, ключом к идее Теслы были трансформаторы или катушки разных размеров для изменения напряжения электричества.Благодаря мощности трансформаторов переменный ток стал выгодным для крупномасштабной генерации и распределения, потому что чем выше напряжение, тем эффективнее передача. Линии высокого напряжения слишком опасны для проникновения в здание, но с помощью трансформатора напряжение можно снизить до более безопасного уровня по мере приближения к конечному пункту назначения — домам и офисам.

      Напряжение постоянного тока было нелегко изменить, поэтому оно оказалось гораздо менее полезным для масштабных операций, так как вам остается выбор либо передавать при низком, неэффективном напряжении, либо отправлять опасно высокие уровни напряжения в дома людей. .

      Война токов

      Несмотря на обещание, проявленное изобретениями Теслы, Эдисон не был заинтересован в помощи в развитии технологии, поэтому Тесла ушел, чтобы начать действовать самостоятельно. Результатом стал ряд патентов, которые он продал в 1888 году Джорджу Вестингаузу, основателю Westinghouse Electric Company.

      Компании Westinghouse и Эдисона яростно боролись за прибыльные права на электрификацию американских городов в соревновании, получившем название «Война течений». Эдисон начал кампанию по лоббированию, которая пропагандировала опасность переменного тока в попытке предотвратить распространение изобретения Теслы.Чтобы продемонстрировать, что кондиционер может быть смертельным, сотрудники Эдисона изобрели электрический стул переменного тока, который использовался в штате Нью-Йорк для казни осужденных заключенных. Эдисон даже публично продемонстрировал, как убивал бездомных животных электрическим током, используя переменный ток, в своих попытках увести публику от конкурирующей системы.

      Конкуренция достигла апогея на Всемирной выставке 1893 года в Чикаго, когда Tesla выиграла контракт на поставку электроэнергии. Решающий удар пришелся на три года спустя, когда Джордж Вестингауз использовал Ниагарский водопад для питания генератора переменного тока, который принес электричество в Баффало на 26 миль в 1896 году.Таким образом, переменный ток доказал свою полезность и продолжил доминировать в электроэнергетическом секторе, поскольку в течение долгих лет и десятилетий в домах по всей территории Соединенных Штатов загорался свет.

      Производство переменного и постоянного тока сегодня

      В последние десятилетия технология генерации и передачи постоянного тока высокого напряжения, или HVDC, появилась на рынке, и в некоторых случаях работает более эффективно, чем переменный ток, но переменный ток по-прежнему является подавляющим победителем в электрической сети.

      Большинство типов электростанций спроектированы на основе тех же основных принципов, что и генератор переменного тока Теслы, создавая переменный ток с помощью вращающегося магнитного поля. Угольные, газовые и атомные электростанции работают за счет нагрева воды и использования пара для вращения генератора, в то время как гидроэлектростанции и ветряные электростанции используют энергию природы для непосредственного вращения турбин.

      Солнечные панели, напротив, вырабатывают постоянный ток. Если электричество подается в сеть или для питания электрической системы дома, его необходимо сначала преобразовать в переменный ток с помощью инвертора.В остальном наиболее распространенными источниками питания постоянного тока являются батареи. Соответственно, постоянный ток намного легче хранить, так как крупномасштабные аккумуляторы быстро распространяются вместе с производством возобновляемой энергии, у постоянного тока есть еще одна возможность закрепиться в электрической сети.

      По высоковольтным линиям электропередачи обычно подается электричество переменного тока с напряжением около 345 000 вольт, а по местным линиям электропередачи — около 13 800 вольт, что по-прежнему чрезвычайно опасно для любого, кто вступает в контакт.К тому времени, как он достигнет вашего дома, напряжение понижается с помощью трансформаторов до 120–240 вольт, чтобы вы могли безопасно питать свои электрические устройства и приборы.

      Что для вас означают разные типы тока

      Как переменный, так и постоянный ток играют важную роль в среднем домохозяйстве. Бытовая техника в вашем доме, например, холодильник, стиральная и посудомоечная машины, используют переменный ток. В домах, которые не подключены к газу, большинство печей, водонагревателей, духовок и сушилок также работают от переменного тока.

      Но у постоянного тока есть свои применения. Переменная часть переменного тока происходит быстро — в Соединенных Штатах электроны меняют направление 60 раз в секунду, также известное как 60 Гц. Однако, несмотря на то, что чередование происходит так быстро, каждый раз, когда ток меняет направление, возникают крошечные потери мощности. Это не проблема для лампочек или других приборов, которые рассчитаны на использование переменного тока, но современная чувствительная электроника не справляется даже с неизмеримо короткими перерывами в подаче электроэнергии.

      Вот почему многие новые устройства, такие как зарядные устройства для сотовых телефонов, компьютеры и телевизоры, используют постоянный ток, используя адаптеры питания для преобразования переменного тока, поступающего из настенных розеток. Рынок постоянного тока будет продолжать расширяться за счет электромобилей, которые работают на постоянном токе от своих батарей.

      Следовательно, хотя Война Токов, возможно, закончилась более 100 лет назад, конкуренция между переменным и постоянным током за власть в нашей повседневной жизни продолжается.

      AC, DC и электрические сигналы

      AC, DC и электрические сигналы | Клуб электроники

      AC | DC | Свойства сигнала | RMS

      Следующая страница: Осциллографы (CRO)

      См. Также: Диоды | Блоки питания

      AC означает переменный ток, а DC означает постоянный ток. Переменный и постоянный ток также используются при обозначении напряжений и электрических сигналов. которые не токи! Например: источник питания 12 В переменного тока имеет переменное напряжение. (который заставит течь переменный ток).

      Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.


      Переменный ток (AC)

      Переменный ток (AC) течет в одну сторону, затем в другую, постоянно меняя направление.

      Напряжение переменного тока постоянно меняется с положительного (+) на отрицательное (-).

      Скорость изменения направления называется частотой переменного тока и измеряется в герц (Гц) , то есть количество циклов вперед-назад в секунду .

      Электроэнергия в Великобритании имеет частоту 50 Гц.

      См. Ниже более подробную информацию о свойствах сигнала.

      Источник переменного тока подходит для питания некоторых устройств, таких как лампы и обогреватели, но почти все электронные схемы требуют постоянного источника постоянного тока (см. ниже).


      Переменный ток от источника питания
      Эта форма называется синусоидой .


      Этот треугольный сигнал является переменным током, потому что он меняет
      между положительным (+) и отрицательным (-).


      Постоянный ток (DC)

      Постоянный ток (DC) всегда течет в одном направлении, но может увеличиваться и уменьшаться.

      Напряжение постоянного тока всегда положительное (или всегда отрицательное), но оно может увеличиваться и уменьшаться.

      Для электронных схем обычно требуется постоянный источник питания постоянного тока , который имеет одно значение. или источник питания smooth DC , который имеет лишь небольшую вариацию, называемую пульсацией .

      Элементы, батареи и регулируемые источники питания обеспечивают устойчивый постоянный ток , который идеально подходит для электронных схем.

      Блоки питания содержат трансформатор, преобразующий от сети переменного тока к безопасному низковольтному переменному току. Затем переменный ток преобразуется в постоянный ток мостовой выпрямитель, но выход изменяет постоянный ток , что не подходит для электронных схем.

      Некоторые источники питания включают конденсатор для обеспечения smooth DC , который подходит для менее чувствительных электронных схем, в том числе большинство проектов на этом сайте.

      Лампы, обогреватели и двигатели будут работать от любого источника постоянного тока.

      Дополнительную информацию см. На странице источников питания.

      Источники питания также описаны на веб-сайте Electronics in Meccano.


      Постоянный ток
      от батареи или регулируемого источника питания,
      идеально подходит для электронных схем.


      Smooth DC
      от сглаженного источника питания,
      это подходит для некоторой электроники.


      Изменение постоянного тока
      от источника питания без сглаживания,
      это не подходит для электроники.



      Свойства электрических сигналов

      Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.

      График «напряжение-время» ниже показывает различные свойства электрического сигнала. Помимо свойств, отмеченных на графике, есть частота что является количеством циклов в секунду.

      На диаграмме показан синусоидальный сигнал , но свойства применимы к любому сигналу. с постоянно повторяющейся формой.

      • Амплитуда — максимальное напряжение, достигаемое сигналом. Измеряется в В , В .
      • Пиковое напряжение — другое название амплитуды.
      • Пиковое напряжение в два раза больше пикового напряжения (амплитуды). При считывании осциллограммы обычно измеряют пиковое напряжение.
      • Период времени — это время, необходимое сигналу для завершения одного цикла. Он измеряется в секундах (с) , но периоды времени обычно короткие, поэтому часто используются миллисекунды (мс) и микросекунды (мкс).
        1 мс = 0,001 с и 1 мкс = 0,000001 с.
      • Частота — это количество циклов в секунду. Он измеряется в герцах (Гц) и , но частоты имеют тенденцию быть высокими, поэтому часто используются килогерцы (кГц) и мегагерцы (МГц).
        1 кГц = 1000 Гц и 1 МГц = 1000000 Гц.

      Частота и период времени

      Частота и период времени противоположны друг другу:

      частота = 1
      период времени

      и

      период времени = 1
      частота

      Электросеть в Великобритании имеет частоту 50 Гц поэтому он имеет период времени 1 / 50 = 0.02s = 20 мс .


      Среднеквадратические значения (RMS)

      Значение переменного напряжения непрерывно изменяется от нуля до положительного пика через от нуля до отрицательного пика и снова обратно к нулю. Очевидно, что большую часть времени оно меньше пикового напряжения, так что это не лучшая мера его реального эффекта.

      Вместо этого мы используем среднеквадратичное напряжение RMS ) что составляет 0,7 от пикового напряжения (V пик ):

      и

      Эти уравнения также применимы к , текущий .

      Важно отметить, что эти уравнения верны только для синусоидальных волн (наиболее распространенного типа переменного тока), потому что Коэффициенты 0,7 и 1,4 — это разные значения для других форм.

      Действующее значение — эффективное значение переменного напряжения или текущий. Это эквивалентное постоянное значение постоянного тока, которое дает такой же эффект.

      Например, лампа, подключенная к источнику питания 6V RMS AC , будет гореть с той же яркостью. при подключении к источнику постоянного тока 6 В постоянного тока .Однако лампа будет тусклее, если подключена к сети 6 В переменного тока, пик питания, потому что его среднеквадратичное значение составляет всего 4,2 В (это эквивалентно постоянному 4,2 В постоянного тока).

      Возможно, вам будет полезно думать о среднеквадратичном значении как о некотором среднем значении, но, пожалуйста, помните что это НЕ в среднем! Фактически, среднее напряжение (или ток) типичного сигнала переменного тока равен нулю, потому что положительная и отрицательная части полностью компенсируются.

      Что показывают измерители переменного тока, это среднеквадратичное или пиковое напряжение?
      Вольтметры и амперметры переменного тока

      показывают среднеквадратичное значение напряжения или тока.

      Что на самом деле означает «6 В переменного тока», это среднеквадратичное или пиковое напряжение?

      Если имеется в виду пиковое значение, оно должно быть четко указано, в противном случае предположим, что это значение RMS . В повседневном использовании напряжение переменного тока (и токи) всегда задается как среднеквадратичных значений , потому что это позволяет провести разумное сравнение с постоянными напряжениями (и токами) постоянного тока, например, от батареи.

      Например, «питание 6 В переменного тока» означает 6 В RMS, пиковое напряжение составляет 8,4 В. Электроснабжение Великобритании 230 В переменного тока, это означает 230 В RMS, поэтому пиковое напряжение сети составляет около 320 В.

      Так что же на самом деле означает среднеквадратичное значение (RMS)?

      Сначала возведите все значения в квадрат, затем найдите среднее (среднее) этих квадратичных значений по полный цикл и найдите квадратный корень из этого среднего. Это значение RMS. Смущенный? Не обращайте внимания на математику (она выглядит сложнее, чем есть на самом деле), просто примите что среднеквадратичные значения напряжения и тока являются гораздо более полезной величиной, чем пиковые значения.


      Следующая страница: Осциллографы (CRO) | Исследование


      Политика конфиденциальности и файлы cookie

      Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *