Site Loader

Содержание

Включение ваттметра в цепь переменного тока, при токе нагрузки больше допустимого

Если ток нагрузки больше допустимого тока ваттметра, то токовую катушку ваттметра включают через измерительный трансформатор тока (рис. 1, а).

Рис. 1. Схемы включения ваттметра в цепь переменного тока с большим током (а) и в высоковольтную сеть (б).

При выборе трансформатора тока необходимо следить за тем, чтобы номинальный первичный ток трансформатора I был равен измеряемому току в сети или больше него.

Например, если значение тока в нагрузке достигает 20 А, то можно брать трансформатор тока, рассчитанный на первичный номинальный ток 20 А с номинальным коэффициентом трансформации по току Kн1 = I/ I= 20/5 = 4.

Если при этом в измерительной цепи напряжение меньше допустимого ваттметром, то катушку напряжения включают непосредственно на напряжение нагрузки. Начало катушки напряжения при помощи перемычки / подключают к началу токовой катушки. Так же обязательно устанавливают перемычку 2 (начало катушки подключают к сети). Конец катушки напряжения подключают к другому зажиму сети.

Для определения действительной мощности в измеряемой цепи необходимо показание ваттметра умножить на номинальный коэффициент трансформации трансформатора тока: P = Pw х Kн1 = Pw х 4


Если ток в сети может превышать 20 А, то следует выбрать трансформатор тока с первичным номинальным током 50 А, при этом Kн1 = 50/5 = 10.

В этом случае для определения значения мощности показания ваттметра надо умножать на 10.

Из выражения для мощности на постоянном токе Р = IU видно, что ее можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.

Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.

Электродинамические ваттметры выпускают в виде переносных приборов высоких классов точности (0,1 — 0,5) и используют для точных измерений мощности постоянного и переменного тока на промышленной и повышенной частоте (до 5000 Гц). Ферродинамические ваттметры чаще всего встречаются в виде щитовых приборов относительно низкого класса точности (1,5 — 2,5).

Применяют такие ваттметры главным образом на переменном токе промышленной частоты. На постоянном токе они имеют значительную погрешность, обусловленную гистерезисом сердечников.

Для измерения мощности на высоких частотах применяют термоэлектрические и электронные ваттметры, представляющие собой магнитоэлектрический измерительный механизм, снабженный преобразователем активной мощности в постоянный ток. В преобразователе мощности осуществляется операция умножения ui = р и получение сигнала на выходе, зависящего от произведения ui, т. е. от мощности.


На рис. 2, а показана возможность использования электродинамического измерительного механизма для построения ваттметра и измерения мощности.

Рис. 2. Схема включения ваттметра (а) и векторная диаграмма (б)

Неподвижная катушка 1, включаемая в цепь нагрузки последовательно, называется последовательной цепью ваттметра, подвижная катушка 2 (с добавочным резистором), включаемая параллельно нагрузке — параллельной цепью.

Для ваттметра, работающего на постоянном токе:

Рассмотрим работу электродинамического ваттметра на переменном токе. Векторная диаграмма рис. 2, б построена для индуктивного характера нагрузки. Вектор тока Iuпараллельной цепи отстает от вектора U на угол γ вследствие некоторой индуктивности подвижной катушки.

Из этого выражения следует, что ваттметр правильно измеряет мощность лишь в двух случаях: при γ = 0 и γ = φ.

Условие γ = 0 может быть достигнуто созданием резонанса напряжений в параллельной цепи, например включением конденсатора С соответствующей емкости, как это показано штриховой линией на рис. 1, а. Однако резонанс напряжений будет лишь при некоторой определенной частоте. С изменением частоты условие γ = 0 нарушается. При γ не равном 0 ваттметр измеряет мощность с погрешностью βy, которая носит название угловой погрешности.


При малом значении угла γ (γ обычно составляет не более 40 — 50′), относительная погрешность

При углах φ, близких к 90°, угловая погрешность может достигать больших значений.

Второй, специфической, погрешностью ваттметров является погрешность, обусловленная потреблением мощности его катушками.

При измерении мощности, потребляемой нагрузкой, возможны две схемы включения ваттметра, отличающиеся включением его параллельной цепи (рис. 3).

Рис. 3. Схемы включения параллельной обмотки ваттметра

Если не учитывать фазовых сдвигов между токами и напряжениями в катушках и считать нагрузку Н чисто активной, погрешности β(а) и β(б), обусловленные потреблением мощности катушками ваттметра, для схем рис. 3, а и б:

где Рi и Рu — соответственно мощность, потребляемая последовательной и параллельной цепью ваттметра.

Из формул для β(а) и β(б) видно, что погрешности могут иметь заметные значения лишь при измерениях мощности в маломощных цепях, т. е. когда Рi и Рu соизмеримы с Рн.

Если поменять знак только одного из токов, то изменится направление отклонения подвижной части ваттметра.

У ваттметра имеются две пары зажимов (последовательной и параллельной цепей), и в зависимости от их включения в цепь направление отклонения указателя может быть различным. Для правильного включения ваттметра один из каждой пары зажимов обозначается знаком «*» (звездочка) и называется «генераторным зажимом».

Контрольные вопросы:

1. Какую энергию измеряет ваттметр электродинамической системы?

2. Влияет ли величина нагрузки на схему включения ваттметра?

3. Как расширяют пределы измерения ваттметра на переменном токе?

4. Как определить мощность в цепи постоянного тока по результатам измерения силы тока и напряжения?

5. Как правильно включить ваттметр однофазного тока при измерении мощности в контролируемой цепи?

6. Как измерить полную мощность однофазного тока, пользуясь амперметром и вольтметром?

7. Как определить реактивную мощность схемы?

Схема включения ваттметра в электрическую цепь. Ваттметры. Виды и применение. Работа. Примеры и параметры

Если ток нагрузки больше допустимого тока ваттметра, то токовую катушку ваттметра включают через измерительный трансформатор тока (рис. 1, а).

Рис. 1. Схемы включения ваттметра в цепь переменного тока с большим током (а) и в высоковольтную сеть (б).

При выборе трансформатора тока необходимо следить за тем, чтобы номинальный первичный ток трансформатора I 1и был равен измеряемому току в сети или больше него.

Например, если значение тока в нагрузке достигает 20 А, то можно брать трансформатор тока, рассчитанный на первичный номинальный ток 20 А с номинальным коэффициентом трансформации по току Kн1 = I 1и / I 2и = 20/5 = 4.

Если при этом в измерительной цепи напряжение меньше допустимого ваттметром, то катушку напряжения включают непосредственно на напряжение нагрузки. Начало катушки напряжения при помощи перемычки / подключают к началу токовой катушки. Так же обязательно устанавливают перемычку 2 (начало катушки подключают к сети). Конец катушки напряжения подключают к другому зажиму сети.

Для определения действительной мощности в измеряемой цепи необходимо показание ваттметра умножить на номинальный коэффициент трансформации трансформатора тока: P = Pw х Kн 1 = Pw х 4

Если ток в сети может превышать 20 А, то следует выбрать трансформатор тока с первичным номинальным током 50 А, при этом Kн 1 = 50/5 = 10.

В этом случае для определения значения мощности показания ваттметра надо умножать на 10.

Из выражения для мощности на постоянном токе Р = IU видно, что ее можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.

Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.

Электродинамические ваттметры выпускают в виде переносных приборов высоких классов точности (0,1 — 0,5) и используют для точных измерений мощности постоянного и переменного тока на промышленной и повышенной частоте (до 5000 Гц). Ферродинамические ваттметры чаще всего встречаются в виде щитовых приборов относительно низкого класса точности (1,5 — 2,5).

Применяют такие ваттметры главным образом на переменном токе промышленной частоты. На постоянном токе они имеют значительную погрешность, обусловленную гистерезисом сердечников.

Для измерения мощности на высоких частотах применяют термоэлектрические и электронные ваттметры, представляющие собой магнитоэлектрический измерительный механизм, снабженный преобразователем активной мощности в постоянный ток. В преобразователе мощности осуществляется операция умножения ui = р и получение сигнала на выходе, зависящего от произведения ui, т. е. от мощности.

На рис. 2, а показана возможность использования электродинамического измерительного механизма для построения ваттметра и измерения мощности.

Рис. 2. Схема включения ваттметра (а) и векторная диаграмма (б)

Неподвижная катушка 1, включаемая в цепь нагрузки последовательно, называется последовательной цепью ваттметра, подвижная катушка 2 (с добавочным резистором), включаемая параллельно нагрузке — параллельной цепью.

Для ваттметра, работающего на постоянном токе:

Рассмотрим работу электродинамического ваттметра на переменном токе. Векторная диаграмма рис. 2, б построена для индуктивного характера нагрузки. Вектор тока Iuпараллельной цепи отстает от вектора U на угол γ вследствие некоторой индуктивности подвижной катушки.

Из этого выражения следует, что ваттметр правильно измеряет мощность лишь в двух случаях: при γ = 0 и γ = φ.

Условие γ = 0 может быть достигнуто созданием резонанса напряжений в параллельной цепи, например включением конденсатора С соответствующей емкости, как это показано штриховой линией на рис. 1, а. Однако резонанс напряжений будет лишь при некоторой определенной частоте.

С изменением частоты условие γ = 0 нарушается. При γ не равном 0 ваттметр измеряет мощность с погрешностью βy, которая носит название угловой погрешности.

При малом значении угла γ (γ обычно составляет не более 40 — 50″), относительная погрешность

При углах φ, близких к 90°, угловая погрешность может достигать больших значений.

Второй, специфической, погрешностью ваттметров является погрешность, обусловленная потреблением мощности его катушками.

При измерении мощности, потребляемой нагрузкой, возможны две схемы включения ваттметра, отличающиеся включением его параллельной цепи (рис. 3).

Рис. 3. Схемы включения параллельной обмотки ваттметра

Если не учитывать фазовых сдвигов между токами и напряжениями в катушках и считать нагрузку Н чисто активной, погрешности β(а) и β(б), обусловленные потреблением мощности катушками ваттметра, для схем рис. 3, а и б:

где Рi и Рu — соответственно мощность, потребляемая последовательной и параллельной цепью ваттметра.

Из формул для β(а) и β(б) видно, что погрешности могут иметь заметные значения лишь при измерениях мощности в маломощных цепях, т. е. когда Рi и Рu соизмеримы с Рн.

Если поменять знак только одного из токов, то изменится направление отклонения подвижной части ваттметра.

У ваттметра имеются две пары зажимов (последовательной и параллельной цепей), и в зависимости от их включения в цепь направление отклонения указателя может быть различным. Для правильного включения ваттметра один из каждой пары зажимов обозначается знаком «*» (звездочка) и называется «генераторным зажимом».

Контрольные вопросы:

1. Какую энергию измеряет ваттметр электродинамической системы?

2. Влияет ли величина нагрузки на схему включения ваттметра?

3. Как расширяют пределы измерения ваттметра на переменном токе?

4. Как определить мощность в цепи постоянного тока по результатам измерения силы тока и напряжения?

5. Как правильно включить ваттметр однофазного тока при измерении мощности в контролируемой цепи?

6. Как измерить полную мощность однофазного тока, пользуясь амперметром и вольтметром?

7. Как определить реактивную мощность схемы?

Для непосредственного измерения мощности цепи постоянного тока применяется ваттметр. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками электрической энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Угол поворота подвижной части ваттметра:

α = k2IIu = k2U/Ru

где I — ток последовательной катушки; I и — ток параллельной катушки ваттметра.

Рис. 1. Схема устройства и соединений ваттметра

Так как в результате применения добавочного сопротивления параллельная цепь ваттметра имеет практически постоянное сопротивление ru , то α = (k2/Ru)IU = k2IU = k3P

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи.

Шкала ваттметраравномерна. При работе с ваттметром необходимо иметь в виду, что изменение направления тока в одной из катушек вызывает изменение направления вращающего момента и направления поворота подвижной катушки, а так как обычно шкала ваттметра делаетсяодносторонней, т. е. деления шкалы расположены от нуля вправо, то при неправильном направлении тока в одной из катушек определение измеряемой величины по ваттметру будет невозможно.

По указанным причинам следует всегда различать зажимы ваттметра. Зажим последовательной обмотки, соединяемый с источником питания, называется генераторным и отмечается на приборах и схемах звездочкой. Зажим параллельной цепи, присоединяемый к проводу, соединенному с последовательной катушкой, также называется генераторным и отмечается звездочкой.

Таким образом, при правильной схеме включения ваттметра токи в катушках ваттметра направлены от генераторных зажимов к негенераторным. Могут иметь место две схемы включения ваттметра (см. рис. 2 и рис. 3).

Рис. 2. Правильная схема включения ваттметра

Рис. 3. Правильная схема включения ваттметра

В схеме, данной на рис. 2, ток последовательной обмотки ваттметра равен току приемников энергии, мощность которых измеряется, а параллельная цепь ваттметра находится под напряжением U» большим, чем напряжение приемников, на величину падения напряжения в последовательной катушке. Следовательно, Рв = IU» = I(U+U1) = IU = IU1 , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности последовательной обмотки ваттметра.

В схеме, данной на рис. 3, напряжение на параллельной цепи ваттметра равно напряжению на приемниках, а ток в последовательной обмотке больше тока, потребляемого приемником, на величину тока параллельной цепи ваттметра. Следовательно, P в = U(I+Iu) = UI+ UIu , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности параллельной цепи ваттметра.

При измерениях, в которых мощностью обмоток ваттметра можно пренебречь, предпочтительнее пользоваться схемой, показанной на рис. 2, так как обычно мощность последовательной обмотки меньше, чем параллельной, а следовательно, показания ваттметра будут более точными.

При точных измерениях необходимо вводить поправки в показания ваттметра, обусловленные мощностью его обмотки, и в таких случаях можно рекомендовать схему на рис.3, так как поправка легко вычисляется по формуле U 2 /Ru , где Ru обычно известно, а поправка остается неизменной при различных значениях тока, если U постоянно.

При включении ваттметра по схеме на рис. 2 потенциалы концов катушек разнятся только на величину падения напряжения в подвижной катушке, так как генераторные зажимы катушек соединены вместе. Падение напряжения в подвижной катушке незначительно по сравнению с напряжением на параллельной цепи, так как сопротивление этой катушки незначительно по сравнению с сопротивлением параллельной цепи.

Рис. 4. Неправильная схема включения ваттметра

На рис. 4 дана неправильная схема включения параллельной цепи ваттметра. Здесь генераторные зажимы катушек соединены через добавочное сопротивление, вследствие чего разность потенциалов между концами катушек равна напряжению цепи (иногда весьма значительному 240 — 600 В), а так как неподвижная и подвижная катушки находятся в непосредственной близости одна от другой, то создаются условия, благоприятные для пробоя изоляции катушек. Кроме того, между катушками, имеющими весьма различные потенциалы, будет наблюдаться электростатическое взаимодействие, могущее вызвать дополнительную погрешность при измерении мощности в электрической цепи.

Одно из свойств, которое дает характеристику состояния электрической цепи – это мощность. Это свойство отражает значение работы, выполненное электрическим током за определенное время. Мощность оборудования, входящего в электрическую цепь, не должна выходить за рамки мощности сети. В противном случае оборудование может выйти из строя, возникнет замыкание или пожар.

Замеры мощности электрического тока производят специальными устройствами – ваттметры. В случае постоянного тока мощность вычисляется путем умножения напряжения на силу тока (нужен амперметр и вольтметр). В цепи переменного тока все происходит иначе, понадобятся измерительные приборы. Ваттметром измеряют режим работы электрооборудования, производят учет расхода электроэнергии.

Сфера использования

Основная сфера использования ваттметров – это отрасли промышленности в электроэнергетике, машиностроении, ремонта электрических устройств. Также часто применяют ваттметры и в быту. Их покупают специалисты по электронике, компьютерному оборудованию, радиолюбители – для расчета экономии потребления электрической энергии.

Ваттметры используют для:

Вычисления мощности устройств.
Проведения тестов электрических цепей, некоторых их участков.
Проведения испытаний электроустановок, в качестве индикаторов.
Проверка действия электрооборудования.
Учет потребления электроэнергии.

Разновидности

Сначала измеряется напряжение, затем сила тока, а потом на основе этих данных измеряется мощность. По методу измерения, преобразования параметров и выдачи результата ваттметры разделяются на цифровые и аналоговые виды.

Цифровые ваттметры производят измерение . На экран также выводятся напряжение, сила тока, потребление электричества за период времени. Параметры замеров выводятся на компьютер.

Аналоговый вариант ваттметра разделен на самопишущие и показывающие приборы. Они определяют активную мощность участка схемы. Экран ваттметра оснащен шкалой и стрелкой. Шкала отградуирована по делениям и величинам мощности, в ваттах.

Конструктивные особенности и принцип работы

Аналоговые типы ваттметров имеют широкое распространение, точное измерение, и являются устройствами электродинамической системы.

Принцип их действия основывается на взаимодействии между собой двух катушек. Одна катушка неподвижная, с толстым проводом обмотки, малым числом витков и небольшим сопротивлением. Она подключена по последовательной схеме с потребителем. Вторая катушка двигается. Ее обмотка состоит из тонкого проводника, имеющего значительное число витков, ее сопротивление большое. Она подключена по параллельной схеме с потребителем, снабжена дополнительным сопротивлением во избежание короткого замыкания обмоток.

При включении устройства в сеть, в обмотках возникают магнитные поля, взаимодействие которых образует момент вращения, отклоняющий двигающуюся обмотку с прикрепленной стрелкой, на расчетный угол. Значение угла зависит от произведения напряжения и силы тока в конкретный момент времени.

Главным принципом действия ваттметра цифрового типа является предварительный замер напряжения и силы тока. Для этих целей подключаются: по последовательной схеме к потребителю нагрузки – датчик тока, по параллельной схеме датчик напряжения. Эти датчики обычно изготавливаются из термисторов, термопар, измеряющих трансформаторов.

Мгновенные параметры измеренных напряжения и тока, путем преобразователя, поступают к внутреннему микропроцессору. В нем происходит вычисление мощности. На экране показывается результат информации, а также передается на внешние приборы.

Приборы электродинамического типа, которые имеют широкое применение, подходят для переменного и постоянного тока. Ваттметры индуктивного типа применяются только для переменного тока.

Рассмотрим некоторые варианты приборов (ваттметров) различных вариантов исполнения и различных фирм производителей.
Бытовые приборы китайского производства

В инструкции описаны все режимы работы этого устройства, технические характеристики.

По сути это прибор, измеряющий мощность различных электрических потребителей. Как он работает? Вставляете его в розетку, а в розетку этого прибора вставляете вилку потребителя, мощность которого вы хотите замерить. Этим прибором вы измерите мощность какого-либо потребителя в течение определенного времени и потом с помощью него вы можете даже рассчитать, например, сколько денег тратит за электроэнергию ваш холодильник или любой другой прибор.

В устройстве есть встроенный аккумулятор. Он нужен для запоминания мощности, которую вы замерили, и потом будете использовать для расчета цены. Передняя панель прибора имеет пять кнопок: переключение режимов, указатель цены, переключатель вверх-вниз, кнопка сброса, если прибор поймал какой-либо глюк. Сзади на корпусе указаны характеристики прибора:

Рабочее напряжение 230 вольт.
Частота 50 герц.
Максимальный ток 16 ампер.
Диапазон измеряемой мощности 0-3600 ватт.

Рассмотрим работу прибора. Вставляем его в розетку.

Включим в него настольную светодиодную лампу.

На дисплее сразу пошло время, в течение которого измеряется мощность потребителя, в данном случае лампы. 0,4 ватта – это мощность отключенной лампы. Включаем лампу, в рабочем режиме она потребляет 10,3 ватта. Цену за киловатт мы не указывали, поэтому там стоят нули.

У нас лампа может менять мощность света. При увеличении света лампы показания мощности увеличиваются. При включении второго режима вверху также показано время работы, во втором поле киловатт часы, так как прибор пока не проработал даже одного часа, то показаны нули. Внизу показано количество дней, в течение которых измерялся этот потребитель.

В следующем режиме во втором поле показано напряжение электросети, внизу показана частота тока. Вверху дисплея при всех режимах показывается время. При переходе на следующий режим в центре показывается сила тока. Внизу показывается параметр некоего фактора, о котором пока нет данных, так как производитель прибора китайский.

На пятом режиме показана мощность минимальная. На шестом режиме – максимальная мощность.

Интересно будет посмотреть показания этих режимов при работе компьютера. Например, в спящем режиме, при обычном открытом рабочем столе, либо при запуске мощной игры.

В следующем режиме устанавливается стоимость электроэнергии кнопками установки, для расчета стоимости расхода энергии. Так вы можете измерить и рассчитать потребление любого из домашних бытовых приборов и устройств, и будете знать, какие устройства у вас экономные, а какие слишком много потребляют электричества.

Такой прибор имеет невысокую стоимость, около 14 долларов. Это небольшая цена для того, чтобы оптимизировать ваши затраты, рассчитав мощность потребления ваших устройств.

Цифровой ваттметр многофункциональный СМ 3010

Прибор служит для проведения замера напряжения, частоты, мощности, постоянного и переменного тока с одной фазой. А также, предназначен для контроля подобных приборов с меньшей точностью.

Диапазон замеров тока 0,002 — 10 ампер.

Замеры напряжения:

Постоянного от 1 до 1000 вольт.
Переменного от 1 до 700 вольт.
Частота измеряется в интервале 40-5000 герц.

Погрешность измерения

Тока, напряжения, мощности постоянного тока + 0,1%.
Тока, напряжения, мощности переменного тока + 0,1% в интервале частот 40-1500 герц.
Относительная погрешность замера частоты в интервале 40-5000 герц + 0,003%.

Габариты корпуса прибора 225 х 100 х 205 мм. Вес 1 кг. Мощность потребления менее 5 ватт.

Измерительное устройство ЦП 8506 – 120

Служит для проведения замеров мощности активной и реактивной 3-фазной сети переменного тока, показывает текущее значение параметра мощности на индикаторе, преобразует в сигнал аналогового вида.

Произведенные замеры показываются в форме цифр на индикаторах в единицах величин, которые входят на устройство, либо на вход трансформатора тока или напряжения. При этом учитывается коэффициент трансформации. Цифровой дисплей разделен на четыре разряда.

Назначение устройства – для проведения замеров активной и реактивной мощностей в 3-фазных сетях электрического тока частотой 50 герц.

Технические данные

Коэффициент мощности – 1.
Размеры корпуса 120 х 120 х 150 мм.
Высота цифр на дисплее 20 мм.
Наибольший интервал показаний 9999.
Степень точности: 0,5.
Время проведения преобразования: менее 0,5 с.
Температура работы: от +5 до + 40 градусов.
Класс защиты корпуса и панели: IР 40.
Мощность потребления: 5 ватт.
Вес менее 1,2 кг.

Наличие двух катушек у электродинамического прибора и возможность включения их в две разные цепи позволяет использовать эти приборы для измерения мощности электрического тока, т. е. как ваттметры.

Из выражения для угла поворота подвижной системы электродинамического прибора (2.12) следует, что, если неподвижную катушку включить последовательно нагрузке z (рис. 2-12), а последовательно с подвижной катушкой включить добавочное сопротивление Яд так, чтобы эту катушку можно было включать параллельно нагрузке, тогда ток в подвижной катушке равен

где — сопротивление катушки; U — напряжение на нагрузке; — постоянная данного прибора по мощности; Р — мощность, потребляемая нагрузкой. Такой прибор называют ваттметром. Его шкала равномерная.

Для измерения электрической мощности в цепях переменного тока используют ваттметры активной и реактивной мощности.

Ваттметр активной мощности. Если в цепь подвижной катушки включить активное добавочное сопротивление так, чтобы общее сопротивление этой цепи R было равно

тогда при напряжении и в сети и при токе i в нагрузке

ток в подвижной катушке равен

Мгновенное значение вращающего момента в этом случае равно

а среднее за период значение этого момента

Следовательно, ваттметр с активным добавочным сопротивлением в цепи подвижной катушки измеряет активную мощность цепи переменного тока.

Полученный вывод имеет простое физическое объяснение. В самом деле, если в цепь с индуктивностью включить амперметр, вольтметр и ваттметр (рис. 2-13), то , так как подвижная система вольтметра поворачивается под действием только приложенного напряжения, независимо от фазы этого напряжения (точнее, под действием тока в катушке, пропорционального приложенному напряжению), а подвижная часть амперметра поворачивается под действием только тока в катушке, независимо от фазы этого тока. Что касается подвижной части (катушки) ваттметра, то она поворачивается только в том случае, когда токи в обеих катушках не равны нулю, иначе не будет взаимодействия. Но в рассматриваемой цепи ток подвижной катушки максимален, когда ток в цепи i равен нулю, и наоборот. Прибор ничего не покажет. Этого и следовало ожидать, так как нагрузка то запасает энергию в магнитном поле, то возвращает в сеть.

Из графика токов данной цепи с индуктивностью (рис. 2-14) следует, что токи совпадают по направлению (на графике — по одну сторону от оси времени) только в течение двух (через одну) четвертей периода за период, а в две другие четверти периода токи имеют противоположные направления. Это означает, что направление вращающего момента изменяется четыре раза за период. Поэтому подвижная система ваттметра в течение периода будет испытывать действие четырех одинаковых по значению, но противоположных по направлению толчков и прибор ничего не покажет, так как вращающий момент, действующий на подвижную систему, определяется его средним значением за период.

Если же угол сдвига между токами невелик (рис. 2-15), то в течение периода положительные значения вращающего момента сильно превосходят отрицательные (по времени и по значениям) и подвижная система ваттметра повернется под действием среднего

значения реагируя на активную мощность, потребляемую данной нагрузкой.

Итак, ваттметр показывает активную мощность, потребляемую из сети.

Ваттметр реактивной мощности. В этом ваттметре последовательно с подвижной катушкой специально включается индуктивное добавочное сопротивление (рис. 2-16) такое, что

Пусть в цепи действует приложенное напряжение и нагрузка создает ток

Тогда мгновенное значение вращающего момента равно

После подстановки и преобразований получим:

Среднее за период значение вращающего момента равно

Отсюда и следует, что ваттметр с индуктивным сопротивлением в цепи подвижной катушки показывает реактивную мощность цепи переменного тока. Такой вывод объясняется просто: в случае, например, чисто индуктивной нагрузки, когда из сети безвозвратно не потребляется энергия, такая схема искусственно сдвигает фазу тока в подвижной катушке до совпадения с фазой тока в неподвижной, поэтому ваттметр показывает значение реактивной мощности.

Итак, у электродинамического ваттметра две катушки: одна — токовая, включаемая последовательно нагрузке, другая- катушка напряжения, включаемая параллельно нагрузке, потребляемую мощность которой необходимо измерить.

Для правильного включения прибора (чтобы стрелка отклонялась в нужную сторону) один из зажимов его обмотки помечают звездочкой эти зажимы ваттметра называют генераторными. Их следует подключать к тому зажиму нагрузки, который соединен с генератором (сетью).

В настоящее время необходимо измерять мощность и энергию постоянного тока, активную мощность и энергию переменного однофазного и трехфазного тока, реактивную мощность и энергию трехфазного переменного тока, мгновенное значение мощности, а также количество электричества в очень широких пределах.

Электрическая мощность определяется работой, совершаемой источником электромагнитного поля в единицу времени.

Активная (поглощаемая электрической цепью) мощность

P a =UIcos > = I 2 R=U 2 /R, (1)

где U , I — действующие значения напряжения и тока;  — угол сдвига фаз.

Реактивная мощность

Р р = UIsin = I 2 X . (2)

Полная мощность

P n = UI = PZ . Эти три типа мощности связаны выражением

P =(Р а 2 2 р ) (3)

Так, мощность измеряется в пределах 1 Вт… 10 ГВт (в цепях постоянного и однофазного переменного тока) с погрешностью ±(0,01…0,1) %, а при СВЧ — с погрешностью ±(1…5) %. Реактивная мощность от единиц вар до Мвар измеряется с погрешностью ±(0,1…0,5)%.

Диапазон измерения электрической энергии определяется диапазонами измерения номинальных токов (1 нА…1О кА) и на­пряжений (1 мкВ…1 MB), погрешность измерения составляет ±(0,1…2,5)%.

Измерение реактивной энергии представляет интерес только для промышленных трехфазных цепей.

Измерение мощности в цепях постоянного тока. При косвенном измерении мощности используют метод амперметра и вольтметра и компенсационный метод.

Метод амперметра и вольтметра. В этом случае приборы включаются по двум схемам (рис.1).

Метод прост, надежен, экономичен, но обладает рядом существенных недостатков: необходимостью снимать показания по двум


Рис. .1. Схемы измерения мощности по показаниям вольтметра и амперметра при малых (а) и больших (б) сопротивлениях нагрузки

приборам; необходимостью производить вычисления; невысокой точностью за счет суммирования погрешности приборов.

Мощность Р х , вычисленная по показаниям приборов (рис. 1а), имеет вид

Она больше действительного значения мощности, расходуемой в нагрузке Р н, на значение мощности потребления вольтметра Р v , т. е. Р н = Р х – Р v .

Погрешность определения мощности в нагрузке тем меньше, чем больше входное сопротивление вольтметра и меньше сопротивление нагрузки.

Мощность Р х , вычисленная по показаниям приборов (рис 1., б), имеем вид

Она больше действительного значения мощности потребления нагрузки на значение мощности потребления амперметром Р А . Методическая погрешность тем меньше, чем меньше входное сопротивление амперметра и больше сопротивление нагрузки.

Компенсационный метод. Этот метод применяется тогда, когда требуется высокая точность измерения мощности. С помощью компенсатора поочередно измеряется ток нагрузки и падение напряжения на нагрузке. Измеряемая мощность определяется по формуле

P = U н I н . (4)

При прямом измерении активная мощность измеряется электромеханическими (электродинамической и ферродинамической систем), цифровыми и электронными ваттметрами.

Электродинамические ваттметры применяются как переносные приборы для точных измерений мощности (класс 0,1… 2,5) в цепях постоянного и переменного тока с частотой до нескольких тысяч герц.

Ферродинамические щитовые вольтметры применяются в цепях переменного тока промышленной частоты (класс 1,5…2,5).

В широком диапазоне частот применяются цифровые ваттметры, основу

составляют различные преобразователи мощности (например, термоэлектрические), УПТ, микропроцессор и ЦОУ. В цифровых ваттметрах осуществляется автоматический выбор пределов измерений, самокалибровка и предусмотрен внешний интерфейс.

Для измерения мощности в высокочастотных цепях также используются специальные и электронные ваттметры.

Для измерения реактивной мощности на низких частотах служат реактивные ваттметры (варметры), в которых путем использования специальных схем отклонение подвижной части электродинамического ИМ пропорционально реактивной мощности.

Включение электромеханических ваттметров непосредственно в электрическую цепь допустимо при токах нагрузки, не превышающих 10… 20 А, и напряжениях до 600 В. Измерение мощности при больших токах нагрузки и в цепях высокого напряжения производится ваттметром с измерительными трансформаторами тока ТА и напряжения TV (рис..2).

Измерение активной мощности в цепях трехфазного тока. Метод одного ваттметра. Этот метод применяется только в симметричной системе с равномерной нагрузкой фаз, одинаковыми углами сдвига по фазе между векторами I и U и с полной симметрией напряжений (рис..3).


Рис..3. Схемы включения ваттметра в трехфазную трехпроводную цепь при полной симметрии присоединения нагрузки:

а — звездой; б — треугольником; в ~- с искусственной нулевой точкой


Рис.4. Схемы включения двух ваттметров в трехфазную цепь: а — в 1-ю и 3-ю; б — в 1-ю и 2-ю; в — в 2-ю и 3-ю

На рис. .3, а нагрузка соединена звездой и нулевая точка доступна. На рис.3, б нагрузка соединена треугольником, ваттметр включен в фазу. На рис. .3, в нагрузка соединена треугольником с искусственной нулевой точкой. Искусственная нулевая точка создается с помощью двух резисторов, каждый из которых равен сопротивлению цепи обмотки напряжения ваттметра (обычно указывается в техническом паспорте на ваттметр).

Показания ваттметра будут соответствовать мощности одной фазы, а мощность всей трехфазной сети во всех трех случаях включения прибора будет равна мощности одной фазы, умноженной на три:

Р = 3 P w

Метод двух ваттметров. Этот метод применяется в трехфазной трехпроводной цепи независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Асимметрия — это система, в которой мощности отдельных фаз различны. Токовые обмотки ваттметров включаются в любые две фазы, а обмотки напряжения включаются на линейные напряжения (рис. 4).

Полная мощность может быть выражена в виде суммы показаний Двух ваттметров. Так, для схемы, представленной на рис..4, а,

где  1 — угол сдвига фаз между током I 1 и линейным напряжением U 12,  2 — угол сдвига фаз между током I 3 и линейным напряжением U 32 . В частном случае при симметричной системе напряжений и одинаковой нагрузке фаз  1 , = 30° —  и  2 = 30° —  показания ваттметров будут:

При активной нагрузке (= 0) показания ваттметров будут одинаковы, так как P W ] = P W 2 IUcos 30°.

При нагрузке с углом сдвига ср = 60° показания второго ваттметра равны нулю, так как P W 2 = IU cos(30° + ) = IU cos(30° + 60°) = 0, и в этом случае мощность трехфазной цепи измеряется одним ваттметром.

При нагрузке с углом сдвига  > 60° мощность, измеряемая вторым ваттметром, будет отрицательной, так как (30° +) больше 90°. В этом случае подвижная часть ваттметров повернется в обратную сторону. Для отсчета необходимо изменить на 180° фазу тока в одной из цепей ваттметра. В этом случае мощность цепи трехфазного тока равна разности показаний ваттметров

Метод трех ваттметров. Для измерения мощности трехфазной цепи при несимметричной нагрузке включаются три ваттметра, и общая мощность при наличии нулевого провода будет равна арифметической сумме показаний трех ваттметров. В этом случае каждый ваттметр измеряет мощность одной фазы, показания ваттметра независимо от характера нагрузки будут положительные (параллельная обмотка включается на фазное напряжение, т. е. между линейным проводом и нулевым). Если нулевая точка недоступна и нулевой провод отсутствует, то параллельные цепи приборов могут образовать искусственную нулевую точку при условии, что сопротивления этих цепей равны между собой.

Измерение реактивной мощности в однофазных и трехфазных цепях. Несмотря на то что реактивная мощность не определяет ни совершаемой работы, ни передаваемой энергии за единицу времени, ее измерение также важно. Наличие реактивной мощности приводит к дополнительным потерям электрической энергии в линиях передачи, трансформаторах и генераторах. Реактивная мощность измеряется в вольт-амперах реактивных (вар) как в однофазных, так и в трехфазных трех- и четырехпроводных цепях переменного тока электродинамическими и ферродинамическими или специально предназначенными для измерения реактивной мощности ваттметрами. Отличие реактивного ваттметра от обычного состоит в том, что он имеет усложненную схему параллельной цепи для получения сдвига по фазе, равного 90°

между векторами тока и напряжения этой цепи. Тогда отклоне­ние подвижной части будет пропорционально реактивной мощности Р р = UIsin . Реактивные ваттметры преимущественно применяются для лабораторных измерений и поверки реактивных счетчиков.

Реактивную мощность в трехфазной симметричной цепи можно измерить и активным ваттметром: для этого –токовая катушка последовательно включается в фазу А, катушка напряжения между фазами В и С.

Измерение мощности в цепях повышенной частоты. С этой це­лью можно использовать как прямые, так и косвенные измерения и в ряде случаев предпочтительнее могут оказаться косвенные, так как иногда легче измерить ток и напряжение на нагрузке, чем непосредственно мощность. Прямое измерение мощности в цепях повышенных и высоких частот производится термоэлектрическими, электронными ваттметрами, ваттметрами, основанными на эффекте Холла, и цифровыми ваттметрами.

Косвенные измерения осуществляются осциллографическим методом. Он применяется в основном тогда, когда цепь питается напряжением несинусоидальной формы, при высоких частотах, маломощных источниках напряжения и т. д.

Измерение энергии в однофазных и трехфазных цепях. Энергия измеряется электромеханическими и электронными счетчиками электрической энергии. Электронные счетчики электрической энергии обладают лучшими метрологическими характеристиками, большей надежностью и являются перспективными средствами измерений электрической энергии.

4. Измерение фазы и частоты

Фаза характеризует состояние гармонического сигнала в опре­деленный момент времени t . Фазовый угол в начальный момент времени (начало отсчета времени), т.е. при t = 0, называют нуле вым (начальным) фазовым сдвигом. Разность фаз  измеряют обычно между током и напряжением либо между двумя напряжениями. В первом случае чаще интересуются не самим углом сдвига фаз, а величиной cos или коэффициентом мощности. Cos- это ко­синус того угла, на который опережает или отстает ток нагрузки от напряжения, приложенного к этой нагрузке. Фазовым сдвигом  двух гармонических сигналов одинаковой частоты называют модуль разности их начальных фаз  =| 1 —  2 |. Фазовый сдвиг  не зависит от времени, если остаются неизменными начальные фазы  1 , и  2 . Разность фаз выражается в радианах или градусах.

Методы измерения угла сдвига фаз. Эти методы зависят от диапазона частот, уровня и формы сигнала, от требуемой точности и Наличия средств измерений. Различают косвенное и прямое изменения угла сдвига фаз.

Косвенное измерение. Такое измерение угла сдвига фаз Между напряжением U и током I в нагрузке в однофазных цепях

осуществляют с помощью трех приборов — вольтметра, амперметра и ваттметра (рис.5). Угол  определяется расчетным путем из найденного значения cos:

Метод используется обычно на промышленной частоте и обеспечивает невысокую точность из-за методической погрешности, вызванной собственным потреблением приборов, достаточно прост, надежен, экономичен.

В трехфазной симметричной цепи величина cos может быть определена следующими измерениями:

    мощность, ток и напряжение одной фазы;

    измерение активной мощности методом двух ваттметров;

    измерение реактивной мощности методом двух ваттметров с искусственной нейтральной точкой.

Среди осциллографических методов измерения фазы наибольшее распространение получили методы линейной развертки и эллипса. Осциллографический метод, позволяющий наблюдать и фиксировать исследуемый сигнал в любой момент времени, используется в широком диапазоне частот в маломощных цепях при грубых измерениях (5… 10 %). Метод линейной развертки предполагает применение двухлучевого осциллографа, на горизонтальные пластины которого подают линейное развертывающее напряжение, а на вертикальные пластины — напряжение, между которыми измеряется фазовый сдвиг. Для синусоидальных кривых на экране получаем изображение двух напряжений (рис.6, а) и по измеренным отрезкам АБ и АС вычисляется угол сдвига между ними

где АБ — отрезок между соответствующими точками кривых при переходе их через нуль по оси X ; АС — отрезок, соответствующий периоду.

Погрешность измерения х зависит от погрешности отсчета и фазовой погрешности осциллографа.

Если вместо линейной развертки использовать синусоидальное развертывающее напряжение, то получаемые на экране фигуры Лиссажу при равных частотах дают на экране осциллографа форму эллипса (Рис. 6б). Угол сдвига  x =arcsin(АБ/ВГ).

Этот метод позволяет измерять  х в пределах 0 90 о без определения знака фазового угла.

Погрешность измерения  х также определяется погрешностью отсчета


Рис..6. Кривые, получаемые на экране двухлучевого осциллографа: при линейной (а) и синусоидальной (б) развертке

и расхождениями в фазовых сдвигах каналов Х и Y осциллографа.

Применение компенсатора переменного тока с калиброванным фазовращателем и электронным осциллографом в качестве индикатора равенства фаз позволяет произвести достаточно точное измерение угла сдвига фаз. Погрешность измерения в этом случае определяется в основном погрешностью используемого фазовращателя.

Прямое измерение. Прямое измерение утла сдвига фаз осуществляют с помощью электродинамических, ферродинамических, электромагнитных, электронных и цифровых фазометров. Наиболее часто из электромеханических фазометров используют электродинамические и электромагнитные логометрические фазометры. Шкала у этих приборов линейная. Используются на диапазоне частот от 50 Гц до 6… 8 кГц. Классы точности — 0,2; 0,5. Для них характерна большая потребляемая мощность 1(5…10 Вт).

В трехфазной симметричной цепи измерение угла сдвига фаз  или cos осуществляется однофазным или трехфазным фазометрами.

Цифровые фазометры используются в маломощных цепях в диапазоне частот от единиц Гц до 150 МГц, классы точности — 0,005; 0,01; 0,02; 0,05; 0,1; 0,5; 1,0. В электронно-счетных цифровых фазометрах сдвиг по фазе между двумя напряжениями преобразуется во временной интервал, заполняемый импульсами стабильной частоты с определенным периодом, которые под-считываются электронным счетчиком импульсов. Составляющие погрешности этих приборов: погрешность дискретности, погрешность генератора стабильной частоты, погрешность, зависящая от точности формирования и передачи временного интервала.

Методы измерения частоты. Частота является одной из важнейших характеристик периодического процесса. Определяется числом полных циклов (периодов) изменения сигнала в единицу времени. Диапазон используемых в технике частот очень велик и колеблется от долей герц до десятков. Весь спектр частот подразделяется на два диапазона — низкие и высокие.

Низкие частоты: инфразвуковые — ниже 20 Гц; звуковые — 20…20000 Гц; ультразвуковые — 20…200 кГц.

Высокие частоты: высокие — от 200 кГц до 30 МГц; ультравысокие — 30…300 МГц.

Поэтому выбор метода измерения частоты зависит от диапазона измеряемых частот, необходимой точности измерения, величины и формы напряжения измеряемой частоты, мощности измеряемого сигнала, наличия средств измерений и т.д.

Прямое измерение. Метод основан на применении электромеханических, электронных и цифровых частотомеров.

Электромеханические частотомеры используют измерительный механизм электромагнитной, электродинамической и ферродинамической систем с непосредственным отсчетом частоты по шкале логометрического измерителя. Они просты в устройстве и эксплуатации, надежны, обладают довольно высокой точностью. Их используют в диапазоне частот от 20 до 2500 Гц. Классы точно­сти — 0,2; 0,5; 1,0; 1,5; 2,5.

Электронные частотомеры применяются при измерениях в частотном диапазоне от 10 Гц до нескольких мегагерц, при уровнях входного сигнала 0,5… 200 В. Они имеют большое входное сопротивление, что обеспечивает малое потребление мощности. Классы точности — 0,5; 1,0 и ниже.

Цифровые частотомеры применяются для очень точных изме­рений в диапазоне 0,01 Гц… 17 ГГц. Источниками погрешности являются погрешность от дискретности и нестабильности кварцевого генератора.

Мостовой метод. Этот метод измерения частоты основан на использовании частотозависимых мостов переменного тока, питаемых напряжением измеряемой частоты. Наиболее распространенной мостовой схемой для измерения частоты является емкостной мост. Мостовой метод измерения частоты применяют для измерения низких частот в пределах 20 Гц… 20 кГц, погрешность измерения составляет 0,5… 1 %.

Косвенное измерение. Метод осуществляется с использованием осциллографов: по интерференционным фигурам (фигурам Лиссажу) и круговой развертки. Методы просты, удобны и достаточно точны. Их применяют в широком диапазоне частот 10 Гц… 20 МГц. Недостатком метода Лиссажу является сложность расшифровки фигур при соотношении фигур более 10 и, следовательно, возрастает погрешность измерения за счет установления истинного отношения частот. При методе круговой развертки погрешность измерения в основном определяется погрешностью квантования основной частоты.

МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ПАРАМЕТРОВ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ

Схема включения ваттметра

Для непосредственного измерения мощности цепи постоянного тока применяется ваттметр. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками электрической энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии. Так как в результате применения добавочного сопротивления параллельная цепь ваттметра имеет …


Для непосредственного измерения мощности цепи постоянного тока применяется ваттметр. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками электрической энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Угол поворота подвижной части ваттметра:

= k2IIu = k2U/Ru

где I — ток последовательной катушки; Iи — ток параллельной катушки ваттметра.

Рис. 1. Схема устройства и соединений ваттметра

Так как в результате применения добавочного сопротивления параллельная цепь ваттметра имеет практически постоянное сопротивление ru, то = (k2/Ru)IU = k2IU = k3P

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи.

Шкала ваттметраравномерна. При работе с ваттметром необходимо иметь в виду, что изменение направления тока в одной из катушек вызывает изменение направления вращающего момента и направления поворота подвижной катушки, а так как обычно шкала ваттметра делаетсяодносторонней, т. е. деления шкалы расположены от нуля вправо, то при неправильном направлении тока в одной из катушек определение измеряемой величины по ваттметру будет невозможно.

По указанным причинам следует всегда различать зажимы ваттметра. Зажим последовательной обмотки, соединяемый с источником питания, называется генераторным и отмечается на приборах и схемах звездочкой. Зажим параллельной цепи, присоединяемый к проводу, соединенному с последовательной катушкой, также называется генераторным и отмечается звездочкой.

Таким образом, при правильной схеме включения ваттметра токи в катушках ваттметра направлены от генераторных зажимов к негенераторным. Могут иметь место две схемы включения ваттметра (см. рис. 2 и рис. 3).

Рис. 2. Правильная схема включения ваттметра

Рис. 3. Правильная схема включения ваттметра

В схеме, данной на рис. 2, ток последовательной обмотки ваттметра равен току приемников энергии, мощность которых измеряется, а параллельная цепь ваттметра находится под напряжением U‘ большим, чем напряжение приемников, на величину падения напряжения в последовательной катушке. Следовательно, Рв = IU’ = I(U+U1) = IU = IU1, т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности последовательной обмотки ваттметра.

В схеме, данной на рис. 3, напряжение на параллельной цепи ваттметра равно напряжению на приемниках, а ток в последовательной обмотке больше тока, потребляемого приемником, на величину тока параллельной цепи ваттметра. Следовательно, Pв = U(I+Iu) = UI+ UIu, т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности параллельной цепи ваттметра.

При измерениях, в которых мощностью обмоток ваттметра можно пренебречь, предпочтительнее пользоваться схемой, показанной на рис. 2, так как обычно мощность последовательной обмотки меньше, чем параллельной, а следовательно, показания ваттметра будут более точными.

При точных измерениях необходимо вводить поправки в показания ваттметра, обусловленные мощностью его обмотки, и в таких случаях можно рекомендовать схему на рис.3, так как поправка легко вычисляется по формуле U2/Ru, где Ru обычно известно, а поправка остается неизменной при различных значениях тока, если U постоянно.

10.12.2016 Без рубрики

Включение — ваттметр — Большая Энциклопедия Нефти и Газа, статья, страница 1

Включение — ваттметр

Cтраница 1


Включение ваттметров по принципиальной схеме рис. 1 — 10 дает возможность определять коэффициент мощности нагрузки по показаниям одних ваттметров, без употребления амперметров и вольтметров.  [2]

Включение ваттметра с объединением не обозначенных звездочкой зажимов является неправильным, так как катушки будут находиться под большой разностью потенциалов, почти равной напряжению U, что вследствие электростатического взаимодействия увеличивает погрешности прибора, а при большом значении U может вызвать электрический пробой катушек.  [3]

Схемы включения ваттметров и счетчиков приведены в любом учебнике по электротехнике. На рис. 177 показано включение ваттметра в сеть через измерительные трансформаторы тока и напряжения.  [4]

Схема включения ваттметра показана на фиг. Неподвижная катушка электродинамического прибора включается в цепь последовательно, как амперметр, и является токовой катушкой ваттметра. Подвижная катушка включается параллельно, как вольтметр. При этих условиях прибор замеряет одновременно ток и напряжение, что и требуется при измерении мощности.  [5]

Схема включения ваттметров не отличается от схемы включения счетчиков. Затем при постоянной нагрузке секундомером измеряют время, за которое диск счетчика сделает определенное число оборотов. На дисках всех счетчиков для этого делают красную отметку. Секундомер пускают, когда отметка на диске проходит определенное положение, при этом счет начинают не с единицы, а с нуля.  [6]

Схема включения ваттметра при измерении активной мощности методом одного ваттметра с искусственной нулевой точкой дана на фиг. Искусственная нулевая точка создается путем соединения звездой трех одинаковых по величине сопротивлений.  [7]

Схема включения ваттметра в цепь переменного однофазного тока не отличается от схемы включения ваттметра в цепь постоянного тока.  [8]

Схема включения ваттметра приведена на фиг.  [9]

Правильность включения ваттметров в схему трансформатора тока и напряжения при замере мощности синхронного высоковольтного двигателя может быть проверена следующим образом. Таким образом, если при изменении тока возбуждения с помощью реостата показания ваттметров изменились, но сумма показаний осталась прежней, то включение ваттметров выполнено правильно.  [10]

Перед включением ваттметра необходимо также проверить генераторные зажимы каждой из обмоток, так как перемена местами зажимов какой-либо обмотки будет означать изменение фазы тока этой обмотки на 180, что соответствует изменению направления вращающего момента соответствующего элемента.  [12]

Перед включением трехэлементного ваттметра в цепь следует всегда выяснять, какие обмотки ваттметра принадлежат первому второму и третьему элементам.  [14]

Страницы:      1    2    3    4    5

Схема — включение — ваттметр

Схема — включение — ваттметр

Cтраница 1

Схема включения ваттметра приведена на фиг.  [1]

Схемы включения ваттметров и счетчиков приведены в любом учебнике по электротехнике. На рис. 177 показано включение ваттметра в сеть через измерительные трансформаторы тока и напряжения.  [2]

Схема включения ваттметра показана на фиг. Неподвижная катушка электродинамического прибора включается в цепь последовательно, как амперметр, и является токовой катушкой ваттметра. Подвижная катушка включается параллельно, как вольтметр. При этих условиях прибор замеряет одновременно ток и напряжение, что и требуется при измерении мощности.  [3]

Схема включения ваттметров не отличается от схемы включения счетчиков. Затем при постоянной нагрузке секундомером измеряют время, за которое диск счетчика сделает определенное число оборотов. На дисках всех счетчиков для этого делают красную отметку. Секундомер пускают, когда отметка на диске проходит определенное положение, при этом счет начинают не с единицы, а с нуля.  [4]

Схема включения ваттметра при измерении активной мощности методом одного ваттметра с искусственной нулевой точкой дана на фиг. Искусственная нулевая точка создается путем соединения звездой трех одинаковых по величине сопротивлений.  [5]

Схема включения ваттметра в цепь переменного однофазного тока не отличается от схемы включения ваттметра в цепь постоянного тока.  [6]

Какие схемы включения ваттметров применяются для измерения активной мощности в трехфазной цепи при несимметричной нагрузке.  [7]

Анализируя схемы включения ваттметров, приведен ные на рис. 12.4, а, б, нетрудно видеть, что показание ваттметра будет соответствовать мощности одной фазы.  [9]

Такая схема включения ваттметра получила название сииусной схемы в отличие от основной схемы для измерения активной мощности, которая называется косинусной схемой.  [10]

Такая схема включения ваттметра получила название си-нусной схемы в отличие от основной схемы для измерения активной мощности, которая называется косинусной схемой.  [11]

Какие схемы включения ваттметров применяют для измерения активной мощности в трехфазной цепи при симметричной нагрузке во всех трех фазах.  [12]

В зависимости от схемы включения ваттметра последний может являться измерителем поглощающего чипа или измерителем проходящей мощности.  [13]

На рис. 16.14 приведена схема включения ваттметра ( счетчика) в однофазную цепь, а на рис. 16.15 — включение двух ваттметров ( двухэлементного счетчика) в трехфазную трехпроводную цепь с трансформаторами тока и напряжения. В однофазных цепях всегда заземляются генераторные зажимы приборов, а в трехфазных — генераторные зажимы последовательных цепей и общая точка ( негенераторные зажимы) параллельных цепей. Для трехфазной цепи принцип включения такой же, как и для однофазной, поскольку нижняя часть схемы представляет как бы отражение верхней части в плоскости, проходящей через среднюю фазу.  [14]

Страницы:      1    2    3    4

Методы измерения мощности электрического тока. Включение ваттметра в цепь переменного тока, при токе нагрузки больше допустимого

Измерение мощности производят обычно с помощью ваттметра электродинамической системы, в котором имеются две катушки — неподвижная и подвижная.

Подвижная катушка, выполненная из очень тонкого провода, имеет практически чисто активное сопротивление и называется параллельной обмоткой. Ее включают параллельно участку цепи, подобно вольтметру. Жестко скрепленная со стрелкой (указателем), она может вращаться в магнитном поле, создаваемом непод вижной катушкой.

Неподвижная катушка, выполненная из довольно толстого провода, имеет очень малое активное сопротивление и называется последовательной обмоткой. Ее включают в цепь последовательно, подобно амперметру.

На электрической схеме ваттметр изображают, как показано на рис. 3.22. Одна пара концов (на рисунке обычно расположена горизонтально) принадлежит последовательной обмотке, другая пара концов (на рисунке расположена вертикально) — параллельной. На концах одноименных зажимов обмоток (например, у начала обмоток) принято ставить точки.

Вращающий момент ваттметра, а следовательно, и его показания пропорциональны действительной части произведения комплексного напряжения на параллельной обмотке ваттметра на сопряженный комплекс тока втекающего в конец последовательной (токовой) обмотки ваттметра и снабженной точкой:

Напряжение на параллельной обмотке берут равным разности потенциалов между ее концом, имеющим точку (точка а), и ее концом, не имеющим точки (точка ). Предполагается, что ток втекает в конец последовательной обмотки, у которого поставлена точка.

Цена деления ваттметра определяется как частное от деления произведения номинального напряжения на номинальный ток (указывают на лицевой стороне прибора) на число делений шкалы.

Пример 41. Номинальное напряжение ваттметра 120 В. Номинальный ток 5 А. Шкала имеет 150 делений. Определить цену деления ваттметра.

Решение. Цена деления ваттметра равна

Для непосредственного измерения мощности цепи постоянного тока применяется ваттметр. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками электрической энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Угол поворота подвижной части ваттметра:

α = k2IIu = k2U/Ru

где I — ток последовательной катушки; I и — ток параллельной катушки ваттметра.

Рис. 1. Схема устройства и соединений ваттметра

Так как в результате применения добавочного сопротивления параллельная цепь ваттметра имеет практически постоянное сопротивление ru , то α = (k2/Ru)IU = k2IU = k3P

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи.

Шкала ваттметраравномерна. При работе с ваттметром необходимо иметь в виду, что изменение направления тока в одной из катушек вызывает изменение направления вращающего момента и направления поворота подвижной катушки, а так как обычно шкала ваттметра делаетсяодносторонней, т. е. деления шкалы расположены от нуля вправо, то при неправильном направлении тока в одной из катушек определение измеряемой величины по ваттметру будет невозможно.

По указанным причинам следует всегда различать зажимы ваттметра. Зажим последовательной обмотки, соединяемый с источником питания, называется генераторным и отмечается на приборах и схемах звездочкой. Зажим параллельной цепи, присоединяемый к проводу, соединенному с последовательной катушкой, также называется генераторным и отмечается звездочкой.

Таким образом, при правильной схеме включения ваттметра токи в катушках ваттметра направлены от генераторных зажимов к негенераторным. Могут иметь место две схемы включения ваттметра (см. рис. 2 и рис. 3).

Рис. 2. Правильная схема включения ваттметра

Рис. 3. Правильная схема включения ваттметра

В схеме, данной на рис. 2, ток последовательной обмотки ваттметра равен току приемников энергии, мощность которых измеряется, а параллельная цепь ваттметра находится под напряжением U» большим, чем напряжение приемников, на величину падения напряжения в последовательной катушке. Следовательно, Рв = IU» = I(U+U1) = IU = IU1 , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности последовательной обмотки ваттметра.

В схеме, данной на рис. 3, напряжение на параллельной цепи ваттметра равно напряжению на приемниках, а ток в последовательной обмотке больше тока, потребляемого приемником, на величину тока параллельной цепи ваттметра. Следовательно, P в = U(I+Iu) = UI+ UIu , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности параллельной цепи ваттметра.

При измерениях, в которых мощностью обмоток ваттметра можно пренебречь, предпочтительнее пользоваться схемой, показанной на рис. 2, так как обычно мощность последовательной обмотки меньше, чем параллельной, а следовательно, показания ваттметра будут более точными.

При точных измерениях необходимо вводить поправки в показания ваттметра, обусловленные мощностью его обмотки, и в таких случаях можно рекомендовать схему на рис.3, так как поправка легко вычисляется по формуле U 2 /Ru , где Ru обычно известно, а поправка остается неизменной при различных значениях тока, если U постоянно.

При включении ваттметра по схеме на рис. 2 потенциалы концов катушек разнятся только на величину падения напряжения в подвижной катушке, так как генераторные зажимы катушек соединены вместе. Падение напряжения в подвижной катушке незначительно по сравнению с напряжением на параллельной цепи, так как сопротивление этой катушки незначительно по сравнению с сопротивлением параллельной цепи.

Рис. 4. Неправильная схема включения ваттметра

На рис. 4 дана неправильная схема включения параллельной цепи ваттметра. Здесь генераторные зажимы катушек соединены через добавочное сопротивление, вследствие чего разность потенциалов между концами катушек равна напряжению цепи (иногда весьма значительному 240 — 600 В), а так как неподвижная и подвижная катушки находятся в непосредственной близости одна от другой, то создаются условия, благоприятные для пробоя изоляции катушек. Кроме того, между катушками, имеющими весьма различные потенциалы, будет наблюдаться электростатическое взаимодействие, могущее вызвать дополнительную погрешность при измерении мощности в электрической цепи.

Если ток нагрузки больше допустимого тока ваттметра, то токовую катушку ваттметра включают через измерительный трансформатор тока (рис. 1, а).

Рис. 1. Схемы включения ваттметра в цепь переменного тока с большим током (а) и в высоковольтную сеть (б).

При выборе трансформатора тока необходимо следить за тем, чтобы номинальный первичный ток трансформатора I 1и был равен измеряемому току в сети или больше него.

Например, если значение тока в нагрузке достигает 20 А, то можно брать трансформатор тока, рассчитанный на первичный номинальный ток 20 А с номинальным коэффициентом трансформации по току Kн1 = I 1и / I 2и = 20/5 = 4.

Если при этом в измерительной цепи напряжение меньше допустимого ваттметром, то катушку напряжения включают непосредственно на напряжение нагрузки. Начало катушки напряжения при помощи перемычки / подключают к началу токовой катушки. Так же обязательно устанавливают перемычку 2 (начало катушки подключают к сети). Конец катушки напряжения подключают к другому зажиму сети.

Для определения действительной мощности в измеряемой цепи необходимо показание ваттметра умножить на номинальный коэффициент трансформации трансформатора тока: P = Pw х Kн 1 = Pw х 4

Если ток в сети может превышать 20 А, то следует выбрать трансформатор тока с первичным номинальным током 50 А, при этом Kн 1 = 50/5 = 10.

В этом случае для определения значения мощности показания ваттметра надо умножать на 10.

Из выражения для мощности на постоянном токе Р = IU видно, что ее можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.

Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.

Электродинамические ваттметры выпускают в виде переносных приборов высоких классов точности (0,1 — 0,5) и используют для точных измерений мощности постоянного и переменного тока на промышленной и повышенной частоте (до 5000 Гц). Ферродинамические ваттметры чаще всего встречаются в виде щитовых приборов относительно низкого класса точности (1,5 — 2,5).

Применяют такие ваттметры главным образом на переменном токе промышленной частоты. На постоянном токе они имеют значительную погрешность, обусловленную гистерезисом сердечников.

Для измерения мощности на высоких частотах применяют термоэлектрические и электронные ваттметры, представляющие собой магнитоэлектрический измерительный механизм, снабженный преобразователем активной мощности в постоянный ток. В преобразователе мощности осуществляется операция умножения ui = р и получение сигнала на выходе, зависящего от произведения ui, т. е. от мощности.

На рис. 2, а показана возможность использования электродинамического измерительного механизма для построения ваттметра и измерения мощности.

Рис. 2. Схема включения ваттметра (а) и векторная диаграмма (б)

Неподвижная катушка 1, включаемая в цепь нагрузки последовательно, называется последовательной цепью ваттметра, подвижная катушка 2 (с добавочным резистором), включаемая параллельно нагрузке — параллельной цепью.

Для ваттметра, работающего на постоянном токе:

Рассмотрим работу электродинамического ваттметра на переменном токе. Векторная диаграмма рис. 2, б построена для индуктивного характера нагрузки. Вектор тока Iuпараллельной цепи отстает от вектора U на угол γ вследствие некоторой индуктивности подвижной катушки.

Из этого выражения следует, что ваттметр правильно измеряет мощность лишь в двух случаях: при γ = 0 и γ = φ.

Условие γ = 0 может быть достигнуто созданием резонанса напряжений в параллельной цепи, например включением конденсатора С соответствующей емкости, как это показано штриховой линией на рис. 1, а. Однако резонанс напряжений будет лишь при некоторой определенной частоте. С изменением частоты условие γ = 0 нарушается. При γ не равном 0 ваттметр измеряет мощность с погрешностью βy, которая носит название угловой погрешности.

При малом значении угла γ (γ обычно составляет не более 40 — 50″), относительная погрешность

При углах φ, близких к 90°, угловая погрешность может достигать больших значений.

Второй, специфической, погрешностью ваттметров является погрешность, обусловленная потреблением мощности его катушками.

При измерении мощности, потребляемой нагрузкой, возможны две схемы включения ваттметра, отличающиеся включением его параллельной цепи (рис. 3).

Рис. 3. Схемы включения параллельной обмотки ваттметра

Если не учитывать фазовых сдвигов между токами и напряжениями в катушках и считать нагрузку Н чисто активной, погрешности β(а) и β(б), обусловленные потреблением мощности катушками ваттметра, для схем рис. 3, а и б:

где Рi и Рu — соответственно мощность, потребляемая последовательной и параллельной цепью ваттметра.

Из формул для β(а) и β(б) видно, что погрешности могут иметь заметные значения лишь при измерениях мощности в маломощных цепях, т. е. когда Рi и Рu соизмеримы с Рн.

Если поменять знак только одного из токов, то изменится направление отклонения подвижной части ваттметра.

У ваттметра имеются две пары зажимов (последовательной и параллельной цепей), и в зависимости от их включения в цепь направление отклонения указателя может быть различным. Для правильного включения ваттметра один из каждой пары зажимов обозначается знаком «*» (звездочка) и называется «генераторным зажимом».

Контрольные вопросы:

1. Какую энергию измеряет ваттметр электродинамической системы?

2. Влияет ли величина нагрузки на схему включения ваттметра?

3. Как расширяют пределы измерения ваттметра на переменном токе?

4. Как определить мощность в цепи постоянного тока по результатам измерения силы тока и напряжения?

5. Как правильно включить ваттметр однофазного тока при измерении мощности в контролируемой цепи?

6. Как измерить полную мощность однофазного тока, пользуясь амперметром и вольтметром?

7. Как определить реактивную мощность схемы?

Одно из свойств, которое дает характеристику состояния электрической цепи – это мощность. Это свойство отражает значение работы, выполненное электрическим током за определенное время. Мощность оборудования, входящего в электрическую цепь, не должна выходить за рамки мощности сети. В противном случае оборудование может выйти из строя, возникнет замыкание или пожар.

Замеры мощности электрического тока производят специальными устройствами – ваттметры. В случае постоянного тока мощность вычисляется путем умножения напряжения на силу тока (нужен амперметр и вольтметр). В цепи переменного тока все происходит иначе, понадобятся измерительные приборы. Ваттметром измеряют режим работы электрооборудования, производят учет расхода электроэнергии.

Сфера использования

Основная сфера использования ваттметров – это отрасли промышленности в электроэнергетике, машиностроении, ремонта электрических устройств. Также часто применяют ваттметры и в быту. Их покупают специалисты по электронике, компьютерному оборудованию, радиолюбители – для расчета экономии потребления электрической энергии.

Ваттметры используют для:

Вычисления мощности устройств.
Проведения тестов электрических цепей, некоторых их участков.
Проведения испытаний электроустановок, в качестве индикаторов.
Проверка действия электрооборудования.
Учет потребления электроэнергии.

Разновидности

Сначала измеряется напряжение, затем сила тока, а потом на основе этих данных измеряется мощность. По методу измерения, преобразования параметров и выдачи результата ваттметры разделяются на цифровые и аналоговые виды.

Цифровые ваттметры производят измерение . На экран также выводятся напряжение, сила тока, потребление электричества за период времени. Параметры замеров выводятся на компьютер.

Аналоговый вариант ваттметра разделен на самопишущие и показывающие приборы. Они определяют активную мощность участка схемы. Экран ваттметра оснащен шкалой и стрелкой. Шкала отградуирована по делениям и величинам мощности, в ваттах.

Конструктивные особенности и принцип работы

Аналоговые типы ваттметров имеют широкое распространение, точное измерение, и являются устройствами электродинамической системы.

Принцип их действия основывается на взаимодействии между собой двух катушек. Одна катушка неподвижная, с толстым проводом обмотки, малым числом витков и небольшим сопротивлением. Она подключена по последовательной схеме с потребителем. Вторая катушка двигается. Ее обмотка состоит из тонкого проводника, имеющего значительное число витков, ее сопротивление большое. Она подключена по параллельной схеме с потребителем, снабжена дополнительным сопротивлением во избежание короткого замыкания обмоток.

При включении устройства в сеть, в обмотках возникают магнитные поля, взаимодействие которых образует момент вращения, отклоняющий двигающуюся обмотку с прикрепленной стрелкой, на расчетный угол. Значение угла зависит от произведения напряжения и силы тока в конкретный момент времени.

Главным принципом действия ваттметра цифрового типа является предварительный замер напряжения и силы тока. Для этих целей подключаются: по последовательной схеме к потребителю нагрузки – датчик тока, по параллельной схеме датчик напряжения. Эти датчики обычно изготавливаются из термисторов, термопар, измеряющих трансформаторов.

Мгновенные параметры измеренных напряжения и тока, путем преобразователя, поступают к внутреннему микропроцессору. В нем происходит вычисление мощности. На экране показывается результат информации, а также передается на внешние приборы.

Приборы электродинамического типа, которые имеют широкое применение, подходят для переменного и постоянного тока. Ваттметры индуктивного типа применяются только для переменного тока.

Рассмотрим некоторые варианты приборов (ваттметров) различных вариантов исполнения и различных фирм производителей.
Бытовые приборы китайского производства

В инструкции описаны все режимы работы этого устройства, технические характеристики.

По сути это прибор, измеряющий мощность различных электрических потребителей. Как он работает? Вставляете его в розетку, а в розетку этого прибора вставляете вилку потребителя, мощность которого вы хотите замерить. Этим прибором вы измерите мощность какого-либо потребителя в течение определенного времени и потом с помощью него вы можете даже рассчитать, например, сколько денег тратит за электроэнергию ваш холодильник или любой другой прибор.

В устройстве есть встроенный аккумулятор. Он нужен для запоминания мощности, которую вы замерили, и потом будете использовать для расчета цены. Передняя панель прибора имеет пять кнопок: переключение режимов, указатель цены, переключатель вверх-вниз, кнопка сброса, если прибор поймал какой-либо глюк. Сзади на корпусе указаны характеристики прибора:

Рабочее напряжение 230 вольт.
Частота 50 герц.
Максимальный ток 16 ампер.
Диапазон измеряемой мощности 0-3600 ватт.

Рассмотрим работу прибора. Вставляем его в розетку.

Включим в него настольную светодиодную лампу.

На дисплее сразу пошло время, в течение которого измеряется мощность потребителя, в данном случае лампы. 0,4 ватта – это мощность отключенной лампы. Включаем лампу, в рабочем режиме она потребляет 10,3 ватта. Цену за киловатт мы не указывали, поэтому там стоят нули.

У нас лампа может менять мощность света. При увеличении света лампы показания мощности увеличиваются. При включении второго режима вверху также показано время работы, во втором поле киловатт часы, так как прибор пока не проработал даже одного часа, то показаны нули. Внизу показано количество дней, в течение которых измерялся этот потребитель.

В следующем режиме во втором поле показано напряжение электросети, внизу показана частота тока. Вверху дисплея при всех режимах показывается время. При переходе на следующий режим в центре показывается сила тока. Внизу показывается параметр некоего фактора, о котором пока нет данных, так как производитель прибора китайский.

На пятом режиме показана мощность минимальная. На шестом режиме – максимальная мощность.

Интересно будет посмотреть показания этих режимов при работе компьютера. Например, в спящем режиме, при обычном открытом рабочем столе, либо при запуске мощной игры.

В следующем режиме устанавливается стоимость электроэнергии кнопками установки, для расчета стоимости расхода энергии. Так вы можете измерить и рассчитать потребление любого из домашних бытовых приборов и устройств, и будете знать, какие устройства у вас экономные, а какие слишком много потребляют электричества.

Такой прибор имеет невысокую стоимость, около 14 долларов. Это небольшая цена для того, чтобы оптимизировать ваши затраты, рассчитав мощность потребления ваших устройств.

Цифровой ваттметр многофункциональный СМ 3010

Прибор служит для проведения замера напряжения, частоты, мощности, постоянного и переменного тока с одной фазой. А также, предназначен для контроля подобных приборов с меньшей точностью.

Диапазон замеров тока 0,002 — 10 ампер.

Замеры напряжения:

Постоянного от 1 до 1000 вольт.
Переменного от 1 до 700 вольт.
Частота измеряется в интервале 40-5000 герц.

Погрешность измерения

Тока, напряжения, мощности постоянного тока + 0,1%.
Тока, напряжения, мощности переменного тока + 0,1% в интервале частот 40-1500 герц.
Относительная погрешность замера частоты в интервале 40-5000 герц + 0,003%.

Габариты корпуса прибора 225 х 100 х 205 мм. Вес 1 кг. Мощность потребления менее 5 ватт.

Измерительное устройство ЦП 8506 – 120

Служит для проведения замеров мощности активной и реактивной 3-фазной сети переменного тока, показывает текущее значение параметра мощности на индикаторе, преобразует в сигнал аналогового вида.

Произведенные замеры показываются в форме цифр на индикаторах в единицах величин, которые входят на устройство, либо на вход трансформатора тока или напряжения. При этом учитывается коэффициент трансформации. Цифровой дисплей разделен на четыре разряда.

Назначение устройства – для проведения замеров активной и реактивной мощностей в 3-фазных сетях электрического тока частотой 50 герц.

Технические данные

Коэффициент мощности – 1.
Размеры корпуса 120 х 120 х 150 мм.
Высота цифр на дисплее 20 мм.
Наибольший интервал показаний 9999.
Степень точности: 0,5.
Время проведения преобразования: менее 0,5 с.
Температура работы: от +5 до + 40 градусов.
Класс защиты корпуса и панели: IР 40.
Мощность потребления: 5 ватт.
Вес менее 1,2 кг.

Наличие двух катушек у электродинамического прибора и возможность включения их в две разные цепи позволяет использовать эти приборы для измерения мощности электрического тока, т. е. как ваттметры.

Из выражения для угла поворота подвижной системы электродинамического прибора (2.12) следует, что, если неподвижную катушку включить последовательно нагрузке z (рис. 2-12), а последовательно с подвижной катушкой включить добавочное сопротивление Яд так, чтобы эту катушку можно было включать параллельно нагрузке, тогда ток в подвижной катушке равен

где — сопротивление катушки; U — напряжение на нагрузке; — постоянная данного прибора по мощности; Р — мощность, потребляемая нагрузкой. Такой прибор называют ваттметром. Его шкала равномерная.

Для измерения электрической мощности в цепях переменного тока используют ваттметры активной и реактивной мощности.

Ваттметр активной мощности. Если в цепь подвижной катушки включить активное добавочное сопротивление так, чтобы общее сопротивление этой цепи R было равно

тогда при напряжении и в сети и при токе i в нагрузке

ток в подвижной катушке равен

Мгновенное значение вращающего момента в этом случае равно

а среднее за период значение этого момента

Следовательно, ваттметр с активным добавочным сопротивлением в цепи подвижной катушки измеряет активную мощность цепи переменного тока.

Полученный вывод имеет простое физическое объяснение. В самом деле, если в цепь с индуктивностью включить амперметр, вольтметр и ваттметр (рис. 2-13), то , так как подвижная система вольтметра поворачивается под действием только приложенного напряжения, независимо от фазы этого напряжения (точнее, под действием тока в катушке, пропорционального приложенному напряжению), а подвижная часть амперметра поворачивается под действием только тока в катушке, независимо от фазы этого тока. Что касается подвижной части (катушки) ваттметра, то она поворачивается только в том случае, когда токи в обеих катушках не равны нулю, иначе не будет взаимодействия. Но в рассматриваемой цепи ток подвижной катушки максимален, когда ток в цепи i равен нулю, и наоборот. Прибор ничего не покажет. Этого и следовало ожидать, так как нагрузка то запасает энергию в магнитном поле, то возвращает в сеть.

Из графика токов данной цепи с индуктивностью (рис. 2-14) следует, что токи совпадают по направлению (на графике — по одну сторону от оси времени) только в течение двух (через одну) четвертей периода за период, а в две другие четверти периода токи имеют противоположные направления. Это означает, что направление вращающего момента изменяется четыре раза за период. Поэтому подвижная система ваттметра в течение периода будет испытывать действие четырех одинаковых по значению, но противоположных по направлению толчков и прибор ничего не покажет, так как вращающий момент, действующий на подвижную систему, определяется его средним значением за период.

Если же угол сдвига между токами невелик (рис. 2-15), то в течение периода положительные значения вращающего момента сильно превосходят отрицательные (по времени и по значениям) и подвижная система ваттметра повернется под действием среднего

значения реагируя на активную мощность, потребляемую данной нагрузкой.

Итак, ваттметр показывает активную мощность, потребляемую из сети.

Ваттметр реактивной мощности. В этом ваттметре последовательно с подвижной катушкой специально включается индуктивное добавочное сопротивление (рис. 2-16) такое, что

Пусть в цепи действует приложенное напряжение и нагрузка создает ток

Тогда мгновенное значение вращающего момента равно

После подстановки и преобразований получим:

Среднее за период значение вращающего момента равно

Отсюда и следует, что ваттметр с индуктивным сопротивлением в цепи подвижной катушки показывает реактивную мощность цепи переменного тока. Такой вывод объясняется просто: в случае, например, чисто индуктивной нагрузки, когда из сети безвозвратно не потребляется энергия, такая схема искусственно сдвигает фазу тока в подвижной катушке до совпадения с фазой тока в неподвижной, поэтому ваттметр показывает значение реактивной мощности.

Итак, у электродинамического ваттметра две катушки: одна — токовая, включаемая последовательно нагрузке, другая- катушка напряжения, включаемая параллельно нагрузке, потребляемую мощность которой необходимо измерить.

Для правильного включения прибора (чтобы стрелка отклонялась в нужную сторону) один из зажимов его обмотки помечают звездочкой эти зажимы ваттметра называют генераторными. Их следует подключать к тому зажиму нагрузки, который соединен с генератором (сетью).

Ваттметры — Включение — Схема

Измерение мощности трехфазного тока с нулевым проводом при равномерной нагрузке фаз может быть произведено одним ваттметром, включенным по схеме фиг. 71. Его показания должны быть умножены на 3.  [c.373]

Мощность трехфазной цепи при нагрузке любого характера и отсутствии пулевой точки может быть измерена при помощи двух ваттметров, включенных по схеме Арона (фиг. 74). При углах сдвига фаз f[c.374]

В промышленных условиях испытания с целью определения характер.истик насоса производят следующим образом. С помощью двух ваттметров, включенных по схеме Арона, определяют мощность, потребляемую электродвигателем  [c.309]


Электрическая мощность, потребляемая электродвигателем компрессора, измерялась двумя ваттметрами, включенными по схеме Арона.  [c.135]

Мощность, подводимая к двигателю из сети, определялась по показаниям двух ваттметров, включенных по схеме Арона. Так как в схему были введены трансформатор тока с коэффициентом трансформации 40/5 и трансформатор напряжения с коэффициентом 6000/100, то результаты отсчетов по ваттметрам пересчитывались с учетом общего коэффициента трансформации. В табл. 17 приведены данные по расходу электроэнергии при разных давлениях нагнетания.  [c.165]

Наиболее точным способом поддержания требуемого os является спс-соб с применением однофазного ваттметра, вольтметра и амперметра, схема включения которых приведена на рис. 4.  [c.508]

Показание ваттметра, включенного по схеме рис. 5-12, равно  [c.206]

Из теории электростатического ваттметра [Л. 116] следует, что при его включении по схеме на рис. 5-48 мгновенный момент вращения его подвижной части равен  [c.261]

При этом методе мощность трехфазной цепи будет равна сумме показаний двух ваттметров. По этим же схемам (фиг. 187) строятся трехфазные ваттметры, которые представляют собой суммирующие приборы, состоящие из двух однофазных ваттметров, связанных механически, но самостоятельных в электрическом отношении и включенных по одной из указанных выше схем однофазных ваттметров (см. фиг. 183).  [c.235]

Измерение мощности в цепях переменного тока производится с помощью ваттметра. Схема включения ваттметра приведена на фиг. 22. Коэфициент мощности ( os (у) подсчитывается из выражения  [c.526]

Фиг. 70. Схема включения ваттметра в однофазную цепь.

При измерении мощности цепей переменного тока высокого напряжения включение обмоток ваттметров производится через измерительные трансформаторы. Например, схема Арона при высоком напряжении будет выглядеть так, как это показано на фир. 75.  [c.374]
Фиг. 75. Включение ваттметра по схеме Арона через измерительные трансформаторы.
Фиг. 74. Непосредственное включение двух ваттметров по схеме Арона.
Измерение активной энергии производится при помощи счетчиков, схемы включения которых ничем не отличаются от соответствующих схем включения ваттметров. приведенных на фиг. 70—75.  [c.374]

На фиг. 6 показана схема решающего устройства при компенсации влияния груза, помещенного в правую плоскость исправления на левый датчик. Переключатель позволяет включить правый датчик так, чтобы его напряжение было в противофазе с напряжением левого датчика. Потенциометр посредством которого вводится компенсирующее напряжение, включен таким образом, что при увеличении компенсирующего напряжения одновременно уменьшается подаваемое на ваттметр напряжение основного датчика. Переключатель Я2 позволяет изменить полярность включения прибора, т. е. выбрать режим работы на добавление или удаление балансировочных грузов. Потенциометр шунтирует прибор и служит для плавного регулирования чувствительности станка.  [c.404]

Мощность можно также измерить электродинамическим ваттметром, который имеет две катушки токовую (последовательную) и напряжения (параллельную). Схема включения ваттметра в измеряемую цепь показана на рис. 198, в.  [c.197]

Рис. 65. Схема включения ваттметра в однофазной цепи
Рис. 66. Схема включения ваттметра при доступной нулевой точке
Рис. 67. Схема включения ваттметра при недоступной нулевой точке
Рис. 4. Схема включения ваттметра, вольтметра и амперметра при контроле за os
Другие схемы включения ваттметра и фазометра см. Справочник электромонтажника, т. I.  [c.508]
Рис. 5-12. Схема включения ваттметра для определения полных потерь.
Рис. 5-29. Схема включения ваттметра в установке для измерения потерь на целых листах.
Армирование пластмасс 5 — 591 Арона схема включения ваттметра 2 — 374  [c.398] Опыт короткого замыкания проводится по схеме, изображенной на фиг. 150, б. При замыкании вторичного контура машины накоротко в сварочной цепи протекает очень большой ток, поэтому непосредственное включение токовой обмотки ваттметра обычно невозможно. В связи с этим прибор включается через трансформатор тока ТТ. При  [c.215]

При технич. И. вторыми членами, представляющими мощность, потребляемую самими приборами, можно пренебречь. Чтобы ваттметр давал отклонения в надлежащую сторону, необходимо при включении соблюдать полярность зажимов. У одного из зажимов последовательной обмотки и у одноименного с ним зажима ответвленной ставятся значки ( или ), к-рые показывают, что именно к этим зажимам д. б. подведены провода со стороны генератора. Зажимы эти часто называют генераторными. Если ваттметр имеет наружное отдельное добавочное сопротивление Я, то его следует включить по схеме фиг. 12, чтобы избежать большой разности потенциалов между обмотками ваттметра и электростатич. взаимодействия между ними. Первое может повести к повреждению прибора, второе вызывает погрешность показания. Когда по условиям опыта требуется изменить направление тока в ответвленной обмотке, следует переключать провода только на зажимах прибора, не менян местом доба-  [c.510]

Схемы включения счётчика электрической энергии ничем не отличаются от схем включения ваттметров.  [c.715]

Ваттметр, включенный в схему, измеряет сумму полных потерь в образце, помещенном в аппарат, и мощностей, потребляемых обмоткой вольтметра и вольтметровой обмоткой ваттметра.  [c.212]

Вестингауз, у которой катушка, упомянутая в п. 3, также является неподвижной, но она намагничивает железный подвин ной сердеч-ни1(, связанный со стрелкой и имеющий форму буквы 7. Эта катушка з включается параллельно в сеть (фиг. 41). Две неподвижные катушки, 2 и 2 (п. 2) сдвинуты в пространстве на угол 120 и включены в провода разных фаз последовательно с приемником (фиг. 42). В случае равномерной нагрузки сдвиг фаз в трехфазной цепи м. б. определен также и по показанию двух однофазных ваттметров, включенных по схеме Арона если обозначить 01 наибольшее из показаний двух ваттметров, а 2 — наименьшее, то  [c.517]

Ваттметрический метод определения полных потерь на гистерезис и вихревые токи [36]. Ваттметрический метод основан на измерении потерь мощности в трансформаторе с разомкнутой вторичной цепью (т. е. не потребляющий мощности), причем в качестве сердечника трансформатора используется испытуемый материала (аппарат Эпштейна). Принципиальная схема установки представлена на рис. 17.68. В четыре секции трансформатора П], Пг набирается образец из пластин, которые образуют магнитную цепь. В цепь первичной намагничивающей катушки щ включен амперметр А и токовая обмотка ваттметра в цепь вторичной обмотки трансформатора включены вольтметр V и обмотка напряжения ваттметра —1 2. Полные потери на гистерезис и вихревые токи Рт. в равны Р . в = ( — E 2lR2]wl w2, где Р — показания ваттметра  [c.317]

Рассмотрим, например, анализатор типа АГ-1, который служит для измерения амплитуды и фазы составляющих вибрации основной и двойной частоты вращения. Блок-схема прибора приведена на рис. 2-38. Источником опорного сигнала служит блок генераторов опорного напряжения, состоящий из ГОН-1 и ГОН-2. ГОН-1 соединяется с ротором непосредственно, а ГОН-2 — через редуктор с отношением 2 1. Таким образом, ротор ГОН-2 вращается с удвоенной угловой скоростью по отношению к испытуемому ротору. В качестве фазорегулятора используется сельсин типа СГСМ-1. Сигнал с ротора фазорегулятора через усилитель поступает на одну из обмоток ваттметра 1 . На его вторую обмотку подается через усилитель Уз полигармоническое напряжение от вибродатчика ВД, пропорциональное вибрации. Отклонение ваттметра в зависимости от включения ГОН-1 или ГОН-2 пропорционально амплитуде первой или второй гармонической составляющей вибрации  [c.93]


В общем случае потерн измеряемого и эталонного образцов могут быть иеодииаковыми, поэтому при включении тока в схему стрелка дифференциального ваттметра отклонится на некоторое число делегшй.  [c.214]

Вариации показаний 4 — 4 Ваттметры — Включение — Схема 2 — 373, 374 Вайерштрасса признак 1 — 177 Вектор-функцни линейные 1 — 236 Векторная алгебра 1 — 226 Векторно-векторное произведение 1 — 229  [c.403]

И. активной мощности в треу-фазной цепи осуществляются следующими методами, а) Метод одного ваттметра применяется только при полной симметрии цепи. Если нейтральная точка доступна, включение производят по фиг. 18, а. Мощность Р = 3 Р , где Р — показание ваттметра. Если же нейтральная точка недоступна или приемник соединен тр-ком, ваттметр включают по фиг. 18,6. Сопротивления г д. б. безиндукционными и равными друг другу и сопротивлению ответвленной цепи ваттметра т- . Полная мощность и в этом случае Р = 3 Р . Ваттметр д. б. электродинамическим. б) М е т о д двух ваттметров (метод Арона) позволяет измерять полную мощность как при симметричной, так и при несимметричной системе и при любом соединении приемника или генератора. Метод отот неприменим для четырехпроводной цепи. Ваттметры включают по схеме фиг. 19. Мощность трехфазной цепи в этом случае равна алгебраич. сумме показаний обоих ваттметров, причем  [c.511]

Для И. реактивной мощности трехфазной цепи существует много методов и различных схем включения ваттметров. а) Способ двух ваттметров с измененной схемой включения (ваттметры обычной активной мощности) применяется только при полной симметрии токов и напряжений (фиг. 24). Реактивная мощность равна алгебраич. сумме показаний обоих ваттметров (как и  [c.512]

И. угла сдвига фаз. 1. Одно-фа з н ы й ток. Наиболее простым и точным способом измерения угла сдвига фаз между током и напрн/кением в однофазном токе является измерение при помощи фазометра, схема включения которого вполне аналогична со схемой включения ваттметра (фиг. 12). Конструкции однофазных фазометров весьма разнообразны. Характерными чертами, присущими всем этим конструкциям, являются 1) отсутствие механического противодействующего момента, 2) наличие двух пространственно сдвинутых катушек, по к-рым проходят токи, сдвинутые по фазе во времени и создающие т. о. вращающееся магнитное поле, 3) наличие третьей катушки с током, фазу к-рого необходимо измерить. Подвижную часть составляют либо указанные в п. 2 скрещенные катушки (в таком случае катушка п. 3 остается неподвижной) либо, наоборот, катушка, указанная в п. 3 (тогда катушки п. 2 остаются неподвижными). Сдвиг фаз токов, идущих по катушкам 2, создается  [c.516]


Как работает ваттметр? — Wira Electrical

На этот раз мы попытаемся понять принцип работы ваттметра.

Некоторые ваттметры не имеют катушек; рассматриваемый здесь ваттметр относится к электромагнитному типу.

Обязательно сначала прочтите, что такое цепь переменного тока.

Измерение мощности ваттметром

Средняя мощность, потребляемая нагрузкой, измеряется прибором, который называется ваттметром .

Ваттметр — это прибор, используемый для измерения средней мощности.

На рисунке (1) показан ваттметр, который состоит по существу из двух катушек: катушки тока и катушки напряжения.

Токовая катушка с очень низким импедансом (в идеале бесконечным) подключается параллельно нагрузке, как показано на рисунке (2), и реагирует на напряжение нагрузки.

Рис. 1. Ваттметр

Катушка тока действует как короткое замыкание из-за ее низкого импеданса; катушка напряжения ведет себя как разомкнутая цепь из-за своего высокого импеданса.

В результате наличие ваттметра не нарушает цепь и не влияет на измерение мощности.

Рис. 2. Ваттметр, подключенный к нагрузке

Когда две катушки находятся под напряжением, механическая инерция подвижной системы создает угол отклонения, который пропорционален среднему значению продукт v (t) i (t) .

Если ток и напряжение нагрузки равны v (t) = V m cos (ωt + θ v ) и i (t) = I m cos (ωt + θ i ), их соответствующие среднеквадратичные векторы равны

, а ваттметр измеряет среднюю мощность, заданную как

, как показано на рисунке.(2) каждая катушка ваттметра имеет две клеммы с маркировкой ±.

Для обеспечения отклонения по шкале, клемма ± токовой катушки направлена ​​к источнику, в то время как клемма ± катушки напряжения подключена к той же линии, что и токовая катушка.

Переключение обоих соединений катушек в обратном направлении все равно приводит к высокому отклонению.

Однако реверсирование одной катушки, а не другой, приводит к уменьшению отклонения и отсутствию показаний ваттметра.

Этот ваттметр также можно использовать для измерения трехфазной мощности.

Как работает ваттметр Пример

Найдите показания ваттметра для схемы на рисунке. (3)

Рисунок 3

Решение:
на рисунке. ( 3), ваттметр считывает среднюю мощность, потребляемую импедансом (8 — j6) Ом, поскольку токовая катушка включена последовательно с импедансом, а катушка напряжения — параллельно ему. Ток в цепи равен

Напряжение на импедансе (8 — j6) Ом составляет

Комплексная мощность составляет

Ваттметр показывает

RF Основы аналогового ваттметра | Telewave, Inc.

Ваттметры используются в различных приложениях для измерения и отладки электрических цепей. Например, они могут проверить потребляемую мощность электроприборов. Ваттметры RF — это устройства, которые измеряют мощность (ватт) в цепи или системе, такой как опора передачи. Помимо передаваемой мощности, они также измеряют отраженную мощность, по которой легко рассчитывается КСВН. Это позволяет устранять неисправности в полевых условиях. В зависимости от выбранной шкалы ВЧ-ваттметры могут тестировать мощные линии передачи или настраивать маломощные портативные устройства.

Самый простой тип аналогового ваттметра основан на аналоговом измерителе тока (сердце всех аналоговых измерителей сопротивления, напряжения и тока), с учетом того, что мощность пропорциональна квадрату тока. Подвижная катушка с проволокой (катушка потенциала или напряжения), подвешенная своей осью под девяносто градусов к неподвижной катушке (катушка тока), действует против спиральной пружины с известной постоянной. Катушка тока подключена последовательно со схемой, а катушка напряжения — параллельно.

Когда ток пропускается в измеритель, он генерирует электромагнитное поле вокруг токовой катушки, которое создает крутящий момент, пропорциональный силе тока. Катушка напряжения пытается повернуться так, чтобы выровняться с осью катушки тока, но останавливается, когда электрический крутящий момент равен крутящему моменту пружины. Более сильный сигнал вызовет большее движение (большее сжатие пружины), более слабый сигнал — меньшее движение. В аналоговом ваттметре к катушке напряжения прикреплена игла, которая перемещается по шкале, когда катушка напряжения движется, чтобы указать, сколько мощности в ваттах проходит через цепь.

Аналоговые измерители обеспечивают визуальную индикацию там, где легко увидеть незначительные изменения. При настройке схемы гораздо легче наблюдать за движением стрелки, указывающим на изменение отраженной мощности, чем концентрироваться на цифровом считывании.

Пружина в измерителе имеет фиксированную константу, и ее трудно измерить в широком диапазоне уровней мощности. Однако величину электрического момента можно контролировать для заданного уровня сигнала. Могут быть предоставлены несколько полномасштабных настроек, что позволяет использовать один измеритель во многих приложениях.

На радиочастотах добавлен выпрямитель для преобразования радиочастотной энергии в измеряемое постоянное напряжение, которое, в свою очередь, подается на аналоговый измеритель в качестве постоянного тока для отклонения стрелки. Разветвитель используется для отбора мощности от основной линии. Используя двунаправленный ответвитель, аналоговый ваттметр Telewave, 44A, позволяет пользователю независимо смотреть на падающую и отраженную мощность, с небольшими потерями в основной мощности.

Диоды могут работать только с диапазоном мощности; если диапазон будет превышен, диод будет поврежден.Используя регулируемые аттенюаторы с механической коммутацией на связанных портах, диоды детектора могут безопасно «видеть» дискретизированные сигналы, которые находятся на -20 дБ, -30 дБ, -40 дБ… ниже основной линии. Эти регулируемые аттенюаторы позволяют измерителю иметь выбираемый полный диапазон шкалы. Высокое затухание используется для большой мощности, низкое затухание — для малой мощности. Аттенюаторы должны быть рассчитаны на наихудшую мощность, которая может рассеиваться при максимальной номинальной мощности аналогового ваттметра.

Существуют и другие методы изменения диапазона мощности, которую может измерять ваттметр.Если у измерителя есть токовая катушка и две катушки напряжения, две катушки напряжения могут быть соединены последовательно или параллельно изменяют диапазоны ваттметра. Или пространство, доступное для движения катушки напряжения, может быть изменено, чтобы изменить диапазон измерителя.

Как фактор мощности участвует в показаниях ваттметра?

Этот вид ваттметра не работает напрямую от коэффициента мощности. Он усредняет мгновенное напряжение, умноженное на ток. Сила на игле пропорциональна напряжению, умноженному на ток, который представляет собой мгновенную мощность.Пружина заставляет иглу линейно отклоняться под действием приложенной силы. Инерция стрелки усредняет мгновенное произведение тока и напряжения, поэтому показывает среднюю реальную мощность.

Если напряжение и ток не совпадают по фазе друг с другом на 90 ° (коэффициент мощности = 0), то мощность будет положительной в течение половины цикла и отрицательной в течение половины цикла. Если измеритель предназначен для нормальных частот линии электропередачи, то механический механизм не будет реагировать на отдельные полупериоды 50 или 60 Гц, а покажет вам отфильтрованную мощность нижних частот со значительно большей постоянной времени, чем отдельные циклы мощности.При коэффициенте мощности 0 это среднее значение будет равно 0, и счетчик покажет 0.

Если вы измеряете отдельно среднеквадратичное значение напряжения и тока, а затем умножаете их, вы получаете значение ВА (величина мощности, включая действительную и мнимую части). Вы можете взять реальную мощность, показанную измерителем, и разделить ее на значение ВА, чтобы получить коэффициент мощности.

Итак, опять же, этот измеритель не имеет прямого отношения к коэффициенту мощности. Он измеряет реальную мощность, возвращаясь к основным принципам, и независимо от того, являются ли сигналы напряжения и тока синусами или нет.

Кстати, электросчетчик в вашем доме работает по такому же основному принципу. Вместо того, чтобы отклонять иглу от пружины, сила между катушками напряжения и тока заставляет небольшой двигатель вращаться. Общее количество оборотов — это интеграл от мощности по времени, или от общей переданной энергии. Ряд шестеренок вращает различные маркированные циферблаты, чтобы этот интеграл можно было накапливать и отображать, чтобы счетчик мог считывать итоговую сумму каждый месяц. Более новые счетчики автоматически отправляют накопленные показания в энергокомпанию через различные средства связи.

Использование счетчиков для измерения простых цепей — Базовое электричество

Электричество — это то, чего нельзя увидеть. Мы можем только увидеть последствия этого.

Когда цепь работает неправильно, очень трудно посмотреть на нее и обнаружить, что не так.

Счетчики используются для измерения воздействия электричества. Измерители — это точные инструменты, которые можно легко повредить, поэтому необходимо соблюдать определенные меры предосторожности:

  • Избегайте ударов и вибрации.
  • Следует учитывать температуру, влажность и пыль.
  • Магнитные поля: Магнитное поле лотка может привести к неточным показаниям.

Меры предосторожности при использовании расходомеров

Соблюдайте следующие меры предосторожности:

  • Никогда не используйте омметр в цепи под напряжением, потому что омметр является собственным источником питания. В лучшем случае вы получите неточные показания, в худшем — повредите счетчик или вы сами.
  • Подсоедините прибор к источнику питания. Если вы работаете с постоянным током, используйте измеритель постоянного тока; при работе с переменным током используйте измеритель переменного тока.
  • При работе с любым измерителем постоянного тока всегда соблюдайте правильную полярность при подключении его к цепи.
  • Убедитесь, что счетчик сориентирован правильно для считывания. Некоторые предназначены для чтения сидя, а другие — в положении лежа.
  • Считайте показания счетчика, глядя прямо на него, чтобы избежать ошибки параллакса.
  • Когда закончите со счетчиком, выключите его.

Вольтметры

Рисунок 21. Вольтметр

Вольтметры — это гигантские резисторы, которые потребляют минимальный ток от источника.Вольтметры предназначены для измерения разности потенциалов между двумя точками.

Счетчик должен быть подключен параллельно нагрузке.

Рекомендуется сначала проверить вольтметр на известной цепи.

Амперметры

Рисунок 22. Прикладной амперметр

Амперметры имеют низкое сопротивление, поэтому они не добавляют нежелательного сопротивления в цепь.

Подключите амперметр последовательно к цепи. При параллельном подключении это может вызвать короткое замыкание и перегореть предохранитель в счетчике.

Ваттметры

Рисунок 23. Ваттметр

Ваттметр имеет четыре измерительных провода. Два для тока и два для напряжения.

Мощность — это произведение напряжения и тока, поэтому ваттметр измеряет влияние обоих факторов и умножает их, чтобы получить мощность.

Подключите катушку напряжения параллельно нагрузке.

Подключите токовую катушку последовательно с нагрузкой.

Не превышайте номинальную мощность счетчика.

Омметры

Рисунок 24. Изображение омметра, сделанное Ханнесом Грёбе. Используется по лицензии Creative Commons Attribution-Share Alike 3.0 Unported.

Омметры используются для измерения сопротивления. У них есть собственный источник ЭДС (аккумулятор), и их нельзя использовать в цепи под напряжением.

Шкала на большинстве омметров показывает обратную сторону от других измерителей. Справа находится ноль, а слева — бесконечность.

Многие омметры имеют настройку нуля. Всегда обнуляйте глюкометр перед использованием.Сделайте это, закоротив два провода вместе.

Безопасность электрического счетчика

Видео ниже объясняет, как не все электрические счетчики созданы равными. Убедитесь, что вы понимаете характеристики своего глюкометра и понимаете, в каких ситуациях его можно использовать.

Атрибуция

НАЗАД НА ВЕРХ

Измерение трехфазной мощности: метод трех ваттметров

Измерение мощности в цепи переменного тока измеряется с помощью ваттметра.Ваттметр — это прибор, который состоит из двух катушек, называемых Токовая катушка и Потенциальная катушка.

Токовая катушка с низким сопротивлением подключена последовательно с нагрузкой, так что по ней проходит ток нагрузки.

Катушка потенциала, имеющая сопротивление, подключена к нагрузке и пропускает ток, пропорциональный разности потенциалов.

Для измерения мощности в трехфазной или многофазной системе требуется более одного ваттметра, или один ваттметр снимает более одного показания.Если для измерения подключено более одного ваттметра, процесс становится удобным и простым в работе вместо снятия различных показаний одним ваттметром.

Количество ваттметров, необходимых для измерения мощности в данной многофазной системе, определяется теоремой Блонделя.

Согласно теореме Блонделя — Когда питание подается по системе переменного тока с проводом K, количество ваттметров, необходимых для измерения мощности, на единицу меньше количества проводов, то есть (K-I), независимо от того, что нагрузка сбалансирована или несимметрична.

Следовательно, три ваттметра требуются для измерения мощности в трехфазной четырехпроводной системе, тогда как только два ваттметра требуются для измерения мощности в трехфазной трехпроводной системе. В этой статье обсуждается метод измерения мощности с использованием трех ваттметров.

Трехваттметровый метод измерения трехфазной мощности

Метод трех ваттметров используется для измерения мощности в трехфазной четырехпроводной системе. Однако этот метод также можно использовать в трехфазной трехпроводной нагрузке, подключенной по схеме «треугольник», где мощность, потребляемая каждой нагрузкой, должна определяться отдельно.

Подключение нагрузок, подключенных звездой, для измерения мощности методом трех ваттметров показано ниже:

Катушка давления всех трех ваттметров, а именно W 1 , W 2 и W 3 , подключена к общей клемме, известной как нейтральная точка . Произведение фазного тока и линейного напряжения представляет собой фазную мощность и регистрируется отдельным ваттметром.

Полная мощность в методе измерения мощности трех ваттметров определяется как алгебраическая сумма показаний трех ваттметров.т.е.

Где,

W 1 = V 1 I 1

Вт 2 = В 2 I 2

Вт 3 = V 3 I 3

За исключением трехфазной, четырехпроводной несимметричной нагрузки, трехфазную мощность можно измерить только с помощью метода двух ваттметров.

См. Также: Метод измерения мощности с помощью двух ваттметров

Как работает ваттметр?

Ваттметр выполняет сложную работу, измеряя мощность, протекающую через электрическую цепь.Он одновременно измеряет значения напряжения и тока и умножает их, чтобы получить мощность в ваттах. Три основных типа — электродинамический, электронный и цифровой.

Электродинамические

Электродинамические ваттметры — это конструкция, которая восходит к началу 20 века. Они работают с использованием трех катушек: две закреплены последовательно с электрической нагрузкой, а подвижная катушка — параллельно ей. Последовательные катушки измеряют ток, протекающий по цепи, параллельная катушка измеряет напряжение.Последовательный резистор ограничивает ток через подвижную катушку. Он расположен между двумя неподвижными катушками и прикреплен к стрелке индикатора. Магнитные поля во всех трех катушках влияют на движение стрелки. Пружина возвращает иглу в нулевое положение при отсутствии напряжения или тока. Эта конструкция проста, надежна и прочна, хотя катушки могут перегреваться.

Электронный

Людям, использующим радио и микроволновое оборудование, необходимо измерять мощность в ваттах на частотах, намного превышающих 60 герц в электросети.Электродинамические ваттметры подходят для измерений в линиях электропередач переменного тока, но катушки — это частотно-зависимые части, которые не работают для радио. Для радио нужен полностью электронный подход. Здесь электронная схема измеряет ток и напряжение, умножает их в другой цепи и выдает результат в виде пропорционального тока или напряжения стандартному перемещению измерителя.

Цифровой

Цифровые ваттметры измеряют ток и напряжение электронным способом тысячи раз в секунду, умножая результаты в компьютерном чипе для определения ватт.Компьютер также может выполнять статистику, такую ​​как пиковая, средняя, ​​низкая потребляемая мощность и киловатт-часы. Они могут контролировать линию электропередачи на предмет скачков напряжения и отключений. В 2009 году потребителям стали доступны различные недорогие цифровые ваттметры. С падением цен и улучшенными возможностями цифровой электроники они стали популярными для удобного измерения энергопотребления в бытовых приборах с целью экономии энергии и денег.

Ваттметр (простой измеритель мощности переменного тока)

Ваттметр (простой измеритель мощности переменного тока)

Введение: Ваттметр — важный измерительный прибор.Это позволяет измерить истинную электрическую мощность (мощность). Определить истинную мощность в цепях переменного тока невозможно простым умножением действующего значения напряжения и тока, поскольку коэффициент мощности часто не равен 1. Вы должны использовать счетчик, который непрерывно измеряет мгновенный ток и напряжение, умножает их и выдает среднее значение. Это делают аналоговые электромеханические устройства. с помощью катушки тока (сплошной) и катушки напряжения (подвижной, с прикрепленной к ней иглой). Магнитная сила, действующая между катушками, равна произведению магнитных полей.Усреднение достигается за счет импульса системы. Традиционные ваттметры с аналоговой шкалой не очень точны и обычно имеют низкий полезный диапазон измерения.
Теория электронного ваттметра: Я решил сделать это твердотельным способом — построить электронный измеритель мощности с аналоговой обработкой и цифровым считыванием. Дисплей снабжен цифровым мультиметром, который сейчас можно купить менее чем за 100 крон (примерно 4 доллара США), поэтому нет смысла строить свой собственный. цифровой вольтметр.Также можно использовать панельный цифровой вольтметр или даже аналоговый измеритель. Непосредственное напряжение измеряется с помощью делителя напряжения. Ток измеряется шунтом. Затем напряжение и ток умножаются аналоговым умножителем AD633. Выход обеспечивает напряжение, пропорциональное мгновенной мощности. Для получения средней мощности необходимо отфильтровать сигнал с помощью RC-фильтра.
Самая большая проблема в этой конструкции — создание произведения двух аналоговых напряжений.Это не так просто может показаться. Есть возможность умножения с использованием операционных усилителей и переходов дискретных диодов или транзисторов, имеющих экспоненциальную характеристику. Их принцип состоит в том, чтобы логарифмировать оба сигнала, складывать их и, наконец, делать логарифмы. Точность не очень хорошая, есть проблемы с калибровкой, огромная температурная зависимость и различия между отдельными частями транзисторов или диодов. Поэтому я отказался от этого варианта. Другой вариант — с использованием широтно-импульсных умножителей, но это решение тоже весьма своеобразно.Еще больше сложностей возникает, когда надо работать с обеими полярностями тока и напряжения (4 квадранта). Поэтому я решил использовать специализированную интегральную схему AD633 (AD633JN в классическом корпусе THT DIP8) — четырехквадрантный аналоговый умножитель с дифференциальными входами и точностью 2%. Для получения дополнительной информации см. Техническое описание AD633. Обратите внимание, что версия SMD имеет другую распиновку! Выходное напряжение определяется формулой:
w = (x2-x1) * (y1-y2): 10V + z
Хотел попробовать микросхему MPY634 с точностью до 0.5%, но найти не удалось. Максимальный диапазон входного и выходного напряжения, при котором работает схема AD633, составляет +/- 10В. Это должно соответствовать обоим входным напряжениям. Схема должна быть рассчитана на амплитуду тока и напряжения, а не только на действующее значение. Для сети 230 В надо работать с пиком 325В, а не только 230В. Соотношение делителей 1:40 кажется лучшим. Это позволяет работать с пиковым напряжением до 400 В. Напряжение шунта ниже, чем напряжение делителя напряжения, поэтому подключается ко входу Y, который имеет лучшую точность.
Простая схема ваттметра: Рис. 1 представляет собой простейшую конструкцию измерителя мощности (ваттметра) с AD633 и одного диапазона. Ток измеряется шунтом. Если нам требуется преобразование выходного сигнала 1 мВ / 1 Вт, значение шунта должно быть 0R4 (0,4 Ом). Максимальный среднеквадратичный ток через измеритель определяется максимально допустимой рассеиваемой мощностью шунта. Для шунта 0,4 Ом 40 Вт максимальный непрерывный ток составляет 10 А. Максимальная измеренная мощность составляет 2300 Вт для идеальной резистивной нагрузки, для разных нагрузок она должна быть ниже.Еще одно ограничение — максимальное входное напряжение умножителя (10 В), поэтому максимальный пиковый ток должен быть ниже 25 А. Калибровка выполняется путем установки P1 в соответствии с известной нагрузкой. Сумма значений P1 и R1 будет около 390k, а коэффициент деления будет 1:40. Если вы не можете установить правильное значение с помощью P1, измените значение R1. Входы умножителя защищены от перенапряжения стабилитронами 12 В. Напряжение питания (+/- 15 В) получается с помощью емкостного капельницы и двух стабилитронов на 15 В.В сочетании с мультиметром с разрешением 0,1 мВ вы получите ваттметр с разрешением 0,1 Вт. Мы будем использовать Диапазоны 200 мВ, 2 В и, возможно, 20 В, где мощность отображается непосредственно в ваттах (1 мВ = 1 Вт) или киловаттах (1 В = 1 кВт).

Предупреждение! Вся цепь, включая выход мультиметра (вольтметра), электрически подключена к сетевому напряжению, что смертельно опасно.С этим следует обращаться соответственно. Для снижения риска возгорания следует использовать предохранитель или автоматический выключатель. Вы все делаете на свой страх и риск. Я не несу ответственности за причиненный вам вред.



Рис.1 — Схема простого ваттметра


AD633JN в корпусе DIP8.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *