Site Loader

Содержание

Как сделать выпрямитель и простейший блок питания | Элементарно

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Выпрямитель 12в своими руками — Морской флот

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей – всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.

Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.

Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики – с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

Мощный выпрямитель на 12 вольт

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

Выпрямитель – это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения – амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов

.

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью – Как устроен компьютерный блок питания.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Попал ко мне в руки блок питания с пассивным охлаждением и на привычные многим пользователям 12 Вольт, потому надеюсь, что обзор будет полезен пользователям принтеров и граверов.

Почему мне нравится ковырять блоки питания особо расписывать смысла нет, а вот почему именно 12 Вольт, напишу.

Так уж сложилось, но блоки питания с выходным напряжением в 12 Вольт являются одними из самых популярных наряду с 5 Вольт и 19 Вольт.

5 Вольт используется для питания небольших устройств, но больше популярности добавило то, что такое же напряжение дает порт USB, потому и начали ‘плодиться’ такие БП.

19 Вольт используются в ноутбуках, а также такие БП используются энтузиастами радиолюбителями для разного рода паяльных станций и усилителей, в основном из-за приемлемой мощности и компактности.

Ну а 12 Вольт просто для начала является безопасным напряжением и при этом позволяет передавать довольно большую мощность. Конечно на мой взгляд зачастую его можно (а иногда и нужно) на 24 Вольта, но это напряжение больше используется в промышленных устройствах.

В быту же от 12 Вольт можно питать получившие распространение светодиодные ленты для декоративной подсветки и освещения, от 12 Вольт питаются также системы видеонаблюдения, иногда небольшие компьютеры, а также разные граверы, 3D принтеры и т.п.

Вообще у меня в планах сделать несколько обзоров подобных БП, но с разной мощностью и сегодня ко мне на стол попал блок питания на 240 Ватт с пассивной системой охлаждения.

На данный момент распространенные безвентиляторные БП имеют мощность до 240-300 Ватт, причем вторые встречаются куда реже и я бы скорее сказал, что 240 Ватт это уже почти максимум.

На этом я закончу краткое вступление и перейду к предмету обзора. Блок питания был куплен здесь, вышел в итоге около 17 долларов.

БП в привычном металлическом корпусе, думаю многие видели подобные решения в продаже.

Упакован был в обычную белую коробку, на фото она не попала, да и не особо там есть на что смотреть.

Справа от клеммника приютился подстроечный резистор и светодиод индикации включения блока питания.

Заявленные параметры – 12 Вольт 20 Ампер, реальный производитель неизвестен, маркировка стандартна для многих недорогих БП – S-240-12

Сбоку находится переключатель входного напряжения 110/200 Вольт, лучше перед первым включением проверить что он находится в правильном положении.

Дата выпуска конец 2016 года, так что БП можно сказать, свежий.

Для начала измеряем что на выходе у БП настроено.

Выставлено 12.3 Вольта, диапазон регулировки 10-14.5 Вольта. после проверки выставил что-то близкое к 12 Вольт.

А внутри блок питания ничем не отличается от других, подобных недорогих блоков.

Мне он сходу напомнил блок питания на 48 Вольт 240 Ватт я бы даже сказал что они один в один.

Даже наверное не так, фактически это тот же БП, просто на другое напряжение, потому я в самом начале и написал, что реальный производитель неизвестен.

Классический осмотр начинки.

1. Входной фильтр, присутствует, хотя и не в полном объеме, отсутствует конденсатор после дросселя и варистор. К сожалению это черта подавляющего большинства китайских БП.

2. Помехоподавляющие конденсаторы в опасной цепи – Y1, в менее опасной, обычный высоковольтный, можно сказать что нормально.

3. Входной диодный мост установлен с запасом, 8 Ампер 1000 Вольт, но радиатор отсутствует. В предыдущем варианте диодный мост был на 20 Ампер.

Также рядом видны два термистора, включенные параллельно.

4. Входные конденсаторы Rubicong закос под Rubicon, если бы еще параметры соответствовали заявленным, но об этом позже.

5. Пара высоковольтных транзисторов прижатых к алюминиевому корпусу, который работает как радиатор.

6. Силовой трансформатор явно промаркирован как 240 Ватт 12 Вольт. На вид довольно неплох, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе. Я не скажу что это плохо, но более именитые производители уже гораздо реже делают БП на базе TL494.

По своему это имеет свои плюсы, ремонт такого БП довольно прост, комплектующие есть везде, да и документации по ним очень много.

1. Выходной дроссель при вполне нормальных габаритах намотан всего в два провода, причем сечение провода сопоставимо с тем, что использовалось в БП 48 Вольт.

2. Выходные конденсаторы имеют заявленную емкость в 2200мкФ, производитель также неизвестен, впрочем я и не ожидал здесь увидеть конденсаторы от Nichicon или хотя бы Samwha.

3,4. А вот момент с прижимом силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие нарекания по поводу крепежа диодной сборки. В данном случае все в принципе нормально. Можно немного попридираться к прижиму транзисторов (слева), но практика показала, что все в порядке.

Высоковольтные транзисторы применены с запасом, можно не беспокоиться. К тому же корпус TO247, в котором они выполнены, улучшает отвод тепла на радиатор.

Выходная диодная сборка MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к применению высоковольтных диодов Шоттки, так как у них уже нет преимущества перед обычными в плане падения напряжения, но остается преимущество в большей скорости переключения, т.е. динамические потери меньше.

Но один неприятный момент я все таки нашел. Один из силовых контактов не очень хорошо пропаян. Можно конечно сказать, что там по три контакта на полюс, но ведь может так попасть, что он как раз окажется нагруженным. Собственно потому я всегда советую при покупке блоков питания проверять как они собраны. Хотя нет, корректнее сказать – при покупке недорогих блоков питания всегда проверять качество сборки.

На плате присутствует не совсем понятная мне маркировка, очень похоже, что плата рассчитана под БП мощностью до 365 Ватт, но это уже скорее с активным охлаждением (на плате есть место под разъем вентилятора, но сам разъем и необходимые компоненты отсутствуют).

Попутно измерил емкость конденсаторов.

Входные имеют суммарную емкость 166мкФ (два по 330 соединенные последовательно), хотя указано 470мкФ (соответственно суммарная 235), маловато для мощности в 240 Ватт.

Выходные в сумме дают около 6600, соответственно как указано 2200х3. Здесь вопросов нет, для блоков питания с подобными характеристиками это нормально, даже для фирменных. Правда в фирменных блоках питания стоит более качественные конденсаторы.

Вот теперь можно проводить тесты.

В качестве тестового стенда использовались

1. Режим холостого хода.

2. Нагрузка 5 Ампер, пульсации около 50мВ

1. Нагрузка 10 Ампер, напряжение лишь немного просело, пульсации остались на прежнем уровне

2. Нагрузка 15 Ампер, практически без изменений

1. 20 Ампер, напряжение просело всего на 70мВ, уровень пульсация практически не отличается от предыдущих тестов и составляет 60мВ

2. В качестве дополнительного теста на нагрев я решил поднять выходное напряжение до 12.55 Вольта и погонять БП еще минут 15. Выходная мощность БП при этом была около 250 Ватт.

Как видно по фото, это практически никак не сказалось на результате.

В прошлом обзоре я был так удивлен качеством работы блока питания, что даже проводил тесты с полуторакратной перегрузкой. С БП мощностью 240 Ватт я снял 360 и только тогда начал откровенно волноваться по поводу перегрева.

Но в данном случае все немного печальнее. Для начала фото с тепловизора, снятое в самом конце теста при мощности 250 Ватт.

Самый горячий элемент – выходной дроссель, впрочем такая же картина была и при тесте БП 48 Вольт. Но как я тогда писал, на самом деле материал из которого изготовлен этот дроссель, не боится таких температур, ограничением является стойкость изоляции провода, которым он намотан.

Для компании сфотографировал нагрузочные резисторы, на которых рассеивалось всего около 50 Ватт. Электронная нагрузка при этом брала на себя около 200 Ватт, у нее температура радиаторов была 61 градус.

Как и раньше, я свел все данные в одну табличку.

Тестирование проходило при комнатной температуре, БП лежал горизонтально на столе, что несколько ухудшало тепловой режим, в вертикальном положении он охлаждался бы лучше.

Каждый этап длился 20 минут, затем шел замер температуры и повышение тока на одну ступень.

Последний этап был проведен как дополнительный и занял 15 минут, итого в сумме 20+20+20+20+15= 1ч 35мин.

Результаты заметно выше чем у БП на 48 Вольт, но я бы сказал что вполне терпимые. Самый нежный элемент – силовой трансформатор, не перегревается.

Как-то в комментариях затронули тему низкого КПД таких блоков питания и мне реально стало интересно, какой же КПД у них в реальности.

Конечно я не претендую на высокую точность , так как в процессе участвует много измерительных приборов и каждый имеет свою погрешность, но я постарался измерить максимально корректно.

И так. Я измерил потребляемую мощность БП без нагрузки, с нагрузкой 33, 66 и 100%, при этом у меня вышло:

Вход – Выход – КПД.

Говорили, что КПД подобных БП около 60-70%, честно, мне не верилось. Но до этого я судил по количеству выделяемого тепла, потому как не заметить ‘лишние’ 100 Ватт тепла тяжело, вот и решил провести этот тест, думаю что не зря.

Конечно в комментариях могут начать писать – а как же MeanWell, почему не MeanWell? Да, я очень хорошо отношусь к блокам питания этой фирмы, и очень часто их использую, потому решил ради интереса сравнить обозреваемый БП и БП фирмы MeanWell. Но стоит отметить, что сравнивал я с БП серии RS, а точнее – RS-150-12, т.е. 12 Вольт 150 Ватт. На данный момент стоимость этого БП составляет около 36 долларов – [leech=http://www.kosmodrom.com.ua/el.php?name=RS-150-12]ссылка[/leech].

Блоки питания этой серии отличные, надежность действительно на высоком уровне, БП который вы видите, отработал в составе системы видеонаблюдения около 3 лет при нагрузке близкой к 90% и был заменен планово на новый.

Производитель же заявляет что –

Долговечные 105°C электролитические конденсаторы

Комплекс защит от короткого замыкания, перегрузки, перенапряжения

Электромагнитная совместимость: EN50082-2/EN61000-6-2 для тяжелой промышленности

Высокая рабочая температура до 70°C

Малые размеры, высокая удельная мощность

Высокие КПД, долговечность и надежность

Все модули проходят 100% прогон[/quote]

Но это относится именно к RS серии, обычные же БП MenWell серий S-ххх-хх немного проще, правда и стоят меньше.

1. Термистор упакован в термоусадку, но что интересно, уже когда разбирал фото, то заметил, что термисторов два, причем второй ‘голый’, он стоит справа от переключателя.

2. Входные конденсаторы Rubicon, а не RubiconG. Суммарная емкость 165мкФ при выходной мощности в 150 Ватт.

3. Высоковольтный транзистор имеет дополнительную изоляцию. ШИМ контроллер применен другой, потому рядом совсем пусто.

4. Выходных диодных сборок две, причем у обоих на выводах присутствуют ферритовые бусины, что практически никогда не встречается в недорогих китайских БП. Такие же бусины есть и на некоторых конденсаторах.

5. А вот выходной дроссель изготовлен в лучших традициях Китая 🙂 Намотка кривая, закатали в какой то клей.

6. Выходные конденсаторы фирменные, емкость 1000х3 мкФ, напряжение 35 Вольт, что весьма правильно. У обозреваемого конденсаторы на 25 Вольт, но в двухтактной схеме это нормально (в компьютерных БП вообще на 16).

Сегодня не буду выделять плюсы и минусы, а просто опишу мое впечатление о блоке питания.

На мой взгляд это типичный ‘среднестатистический’ китайский блок питания. Нагрев в пределах допуска, среднее качество сборки, но при этом низкий уровень пульсаций и отсутствие ‘дрейфа’ выходного напряжения от прогрева (это довольно важно). Производитель не особо волнуется насчет комплектующих, об этом говорят непонятные конденсаторы на входе, если судить по маркировке, то емкость достаточна, если измерить, то занижена. Я в подобной ситуации просто добавил один конденсатор 100мкФх400В выпаянный из платы монитора.

Самые критичные элементы, которые в данном БП будут влиять на срок службы – выходные конденсаторы.

В остальном вполне нормальный блок питания, все тесты прошел без проблем, но получить такие результаты как с его 48 Вольт вариантом, я увы не смог. На мой взгляд средний блок питания за вполне приемлемые деньги.

Надеюсь что обзор был полезен, старался дать максимум информации.

Как я писал в самом начале, в планах сделать обзоры блоков питания 12 Вольт на другую мощность, но пока не знаю, какой мощности БП наиболее интересны.

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Мощный выпрямитель на 12 вольт своими руками. Блок питания


Привет всем самоделкиным. Многие радиолюбители знают, что блок питания это дорогостоящая часть всей электроники и зачастую приобрести хороший блок питания нет возможности, но у каждого начинающего разбираться в радиоделе есть старый компьютерный блок, который уже давно завалялся и не используется. В этой статье я расскажу как сделать лабораторный блок питания для различных приспособлений, таких,например, как усилитель.

Для начала необходимо определиться, что понадобиться для сборки, это:
* Сам компьютерный блок, мощность моего была 350 ватт, чего хватит на все с запасом.
* Фанера, у меня таковой нашлось 4 отрезка.
* Электролобзик.
* Отвертки.
* Паяльник и паяльные принадлежности.
* Дрель.
* Наждачная бумага, зернистости покрупнее.
* Гвозди, я предпочел гвозди с мелкой шляпкой.
* Резиновые пробки, добытые из химических пробирок.


Когда все необходимое есть, можно приступать к разборке компьютерного блока питания.

Сначала открутим верхние болты, которые держат крышку.


Открутив их, переходим к четырем болтам на кулере.


После этого освободим плату от корпуса, там тоже есть болты, в моем же случае еще затаился один черный болтик по середине, который я поначалу и не заметил.



Но, как оказалось плату так не вытащить, нужно отпаять провода с подключения к входа питания 220В. Будьте осторожнее, рядом стоящие конденсаторы могут еще не разрядиться и выдать чуточку такого тока высокого напряжения.


Также отпаиваем провода с включателя.


Теперь плата блока легко вынимается, а
родной корпус нам уже не пригодиться.


Следующим, что мы уберем из блока будет куча проводов, поскольку нам нужны будут всего 3 из них, это желтый(12 В+) и синий(-) и зеленый для включения.



Для того чтобы блок включился зеленый проводок запаиваем к месту скопления черных проводов.



А теперь почистим все от пыли, кулер почистить так не удалось, его я разобрал и как следует промазал солидолом.


Все теперь чистенькое и можно уже переходить к изготовлению корпуса.
Вооружившись электролобзиком выпиливаем нижнюю сторону, я ее сделал на 8 мм больше в четыре стороны чем саму плату.


Посередине сделал отверстие для болта и немного наживил его, чтобы сделать резьбу, с помощью него и четырех болтов по краям будет крепиться плата.
Прикручиваем плату к фанере на центральный болт.
После этого примеряем другой кусок фанеры и отмеряем нужную нам длину и высоту. Высоту я сделал чуть больше самого кулера, чтобы блок питания был не таким громоздким.


Перед тем как отпилить переднюю часть отметим на ней место под наш кулер, будет он прямо по центру.


Обводим карандашом и просверливаем две дырки, расстояние между ними делаем около 2 мм, после этого расшатываем отверстие убирая тем самым перегородку, чтобы запустить пилку электролобзика.



Зашлифовываем посадочное место кулера.


Примеряем, сидит он там хорошо).


Мелким сверлом проделываем четыре отверстия под болты для закрепления кулера.
Вот теперь можно и отпилить заготовку передней части.


Передняя, так сказать самая главная часть блока готова, по аналогии вырезаем заднюю стенку.


Примеряем стенки, выглядит неплохо, дело за боковыми крышками.



Примерив под ровным углом боковую стенку, намечаем место распила уголком.
Боковая стенка готова, понадобиться еще одна такая же. Просто обведем предыдущую.



Под шнур 220 В делаем штекер, тот же, что и был в родном корпусе, его нам нужно разместить в передней части блока.


Выпиливаем тем же лобзиком, готово.


Затягиваем штекер-вилку двумя штатными болтами.


Проделав глубокие отверстия в передней панели под болты крепим кулер.



Посмотрим, как все это будет выглядеть, вроде неплохо выглядит, конечно я не дизайнер).



Прибиваем нижнюю и переднюю стороны нашего блока на два гвоздя с мелкой шляпкой.


Так как наш блок будет включаться и выключаться, то ему так же необходим включатель, его я разместил рядом с штекером под вилку.


Проделываем под включатель место, тут главное не переборщить, тогда он просто будет болтаться, что не очень хорошо.


Включатель сел плотно и не люфтит.


С установленным кулером передняя панель выглядит так.


Так как задняя панель должна иметь вентиляционных выход, то с помощью лобзика делаем овальный продув.


Для подключения различных устройств, которые будут использоваться с эти блоком нужны клеммники, их я нашел из школьного резистора.


С обратной стороны затягивается все с помощью гайки и прижимается с ее помощью пластинка с залуженным контактом.


Понадобилось два таких клеммника, один идет на плюс питания, другой на минус.


А так выглядит передняя панель с наружной стороны.


Приложив заднюю панель, прибиваем ее к задней части с уже закрепленной передней панелькой.


Так как изначально я не продумал то, что провода подключения 220 В в родном корпусе были короткие, поэтому пришлось по ходу дела заменить их на более длинные.


Один провод я припаял к штекеру, а другой через включатель.

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM 7805, LM 7809, LM 7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78 L 05, 78 L 12, 79 L 05, 79 L 08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.


Эта схема мощного блока питания на 12 вольт вырабатывает ток нагрузки до 5 ампер. В схеме блока питания применен трех выводной .

Краткая характеристика Lm338:

  • Uвход: от 3 до 35 В.
  • Uвыход: от 1,2 до 32 В.
  • Iвых.: 5 А (max)
  • Рабочая температура: от 0 до 125 гр. C

Блок питания 12В 5А на интегральной микросхеме LM338

Напряжение от сети поступает к понижающему трансформатору через плавкий предохранитель FU1 на 7А. V1 на 240 вольт, используется для защиты схемы блока питания от выбросов напряжения в электросети. Трансформатор Tр1 понижающий с напряжение на вторичной обмотке не ниже 15 вольт с током нагрузки не менее 5 ампер.

Пониженное напряжение с вторичной обмотки поступает на диодный мост, состоящий из четырех выпрямительных диодов VD1-VD4. На выходе диодного моста установлен электролитический конденсатор С1 предназначенный для сглаживания пульсаций выпрямленного напряжения. Диоды VD5 и VD6 используются в качестве устройств защиты для предотвращения разряда конденсаторов C2 и C3 от незначительного тока утечки в регуляторе LM338. Конденсатор С4 используется для фильтрации высокочастотной составляющей блока питания.

Для нормальной работы блока питания на 12В, стабилизатор напряжения LM338 необходимо установить на радиатор. Вместо выпрямительных диодов VD1-VD4 можно использовать выпрямительную сборку на ток не менее 5 ампер, например, KBU810.

Блок питания на 12 вольт на стабилизаторе 7812

Следующая схема мощного блока питания на 12 вольт и 5 ампер нагрузки построена на интегральном 7812. Поскольку допустимый максимальный ток нагрузки данного стабилизатора ограничивается 1,5 ампер, в схему блока питания добавлен силовой транзистор VT1. Этот транзистор известен как обходной внешний транзистор.

Если ток нагрузки будет менее 600 мА, то он будет протекать через стабилизатор 7812. Если ток превысит 600 мА, то на резисторе R1 будет напряжение более 0,6 вольта, в результате чего силовой транзистор VT1 начинает проводить через себя дополнительный ток к нагрузке. Резистор R2 ограничивает чрезмерный базовый ток.

Силовой транзистор в данной схеме необходимо разместить на хорошем радиаторе. Минимальное входное напряжение должно быть на несколько вольт выше, чем напряжение на выходе регулятора. Резистор R1 должен быть рассчитан на 7 Вт. Резистор R2 может иметь мощность 0,5 Вт.

Портативный USB осциллограф, 2 канала, 40 МГц….

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

    Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя — это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение — изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста — соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема — выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути — это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым — к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком — использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют — параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант — это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости — десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора — тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор — тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R — сопротивление нагрузки, а C — емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует — чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва — у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

C=3200*Iн/Uн*Kп,

Где Iн — ток нагрузки, Uн — напряжение нагрузки, Kн — коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

3. Конденсатор.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики — емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения — нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное — велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем — и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант — использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный — всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В — это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

P.S. Учтите, что ёмкость конденсатора электролита имеет полярность (плюс и минус), которую нужно соблюдать при подключении его к схеме нашего самодельного блока питания. В противном случае может произойти так, что конденсатор просто у вас взорвется, либо просто выйти из строя. Ну, а в целом, данная схема БП является наиболее простой. Она не имеет стабилизации, рассчитана на питания электроприборов, не нуждающихся в большой точности и стабильности напряжения.

Выпрямитель для сварочного аппарата своими руками: схема

Несмотря на то, что электрическое оборудование является одним из самых сложных по своей конструкции, многими мастерами изготавливается выпрямитель для сварочного аппарата своими руками. Кроме хорошо оборудованной мастерской, необходимы знания в электротехнике. Современные реалии таковы, что можно воспользоваться уже готовыми схемами, а также советами по подбору диодов и других элементов.

Самодельные приборы могут изготавливаться как для однофазной, так и для 3-фазной сети. Во втором случае требуются более мощные диоды для выпрямительного моста и система охлаждения.

Устройство сварочного выпрямителя

Важно! Для самостоятельного изготовления выпрямителя можно не использовать трансформатор, а подключать его напрямую к сети

Если объяснять простыми словами, что представляет собой сварочный выпрямитель — это устройство, которое преобразует переменный ток в постоянный. В сварочных работах последний вид тока обеспечивает большую мощность и стабильность дуги. Но поскольку в сети используется только переменный, то необходимо устройство, которое будет его преобразовывать.

Схематическое устройство сварочного выпрямителя

Само устройство довольно требовательно к расчетным данным, но принцип его работы достаточно понятен. Входящий ток поступает на первичную обмотку понижающего трансформатора. За счет электромагнитной индукции на вторичной обмотке появляется электрический ток, но с другими параметрами. Будет понижено напряжение, и повышена сила тока. Следующий этап — трансформация. Это именно то, для чего конструируются выпрямители.

Происходит это вследствие прохождения синусоиды переменного тока через систему диодов. Суть его работы заключается в следующем: переменный ток проходит через выпрямитель. При движении синусоиды вверх диод пропускает поток электронов, но при изменении направления (прохождении через ноль) блокирует движение. На выходе из выпрямителя направленный поток электронов образуется только в одну сторону.

Наиболее практично сделать сварочный выпрямитель на тиристорах своими руками. Не использовать простые диоды, а сконструировать более сложную цепь, используя конденсаторы, тиристоры. Явным плюсом окажется более точная и гибкая настройка силы тока. Мощный трансформатор, который можно задействовать для конструкции, — можно извлечь из б/у микроволновки.

Самодельный сварочный выпрямитель для однофазной сети

Чтобы понять, что представляют собой функциональные блок-схемы сварочных выпрямителей, стоит начать с того, что внешние характеристики могут быть падающими или жесткими, в зависимости от типа электрода.

Его принципиальная схема состоит из 2 обязательных элементов: трансформатора, тиристорной схемы (сюда же входит компенсатор). Вторая может быть 2 типов: из управляемых тиристоров Vy и диодная неуправляемая Vн. В линейном блоке находится сглаживающий дроссель Lc. Этот компонент призван снизить скорость нарастания тока до максимальных значений при появлении сварочной дуги. Эта защита выполняет роль индуктивного фильтра, не допуская разбрызгивания металла из сварочной ванны.

Трансформатор понижающий формирует внешние характеристики и регулирует режим работы. Из-за низкой стабильности выходного тока у однофазных однополупериодных выпрямителей преимущественно применяются 2-полупериодные схемы, которые пропускают верхние и нижние части волн.

Выбор конденсатора основывается на 2 характеристиках: емкости (чем она выше, тем меньше пульсация) и напряжении (должно превышать амплитудное как минимум в 2 раза).

Сварочный выпрямитель для трехфазной сети

В домашних условиях можно сделать выпрямитель для 3-фазной сети. Для этого используется схема сварочного выпрямителя имени Мицкевича. Она включает в себя 3 соединенных диода с выходом на конденсатор. Но эта схема имеет недостатки 1-фазного однополупериодного выпрямителя — нестабильность тока. Она неуправляемая, с уже заданными точными характеристиками тока.

Этот недостаток компенсирует вторая схема Ларионова. В ней используются 2-полупериодные схемы на каждую фазу. В этом случае потери тока минимизированы почти вдвое, есть возможность управления такими параметрами, как сила тока на выходе.

Инверторный сварочный выпрямитель

Инверторный выпрямитель представляет функциональный прибор в отличие от простого аналога. Он способен трансформировать переменный ток в прямой, а также отключать эту функцию и работать с переменным. В зависимости от используемых тиристоров, есть возможность менять частоту тока, уменьшать или увеличивать силу тока и напряжение. Использование выпрямителя ограничено и затратно: обычно такие устройства применяются в промышленных масштабах. Поэтому для бытового использования лучше предпочесть инвертор.

Особенности применения и меры безопасности при работе

Важно! При первичном включении необходимо использовать меры безопасности на случай короткого замыкания

Основы безопасности работы с электричеством связаны с его эксплуатацией. В то же время, работая над схемами, никто не застрахован от неправильных действий, применения элементов, не соответствующих указанным параметрам, а также использования ошибочных схем или допущения собственных ошибок. В связи с этим при проверке работоспособности устройства нужно придерживаться следующих правил:

  • Включение новых схем проводить, максимально обезопасив себя от воздействия поражения электричеством. Перед включением установить сборку в емкость, сделанную из диэлектрического материала, отойти на расстояние не менее 1-1,5 метров и только после этого опробовать работоспособность системы.
  • При работе с конденсаторами нового поколения важно помнить, что при несоответствии рабочего напряжения может произойти предусмотренная производителем разгерметизация. В результате КЗ возникает задымление, вредное для глаз.
  • Стабилизирующий блок питания. Входное напряжение стабилизаторов должно превышать выходную величину минимум на 1,5 В.
  • Транзисторы и стабилизаторы желательно устанавливать на разные радиаторы, поскольку каждый из них выделяет большое количество тепла.
Заключение

Зная, как сделать выпрямитель на 12 Вольт своими руками, можно изготовить для собственного использования устройство, которое будет полезным не только для сварки, но и во многих домашних приборах, освещении, зарядниках для автомобильных аккумуляторов, аудиоаппаратуры. Выпрямитель может работать как от сети, так и от вторичной обмотки трансформатора. Единственный недостаток схем, используемых для бытового применения, — невысокий КПД.

Видео: САМОДЕЛЬНЫЙ СВАРОЧНЫЙ АППАРАТ ПОСТОЯННОГО ТОКА

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель


Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой


Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема


Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

   Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.

   Форум

   Форум по обсуждению материала ВЫПРЯМИТЕЛИ

Выпрямитель для светодиодной ленты на 220В

У нас в наличии два типа выпрямителей: для светодиодной ленты типа 5050 и типа 3528. Они отличаются внешними разъемами, но технически практически идентичны. Номер (тип) ленты — это тип SMD светодиодов, на которых построена лента.

Необходимость в использовании коннектора-выпрямителя при подключении к сети светодиодных лент на 220 вольт обусловлена тем фактом, что светодиодам для нормальной работы требуется постоянный ток.

Техническое описание коннектора-выпрямителя

Коннектор для подключения светодиодных лент соответствующего питающего напряжения к сети переменного тока с напряжением 220В и частотой 50Гц (бытовая электросеть) представляет собой комбинированное устройство, основой которого является элементарный выпрямитель, построенный по схеме диодного моста (рис. 1).

Рис. 1. Принцип работы диодного моста.

Диодный мост — это электронная схема, предназначенная для выпрямления переменного тока в пульсирующий постоянный. В результате преобразования, на выходе диодного моста получается пульсирующее напряжение вдвое большей частоты, чем на входе, но стабильной полярности. В коннекторе не предусмотрено иных электронных компонентов, таких как конденсатор, обычно используемых для сглаживания пульсаций в блоках питания электронных приборов.

Диодный мост выполнен в виде монолитной диодной сборки размером 23х23мм и помещен в пластиковый корпус, который одновременно является и внешним изолятором (рис. 2). К выводам диодной сборки припаиваются провода входной (переменного тока) и выходной (постоянного тока) цепей.

Рис. 2. Диодный мост и коннектор в сборе.

Технические параметры диодного моста

  • Максимальное постоянное обратное напряжение, В: 600
  • Максимальное импульсное обратное напряжение, В: 600
  • Максимальный прямой (выпрямленный за полупериод) ток, А: 4
  • Максимальный допустимый прямой импульсный ток, А: 80
  • Максимальный обратный ток, мкА: 10
  • Максимальное прямое напряжение, В при Iпр., А= 2: 1,05
  • Максимальное время обратного восстановления, мкс: 500
  • Рабочая температура, С: -40···+150
  • Способ монтажа: пайка
  • Количество фаз: 1

Соединение выпрямителя и светодиодной ленты

Входная цепь, как правило, комплектуется электрической вилкой (рис. 3) типа А (слева) или типа С (справа), предназначенной, в основном, для проверки работоспособности. Обычно при монтаже в электросеть вилка обрезается, и монтаж производится путем присоединения зачищенных проводов коннектора к токоподводящей цепи.

Рис. 3. Типы вилок, используемых в выпрямителе.

Подключение (рис. 4) коннектора к светодиодной ленте 1, рассчитанной на постоянный ток напряжением 220В производится посредством разъема 3 через вилку 2, которая входит в комплект коннектора. Вилка 2 подключается к светодиодной ленте таким образом, чтобы обеспечить надежный контакт с токопроводящими шинами ленты. Дополнительной изоляции соединения не требуется.

Рис. 4. Порядок подключения светодиодной ленты 220В к выпрямителю.

В комплектацию выпрямителя также входит силиконовая заглушка, с помощью которой изолируется свободный конец светодиодной ленты (рис. 5), закрывая токопроводящие шины на конце ленты.

Рис. 5. Оконечная силиконовая заглушка.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

Как построить мостовой выпрямитель — как выпрямитель работает в полуволновой, двухполупериодной и мостовой конфигурациях

Введение

В нашей предыдущей статье мы уже изучили, как работает выпрямитель, и знаем, что выпрямительный диод позволяет проводимость электрического тока только в одном направлении. Эта уникальная характеристика, позволяющая проводить в определенном направлении, также приводит к выпрямлению электрического тока, если источником является переменный ток (AC). Существует три конфигурации выпрямительного диода, перечисленные ниже, но прежде чем обсуждать три конфигурации выпрямителя, важно сначала получить четкое представление о переменном токе.

  1. Полупериод
  2. Двухполупериод
  3. Мост

Что такое переменный ток (AC)?

Как следует из названия, напряжение переменного тока постоянно изменяется со временем от нуля до положительного пика и обратно до нуля, снова от нуля до отрицательного пика и обратно до нуля.

Этот процесс повторяется несколько раз в секунду, в зависимости от его частоты (обычно 50 Гц в нашей домашней сети переменного тока).

Переменный ток имеет несколько применений, например, его можно повышать или понижать с помощью трансформатора, плюс он может передаваться на большие расстояния с низкими потерями мощности, но все же довольно часто необходимо преобразовать его в диэлектрический ток.Его можно преобразовать в постоянный ток (DC) в следующих трех конфигурациях выпрямителя.

Полупериодный выпрямитель

Это самая простая конструкция, в которой используется только один выпрямительный диод. Когда переменный ток подается на его анод, отрицательные пики блокируются, и мы получаем положительное напряжение на катоде, и наоборот, если соединения диода поменяны местами. Это называется полуволновым выпрямителем, потому что только половина цикла переменного тока преобразуется в постоянный.

Поскольку задействовано очень мало компонентов, схема однополупериодного выпрямителя очень проста и экономична, но имеет существенные недостатки.Его эффективность невысока, на выходе наблюдается пульсация, поэтому для получения чистого постоянного тока требуются большие сглаживающие конденсаторы. Из-за намагничивания постоянного тока и насыщения сердечника трансформатор в полуволновом выпрямителе имеет тенденцию нагреваться за очень короткое время, и они также должны быть больше по размеру.

Двухполупериодный выпрямитель

В двухполупериодной конфигурации выпрямителя используются два диода вместо одного, и поскольку обе половины цикла переменного тока преобразуются в постоянный, он известен как двухполупериодный выпрямитель.Это намного улучшенная версия, чем предыдущая. выход в этом случае намного полнее, с низким уровнем пульсаций и относительно небольшими конденсаторами, необходимыми для получения надлежащего постоянного тока. Но для этого типа выпрямительной схемы требуется трансформатор с центральным отводом, а полученное выходное напряжение составляет лишь половину от общего номинального сквозного напряжения трансформатора.

Мост-выпрямитель

Мы знаем, что мостовые схемы довольно популярны в электронике для различных целей, и недавно изучили схему моста Уитстона для измерения сопротивления неизвестного резистора, значение которого не может быть определено с помощью стандартной цветовой кодировки резистора. схема.Теперь мы изучим использование похожей мостовой схемы для достижения высокого КПД и гораздо лучшей схемы выпрямления.

Мостовой выпрямитель — лучшая конфигурация выпрямителя, чем предыдущие два. Очень умное соединение четырех диодов обеспечивает полное выпрямление без использования трансформатора с центральным отводом. Эффективность этого выпрямителя высока, а размер используемого трансформатора как минимум в 1,5 раза меньше, чем у двухполупериодной конфигурации. Выходное напряжение равно или больше (без нагрузки) номинальному напряжению трансформатора.

Создание мостового выпрямителя

Вы всегда задавались вопросом, как построить мостовой выпрямитель, не так ли? Это очень просто и может быть выполнено с помощью следующих трех простых шагов, как показано на схемах:

  • Возьмите 4 выпрямительных диода, например, выпрямительные диоды 1N4007,

  • Выберите два диода, скрестите их два конца. помеченные белыми полосками, плотно скрутите их, припаяйте соединение и отрежьте выступающие концы,

  • Как и выше, сделайте это для двух оставшихся диодов, на этот раз без полос на их концах,

  • Теперь у вас есть два набора диодных сборок, просто скрутите и припаяйте их свободные концы, как показано на рисунке.

  • Ваш мостовой выпрямитель готов.

  • Концы лент являются положительными, концы без лент — отрицательными, а два других общих конца предназначены для подачи переменного тока.

Ссылки

Схема простого мостового выпрямителя

Процесс преобразования переменного тока в постоянный — это выпрямление . Любой автономный блок питания имеет схему выпрямления, которая преобразует либо настенный источник переменного тока в постоянный высоковольтный, либо пониженный настенный источник переменного тока в постоянный ток низкого напряжения.Дальнейший процесс будет заключаться в фильтрации, преобразовании постоянного тока в постоянный и т. Д. Итак, в этой статье мы собираемся обсудить схему простого мостового выпрямителя , которая является наиболее популярным методом двухполупериодного выпрямления.

Необходимые компоненты
  • Трансформатор 230VAC / 6VAS — 1шт.
  • 1Н4007А — 1шт.
  • Резистор 1 кОм — 1 шт.
  • Мультиметр
  • Соединительные провода

Что такое выпрямитель?

Проще говоря, выпрямитель — это схема, которая преобразует сигнал переменного тока (переменный ток) в сигнал постоянного тока (постоянный ток).Можно также сказать, что выпрямитель преобразует двунаправленный ток в однонаправленный.

Диоды используются для построения схемы выпрямителя из-за их свойства однонаправленной проводимости. Полупроводниковый диод проводит только при прямом смещении (он ведет себя как замыкающий переключатель) и не проводит при обратном смещении (ведет себя как открытый переключатель). Эта характеристика диода очень важна и используется в выпрямителях.

Типы выпрямителей

Обычно выпрямители делятся на две категории

  • Полуволновой выпрямитель
  • Двухполупериодный выпрямитель

Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный.

Полноволновое выпрямление может быть выполнено двумя способами:

  • Двухполупериодный выпрямитель с центральным ответвлением на двух диодах
  • Мостовой выпрямитель на четырех диодах

Bridger Rectifier — наиболее часто используемый выпрямитель в электронике, и здесь мы будем изучать только его. Если вы хотите узнать о полуволновом выпрямителе и двухполупериодном выпрямителе с центральным ответвлением, перейдите по ссылкам.

Схема мостового выпрямителя и ее работа

Двухполупериодный мостовой выпрямитель состоит из четырех диодов таким образом, что их плечи образуют мост, отсюда и название мостовой выпрямитель.В мостовом выпрямителе напряжение может подаваться на диодный мост через трансформатор или напрямую через сигнал переменного тока без трансформатора.

Здесь мы используем трансформатор с центральным ответвлением 6-0-6 для подачи переменного напряжения на схему мостового выпрямителя

Во время положительного полупериода диоды D3-D2 смещаются в прямом направлении и действуют как замкнутый переключатель. Диоды D1-D4 имеют обратное смещение и не проводят, поэтому действуют как разомкнутый переключатель.Таким образом, мы получаем на выходе положительный полупериод.

Во время отрицательного полупериода диоды D1-D4 смещаются в прямом направлении и действуют как замкнутый переключатель. Диоды D3-D2 имеют обратное смещение и не проводят, поэтому действуют как разомкнутый переключатель. Таким образом, мы получаем на выходе положительный полупериод.

Ниже показана форма волны на входе и выходе для схемы мостового выпрямителя. Мы видим, что отрицательная часть переменного напряжения преобразуется в положительный цикл после прохождения схемы мостового выпрямителя.

Фильтрация

Выходной сигнал после выпрямления не является правильным постоянным током, поэтому мы можем сгладить форму волны, используя конденсатор для целей фильтрации. Конденсатор заряжается до тех пор, пока форма волны не достигнет своего пика, и разряжается в цепи нагрузки, когда форма волны становится низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает надлежащее напряжение в цепи нагрузки, тем самым создавая постоянный ток. Это снижает коэффициент пульсации и обеспечивает надлежащий постоянный ток. Регулируемое напряжение может быть дополнительно добавлено для регулируемого источника постоянного тока.

Мы можем дополнительно смоделировать схему в программном обеспечении и увидеть результат:

Узнайте больше о полуволновых и полноволновых выпрямителях здесь.

Как работает мостовой выпрямитель — шаг за шагом

Мостовые выпрямители

Что такое выпрямитель?

В электронной промышленности одним из наиболее популярных применений полупроводниковых диодов является преобразование сигнала переменного тока (AC) любой частоты, которая обычно составляет 60 или 50 Гц, в сигнал постоянного тока (DC).Этот сигнал постоянного тока может использоваться для питания электронных устройств, а не батарей. Схема, которая преобразует сигнал переменного тока в сигнал постоянного тока, обычно состоит из особого набора блокированных диодов и известна как выпрямитель. В схемах питания обычно используются два типа выпрямительных схем — полуволновые и двухполупериодные. Полуполупериодные выпрямители допускают только половину цикла, в то время как двухполупериодные выпрямители пропускают как верхнюю, так и нижнюю половину цикла, преобразуя нижнюю половину в ту же полярность, что и верхняя.Это различие между ними показано на рисунке 1.

Рисунок 1: Разница между выходами полу- и двухполупериодных выпрямителей

Между двумя типами двухполупериодный выпрямитель более эффективен, поскольку он использует полный цикл входящей формы волны. Существует два типа двухполупериодных выпрямителей: двухполупериодный выпрямитель с центральным ответвлением, для которого требуется трансформатор с центральным ответвлением, и мостовой выпрямитель, для которого не требуется трансформатор с центральным ответвлением. В этой статье будет обсуждаться мостовой выпрямитель, поскольку он является наиболее популярным и обычно поставляется в виде предварительно собранных модулей, что упрощает их использование.

В мостовых выпрямителях

используются четыре диода, которые грамотно расположены для преобразования напряжения питания переменного тока в напряжение питания постоянного тока. Выходной сигнал такой схемы всегда имеет одинаковую полярность независимо от полярности входного сигнала переменного тока. На рисунке 2 изображена схема мостового выпрямителя с блокированными диодами по мостовой схеме. Сигнал переменного тока подается на входные клеммы a и b, а выходной сигнал наблюдается через нагрузочный резистор R1.

Рисунок 2 Мостовой выпрямитель с нагрузочным резистором

Давайте посмотрим, как эта схема выпрямителя реагирует на сигнал переменного тока с изменением полярности в каждом цикле:

  1. В первом положительном полупериоде сигнала переменного тока диоды D2 и D3 смещаются в прямом направлении и начинают проводить.В то же время диоды D1 и D4 будут иметь обратное смещение и не будут проводить. Ток будет протекать через нагрузочный резистор через два диода с прямым смещением. Напряжение на выходе будет положительным на клемме d и отрицательным на клемме c.
  2. Теперь, во время отрицательного полупериода сигнала переменного тока, диоды D1 и D4 будут смещены в прямом направлении, а диоды D2 и D3 будут смещены в обратном направлении. Положительное напряжение появится на аноде D4, а отрицательное напряжение будет приложено к катоду D1.Здесь стоит отметить, что ток, протекающий через нагрузочный резистор, будет иметь то же направление, что и при положительном полупериоде. Следовательно, независимо от полярности входного сигнала полярность на выходе всегда будет одинаковой. Мы также можем сказать, что отрицательный полупериод сигнала переменного тока был инвертирован и проявляется как положительное напряжение на выходе.

Как конденсатор работает как фильтр?

Тем не менее, это выходное напряжение одной полярности не является чистым постоянным напряжением, поскольку оно пульсирующее, а не прямолинейное по своей природе.Эта проблема быстро решается подключением конденсатора параллельно нагрузочному резистору, как показано на рисунке 3. В этой новой конструкции положительный полупериод заряжает конденсатор через диоды D2 и D3. А во время отрицательного полупериода конденсатор перестанет заряжаться и начнет разряжаться через нагрузочный резистор.

Рисунок 3 Мостовой выпрямитель с нагрузочным резистором и фильтрующим конденсатором

Этот процесс известен как фильтрация, и конденсатор действует как фильтр.Конденсатор улучшил пульсирующий характер выходного напряжения, и теперь на нем будет только пульсация. Эта форма сигнала теперь намного ближе к форме чистого напряжения постоянного тока. Форму сигнала можно дополнительно улучшить, используя другие типы фильтров, такие как L-C-фильтр и круговой фильтр.

Типы мостовых выпрямителей

Только что обсужденный мостовой выпрямитель является однофазным, однако его также можно расширить до трехфазного выпрямителя. Эти два типа можно разделить на полностью управляемые, полууправляемые или неуправляемые мостовые выпрямители.Схема, которую мы только что обсуждали, является неконтролируемой, поскольку мы не можем контролировать смещение диода, но если все четыре диода заменить тиристором, его смещение можно контролировать, управляя его углом зажигания через его сигнал затвора. В результате получается полностью управляемый мостовой выпрямитель. В полууправляемом мостовом выпрямителе половина схемы содержит диоды, а другая половина — тиристоры.

Применение мостового выпрямителя
  • Для подачи поляризованного и устойчивого постоянного напряжения при сварке.
  • Внутренние блоки питания
  • Зарядные устройства внутри батареи
  • Внутри ветряных турбин
  • Для определения амплитуды модулирующих сигналов
  • Для преобразования высокого переменного напряжения в низкое постоянное напряжение

Схема полнополупериодного выпрямителя-мостового выпрямителя

, конструкция и теория

Двухполупериодный выпрямитель — это схема, которая использует оба полупериода входного переменного тока (AC) и преобразует их в постоянный ток (DC).В нашем руководстве по полупериодному выпрямителю мы видели, что полуволновой выпрямитель использует только половину цикла входного переменного тока. Таким образом, двухполупериодный выпрямитель намного более эффективен (двойной +), чем полуволновой выпрямитель. Этот процесс преобразования обоих полупериодов входного питания (переменного тока) в постоянный ток (DC) называется двухполупериодным выпрямлением.

Двухполупериодный выпрямитель

может быть сконструирован двумя способами. В первом методе используется трансформатор с отводом от центра и 2 диода.Это устройство известно как полноволновой выпрямитель с центральным отводом .

Во втором методе используется обычный трансформатор с 4 диодами, расположенными в виде моста. Это устройство известно как мостовой выпрямитель.

Теория полноволнового выпрямителя

Чтобы полностью понять теорию двухполупериодного моста выпрямителя , вам нужно сначала изучить полуволновой выпрямитель. В руководстве по полуволновому выпрямителю мы четко объяснили основы работы выпрямителя.Кроме того, мы также объяснили теорию , лежащую в основе pn-перехода , и характеристики диода с pn-переходом .

Полноволновой выпрямитель — Работа и эксплуатация

Работа и эксплуатация двухполупериодного мостового выпрямителя довольно проста. Приведенные ниже принципиальные схемы и формы сигналов помогут вам в совершенстве понять принцип работы мостового выпрямителя. На принципиальной схеме 4 диода расположены в виде моста. Вторичная обмотка трансформатора подключается к двум диаметрально противоположным точкам моста в точках A и C.Сопротивление нагрузки R L подключено к мосту через точки B и D.

Полноволновой мостовой выпрямитель — принципиальная схема с формами входной и выходной волны
В течение первой половины цикла

Во время первого полупериода входного напряжения верхний конец вторичной обмотки трансформатора является положительным по отношению к нижнему концу. Таким образом, в течение первого полупериода диоды D1 и D 3 смещены в прямом направлении, и ток течет через плечо AB, входит в сопротивление нагрузки R L и возвращается обратно, протекая через плечо DC.В течение этой половины каждого входного цикла диоды D 2 и D 4 смещены в обратном направлении, и ток не может течь в плечах AD и BC. На рисунке выше поток тока обозначен сплошными стрелками. Ниже мы разработали еще одну диаграмму, которая поможет вам быстро понять текущий поток. См. Схему ниже — зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.

Протекание тока в мостовом выпрямителе
Во время второго полупериода

Во время второго полупериода входного напряжения нижний конец вторичной обмотки трансформатора является положительным по отношению к верхнему концу. Таким образом, диоды D 2 и D 4 становятся смещенными в прямом направлении, и ток течет через плечо CB, входит в сопротивление нагрузки R L и возвращается обратно к источнику, протекая через плечо DA. Течение тока показано на рисунке пунктирными стрелками.Таким образом, направление протекания тока через сопротивление нагрузки R L остается неизменным в течение обоих полупериодов входного напряжения питания. См. Схему ниже — зеленые стрелки указывают начало протекания тока от источника (вторичной обмотки трансформатора) до сопротивления нагрузки. Красные стрелки указывают обратный путь тока от сопротивления нагрузки к источнику, таким образом замыкая цепь.

Путь тока во 2-м полупериоде

Пиковое обратное напряжение двухполупериодного мостового выпрямителя:

Давайте проанализируем пиковое обратное напряжение (PIV) двухполупериодного мостового выпрямителя, используя принципиальную схему.В любой момент, когда вторичное напряжение трансформатора достигает положительного пикового значения Vmax, диоды D1 и D3 будут смещены в прямом направлении (проводящие), а диоды D2 и D4 будут смещены в обратном направлении (непроводящие). Если рассматривать идеальные диоды в мосте, то смещенные в прямом направлении диоды D1 и D3 будут иметь нулевое сопротивление. Это означает, что падение напряжения на проводящих диодах будет нулевым. Это приведет к тому, что все вторичное напряжение трансформатора будет развиваться через сопротивление нагрузки RL.

Таким образом, PIV мостового выпрямителя = Vmax (макс. Вторичное напряжение)

Анализ схемы мостового выпрямителя

Единственная разница в анализе между двухполупериодным и центральным выпрямителями состоит в том, что

  1. В схеме мостового выпрямителя два диода проводят в течение каждого полупериода, и прямое сопротивление становится двойным (2R F ).
  2. В схеме мостового выпрямителя Vsmax — это максимальное напряжение на вторичной обмотке трансформатора, тогда как в выпрямителе с центральным ответвлением Vsmax представляет это максимальное напряжение на каждой половине вторичной обмотки.

Различные параметры объясняются уравнениями ниже:

  1. Пиковый ток

Мгновенное значение напряжения, подаваемого на выпрямитель, равно

.

vs = Vsmax Sin wt

Если предполагается, что диод имеет прямое сопротивление R F Ом и обратное сопротивление, равное бесконечности, ток, протекающий через сопротивление нагрузки, будет равен

.

i1 = Imax Sin wt и i2 = 0 для первого полупериода

и i1 = 0 и i2 = Imax Sin wt для второго полупериода

Полный ток, протекающий через сопротивление нагрузки R L , где является суммой токов i1 и i2, дается как

i = i1 + i2 = Imax Sin wt для всего цикла.

Где пиковое значение тока, протекающего через сопротивление нагрузки R L , задается как

Imax = Vsmax / (2R F + R L )

2. Выходной ток

Поскольку ток через сопротивление нагрузки RL в двух половинах цикла переменного тока одинаков, величина od постоянного тока Idc, которая равна среднему значению переменного тока, может быть получена путем интегрирования тока i1 между 0 и pi. или текущий i2 между пи и 2пи.

Выходной ток полноволнового выпрямителя
3. Выходное напряжение постоянного тока

Среднее или постоянное значение напряжения на нагрузке задается как

. Выходное напряжение постоянного тока полнополупериодного выпрямителя
4. Среднеквадратичное значение тока

RMS или действующее значение тока, протекающего через сопротивление нагрузки R L дается как

Среднеквадратичное значение тока полнополупериодного выпрямителя
5. Среднеквадратичное значение выходного напряжения

Действующее значение напряжения на нагрузке равно

. Среднеквадратичное значение выходного напряжения двухполупериодного выпрямителя
6.Эффективность выпрямления

Мощность, передаваемая на нагрузку,

Эффективность выпрямления полноволнового выпрямителя
7. Коэффициент пульсации

Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя равен

. Коэффициент пульсаций полноволнового выпрямителя

Итак, коэффициент пульсаций γ = 1,11 2 — 1) = 0,482

8. Постановление

Выходное напряжение постоянного тока равно

. Регулировка двухполупериодного выпрямителя

Достоинства и недостатки двухполупериодного выпрямителя над полуволновым выпрямителем

Достоинства — Позвольте нам сначала поговорить о преимуществах двухполупериодного мостового выпрямителя перед полуволновой версией.На данный момент я могу выделить 4 конкретных достоинства.

  • Для двухполупериодного мостового выпрямителя КПД увеличен вдвое. Причина в том, что полуволновой выпрямитель использует только половину входного сигнала. Мостовой выпрямитель использует обе половины и, следовательно, имеет двойной КПД
  • Остаточные пульсации переменного тока (до фильтрации) очень низкие на выходе мостового выпрямителя. Такой же процент пульсаций очень высок у полуволнового выпрямителя. Достаточно простого фильтра, чтобы получить постоянное напряжение от мостового выпрямителя.
  • Мы знаем, что эффективность моста FW вдвое выше, чем у выпрямителя HW. Это означает более высокое выходное напряжение, более высокий коэффициент использования трансформатора (TUF) и более высокую выходную мощность.

Недостатки — Двухполупериодный выпрямитель требует большего количества элементов схемы и является более дорогостоящим.

Достоинства и недостатки мостового выпрямителя над выпрямителем с центральным отводом.

Выпрямитель с центральным ответвлением всегда сложно реализовать из-за использования специального трансформатора. Трансформатор с центральным ответвлением также является дорогостоящим.Одно из ключевых различий между центральным отводом и мостовым выпрямителем заключается в количестве диодов, задействованных в конструкции. Двухполупериодный выпрямитель с центральным ответвлением требует всего 2 диода, тогда как мостовой выпрямитель требует 4 диода. Но кремниевые диоды дешевле, чем трансформатор с центральным ответвлением, поэтому мостовой выпрямитель является более предпочтительным решением в источниках питания постоянного тока. Ниже приведены преимущества мостового выпрямителя по сравнению с выпрямителем с центральным отводом.

  • Мостовой выпрямитель может быть сконструирован с трансформатором или без него.Если задействован трансформатор, то его подойдет любой обычный понижающий / повышающий трансформатор. Эта роскошь недоступна для выпрямителя с центральным отводом. Здесь конструкция выпрямителя зависит от трансформатора с центральным ответвлением, который не подлежит замене.
  • Мостовой выпрямитель подходит для высоковольтных систем. Причина в высоком пиковом обратном напряжении (PIV) мостового выпрямителя по сравнению с PIV выпрямителя с центральным ответвлением.
  • Коэффициент использования трансформатора (TUF) выше для мостового выпрямителя.
Недостатки мостового выпрямителя над выпрямителем с центральным ответвлением

Существенным недостатком мостового выпрямителя над центральным ответвлением является использование 4 диодов в конструкции мостового выпрямителя. В мостовом выпрямителе 2 диода проводят одновременно на полупериоде входного сигнала. Выпрямитель с центральным ответвлением имеет только 1 диод, проводящий за половину цикла. Это увеличивает чистое падение напряжения на диодах в мостовом выпрямителе (оно вдвое превышает значение центрального отвода).

Применение двухполупериодного мостового выпрямителя

Двухполупериодный выпрямитель находит применение при создании источников питания постоянного напряжения постоянного тока, особенно в источниках питания общего назначения. Мостовой выпрямитель с эффективным фильтром идеально подходит для любого типа обычных источников питания, таких как зарядка аккумулятора, питание устройства постоянного тока (например, двигателя, светодиода и т. Д.) И т. Д. Однако для аудиоприложения общий источник питания может не подходить. достаточно. Это связано с остаточным коэффициентом пульсаций в мостовом выпрямителе.Есть ограничения на фильтрацию ряби. Для аудиоприложений могут быть идеальными специально сконструированные блоки питания (использующие регуляторы IC).

Полноволновой мостовой выпрямитель с конденсаторным фильтром

Выходное напряжение двухполупериодного выпрямителя непостоянно, оно всегда пульсирует. Но это не может быть использовано в реальных приложениях. Другими словами, нам нужен источник питания постоянного тока с постоянным выходным напряжением. Чтобы добиться плавного и постоянного напряжения, используется фильтр с конденсатором или катушкой индуктивности.На схеме ниже показан полуволновой выпрямитель с конденсаторным фильтром.

Полнополупериодный выпрямитель — с конденсаторным фильтром
Коэффициент пульсаций мостового выпрямителя

Коэффициент пульсации — это отношение остаточной составляющей переменного тока к составляющей постоянного тока в выходном напряжении. Коэффициент пульсаций мостового выпрямителя вдвое меньше, чем у полуволнового выпрямителя.

Список литературы

2. Чтобы создать простые для понимания изображения, мы сослались на эту статью .

полноволновой мостовой выпрямитель, конденсаторные фильтры, полуволновой выпрямитель

Узнайте о двухполупериодном мостовом выпрямителе, полуволновом выпрямителе, двухполупериодном выпрямителе, трансформаторах с центральным ответвлением, диодах, нагрузке, осциллографе, форме волны, постоянном и переменном токе, токе напряжения, конденсаторах, спускном резисторе, чтобы узнать, как работают двухполупериодные мостовые выпрямители.

Прокрутите вниз, чтобы просмотреть руководство по YouTube.

Это двухполупериодный мостовой выпрямитель. Он используется для питания наших электронных схем, поэтому в этой статье мы подробно узнаем, как они работают.

Электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ. .

Что такое мостовой выпрямитель

Полномостовые выпрямители

выглядят следующим образом: они бывают разных форм и размеров, но по сути они состоят из 4 диодов в определенном расположении. Обычно они выравниваются в конфигурации Dimond, но их также можно выровнять другими способами, такими как эти.

Обычно мы находим их изображенными на таких инженерных чертежах.

Это символ диода. Стрелка указывает в направлении обычного тока. Это показывает, что электричество переменного тока является входом, а электричество постоянного тока — выходом.

Полный мостовой выпрямитель преобразует переменный переменный ток в постоянный ток. Почему это важно? Поскольку розетки в наших домах обеспечивают переменный ток, а наши электронные устройства используют постоянный ток, нам необходимо преобразовать переменный ток в постоянный ток.

Например, зарядное устройство для ноутбука берет переменный ток от розетки и преобразует его в постоянный ток для питания ноутбука.Если вы посмотрите на адаптер питания для ноутбука и электронных устройств, на этикетке производителя указано, что он преобразует переменный ток в постоянный. В этом примере он заявляет, что ему требуется входное напряжение от 100 до 240 В с обозначением электричества переменного тока, и он потребляет 1,5 А тока. Затем он будет выдавать 19,5 В постоянного тока и 3,33 А тока. Обратите внимание, что здесь также указано 50-60 Гц, это частота переменного тока, и мы рассмотрим это через мгновение.

В сети переменного тока напряжение и ток постоянно меняют направление между прямым и обратным.Это потому, что в генераторе переменного тока есть магнитное поле, которое, по сути, толкает и притягивает электроны в проводах. Таким образом, он меняется между положительными и отрицательными значениями, когда он течет вперед и назад, напряжение не является постоянным, даже если мультиметр делает его похожим на него. Если мы построим это, мы получим синусоидальную волну. Напряжение изменяется между пиковым положительным и пиковым отрицательным значением, когда максимальная напряженность магнитного поля проходит через катушки с проволокой.

В этом примере пики достигаются 170 В, поэтому, если мы построим эти значения, мы получим положительные и отрицательные пики 170 В.Если мы возьмем среднее значение этих значений, мы получим ноль вольт. Это не очень полезно, поэтому умный инженер решил использовать среднеквадратичное значение напряжения. Это то, что рассчитывают наши мультиметры, когда мы подключаем их к розеткам.

Чтобы найти пиковое напряжение, мы умножаем среднеквадратичное значение напряжения на квадратный корень из 2, который составляет примерно 1,41.
Чтобы найти среднеквадратичное значение напряжения, мы делим пиковое напряжение на 0,707.

Например, у меня есть розетка для Северной Америки, Великобритании, Австралии и Европы.Этот мультиметр показывает основные формы сигналов, и когда я подключаюсь к любому из них между фазой и нейтралью, мы видим синусоидальную волну, указывающую, что это электричество переменного тока. Обратите внимание, что британская и европейская розетки — 230 В, австралийская — 240 В, но все три имеют частоту 50 Гц, однако розетка в Северной Америке показывает 120 В с частотой 60 Гц.

Частота измеряется в герцах, но это просто означает, что синусоидальная волна повторяется 60 раз в секунду в электрических системах Северной Америки и 50 раз в секунду в остальном мире.Напряжение ниже в североамериканской системе и составляет 120 В, тогда как в остальном мире оно составляет 230–240 В. Таким образом, пиковое напряжение каждой электрической системы выглядит следующим образом.

В электричестве постоянного тока напряжение постоянно, и в положительной области электроны не меняют направление, они все текут только в одном направлении. Итак, если я измерю эту батарею, мы увидим плоскую линию в положительной области около 1,5 В, так что это электричество постоянного тока.

Эта солнечная панель также вырабатывает постоянный ток, мы видим, что на мультиметре она выдает ровную линию около 4 В.Мы можем использовать этот адаптер для измерения USB-порта, мы видим, что он обеспечивает около 5 В, и если мы построим это с помощью другого мультиметра, мы снова увидим постоянную ровную линию, указывающую, что это электричество постоянного тока.

Это двухполупериодный мостовой выпрямитель. На этих входных клеммах мы видим около 12 В переменного тока с синусоидальной волной. И на этих выходных клеммах мы видим около 14 В постоянного тока. Итак, это устройство преобразует переменный ток в постоянный. Напряжение немного выше из-за конденсатора, и мы увидим, почему это так, позже в этом видео.

Преобразует только переменный ток в постоянный, но не преобразует постоянный ток в переменный. Для этого нам понадобится инвертор, в котором для этого используются специальные электронные компоненты, но мы не будем рассматривать это в этой статье.

Кстати, мы подробно рассмотрели, как работают силовые инверторы в нашей предыдущей статье, посмотрите ЗДЕСЬ.

Как это работает

Выпрямитель состоит из диодов. Диод — это полупроводниковое устройство, которое позволяет току течь через него, но только в одном направлении.Итак, если мы подключим эту лампу к источнику постоянного тока, она загорится. Мы можем поменять местами провода, и он все равно будет светиться. Если я поставлю диод на красный провод и подключу его к плюсу, он снова загорится. Но теперь, когда я меняю местами провода, диод блокирует ток, а лампа остается выключенной. Таким образом, он позволяет току течь только в одном направлении, и мы можем использовать это для управления направлением тока в цепи, чтобы сформировать электричество постоянного тока.

Полуволновой выпрямитель

Если мы посмотрим на источник переменного тока с понижающим трансформатором, который снижает напряжение, электроны текут вперед и назад.Итак, нагрузка испытывает синусоидальную волну. Нагрузкой может быть что угодно: резистор, лампа, двигатель и т. Д.

Если мы вставим диод, он будет пропускать ток только в одном направлении, поэтому теперь нагрузка будет иметь пульсирующую форму волны. Отрицательная половина синусоиды заблокирована. Мы можем перевернуть диод, чтобы заблокировать положительную половину и разрешить только отрицательную половину. Следовательно, это полуволновой выпрямитель. Выходной сигнал технически постоянный ток, поскольку электроны текут только в одном направлении, это просто не очень хороший выход постоянного тока, поскольку он не полностью плоский.

Здесь у меня есть резистор, подключенный к низковольтному источнику переменного тока. Мы видим на осцископе синусоидальную волну переменного тока. Когда я подключаю к нему последовательно диод, осцилископ показывает пульсирующую диаграмму в положительной области. Если я переверну диод, осцилископ покажет пульсирующую картину в отрицательной области.

Если я соединю две лампы параллельно, одну с диодом, мы увидим, что лампа без диода ярче, потому что в ней используется полная форма волны. Другая лампа более тусклая, потому что использует только половину этой лампы.Если мы посмотрим на это в замедленной съемке, мы увидим, что подключенная диодная лампа мигает сильнее из-за перерывов в питании.

Следовательно, мы можем использовать его для простых схем, таких как освещение или зарядка некоторых аккумуляторов, но мы не можем использовать его для электроники, поскольку компонентам требуется постоянное питание, иначе они не будут работать правильно.

Мы можем добавить конденсатор параллельно нагрузке, чтобы улучшить этот выход. Мы рассмотрим это позже в этой статье. Лучшее улучшение — использовать двухполупериодный выпрямитель, и есть два основных способа сделать это.

Полноволновой выпрямитель

Мы можем создать двухполупериодный выпрямитель, просто используя трансформатор с центральным ответвлением и два диода. У трансформатора с центральным ответвлением просто есть еще один провод на вторичной стороне, который подключен к центру катушки трансформатора, что позволяет нам использовать всю длину трансформатора или только половину ее.

Потому что в электричестве переменного тока ток постоянно меняется на противоположный, в то время как в положительной или передней половине ток течет через диод 1 в нагрузку, а затем обратно к трансформатору через центральный провод с ответвлениями.Диод 2 блокирует ток, поэтому он не может вернуться сюда. Таким образом, используется только половина катушки трансформатора. В обратной или отрицательной половине ток течет через диод 2, через нагрузку, а затем обратно к трансформатору. Диод 1 блокирует ток.

Ток протекает через нагрузку в одном направлении, поэтому он считается постоянным, но он все еще пульсирует, хотя зазоров нет. Отрицательная половина преобразована в положительную. Форма волны не гладкая, поэтому нам нужно применить некоторую фильтрацию, например, конденсатор.Мы рассмотрим это подробно позже в этой статье.

Полноволновой мостовой выпрямитель

Чаще всего используется двухполупериодный мостовой выпрямитель. Здесь используются 4 диода. Источник переменного тока подключается между диодами 1 и 2, а нейтраль между 3 и 4. Положительный выход постоянного тока подключен между диодами 2 и 3, а отрицательный — между диодами 1 и 4.

В положительной половине синусоидальной волны ток течет через диод 1, через нагрузку, через диод 2 и затем обратно к трансформатору.В отрицательной половине ток течет через диод 3, а через нагрузку — через диод 1 и обратно к трансформатору. Таким образом, трансформатор подает синусоидальную волну переменного тока, но нагрузка испытывает волнообразную форму волны постоянного тока, потому что ток течет в одном направлении.

На этой схеме мы можем видеть выпрямленную форму волны на осциллографе. Но это не плоский выход постоянного тока, поэтому нам нужно улучшить его, добавив фильтрацию.

Фильтрация

Использование выпрямителя приведет к пульсации формы волны.Чтобы сгладить это, нам нужно добавить несколько фильтров.

Основной метод — просто добавить электролитический конденсатор параллельно нагрузке. Конденсатор заряжается при повышении напряжения и накапливает электроны. Затем он высвобождает их во время уменьшения, таким образом уменьшая пульсацию. Осциллограф покажет пики каждого импульса, но теперь напряжение не падает до нуля, оно медленно снижается, пока импульс снова не зарядит конденсатор. Мы можем еще больше уменьшить это, используя конденсатор большего размера или несколько конденсаторов.

В этом простом примере вы можете увидеть, как светодиод гаснет при отключении питания. Но если я помещу конденсатор параллельно светодиоду, он останется включенным, потому что теперь конденсатор разряжается и питает светодиод.

В этой схеме у меня в качестве нагрузки подключена лампа. Осциллограф показывает волнообразную форму волны. Когда я добавляю небольшой конденсатор на 10 мкФ, мы видим, что он очень мало влияет на форму сигнала. Когда я использую конденсатор на 100 мкФ, мы видим, что провал больше не падает до нуля вольт.На 1000 микрофаррад пульсация очень мала. На 2200 микрофаррадах это почти полностью гладко, хотя это можно было бы использовать для многих схем. Мы также могли бы использовать несколько конденсаторов, здесь у нас есть конденсатор на 470 мкФ, который имеет некоторое значение, но если я использую два конденсатора параллельно, мы видим, что форма волны значительно улучшается.

При использовании конденсатора нам необходимо разместить на выходе резистор утечки. Это резистор высокого номинала, который будет разряжать конденсатор, когда цепь отключена, чтобы обеспечить нашу безопасность.Обратите внимание: когда я включаю эту схему, конденсатор быстро заряжается до более 15 В. Когда я выключаю его, выход постоянного тока все еще составляет 15 В, потому что нет нагрузки, поэтому энергия все еще сохраняется. Это может быть опасно при высоком напряжении. В этом примере я помещаю резистор 4,7 кОм на выход, мы видим, что конденсатор заряжается до 15 В, и когда я его выключаю, конденсатор быстро разряжается. Электроны проходят через резистор, который разряжает конденсатор.

Мы также видим, что без конденсатора выходное напряжение ниже входного из-за падения напряжения на диодах.

Вот простой двухполупериодный мостовой выпрямитель. На входе мы видим 12 В переменного тока, на выходе 10,5 В постоянного тока. Напряжение на выходе ниже из-за диодов. На каждом диоде падение напряжения составляет около 0,7 В. Если мы посмотрим на эту схему, с диодом и светодиодом. Мы можем измерить напряжение на диоде и увидеть падение напряжения около 0,7 В. Ток в нашем полном мостовом выпрямителе должен проходить через 2 диода на положительной половине и 2 на отрицательной половине. Таким образом, падение напряжения складывается и составляет около 1.От 4 до 1,5 В. Так что выход снижается.

Однако, если мы подключим конденсатор к выходу, мы увидим, что выходное напряжение теперь выше входного. Как такое возможно? Это потому, что вход переменного тока измеряет действующее значение напряжения, а не пиковое напряжение. Пиковое напряжение в 1,41 раза выше среднеквадратичного напряжения. Конденсаторы заряжаются до пикового напряжения, а затем отпускаются. По-прежнему существует небольшое падение напряжения из-за диодов, поэтому выходной сигнал меньше пикового входа, но все равно будет выше, чем входной среднеквадратичный.

Например, если бы у нас было 12 В на входе, пиковое напряжение было бы 12 В, умноженное на 1,41, что составляет 16,9 В.

Здесь и здесь падение 0,7 В. Таким образом, 16,9, вычесть 1,4 В, составляет 15,5 В. Конденсаторы заряжаются до этого напряжения. Это только приблизительный ответ, количество пульсаций и фактическое падение напряжения на диодах будут немного отличаться в действительности, но мы видим, что выходное значение выше входного.

Другой распространенный фильтр — это размещение двух конденсаторов параллельно с последовательной катушкой индуктивности между ними.Это используется для цепей с большими нагрузками. Первый конденсатор сглаживает пульсацию. Катушка индуктивности противодействует изменению тока и пытается поддерживать его постоянным, а второй конденсатор, который намного меньше, затем сглаживает окончательную оставшуюся пульсацию.

Дополнительно к выходу можно подключить регулятор напряжения. Это очень распространено и допускает некоторые изменения на входе, но обеспечивает постоянное выходное напряжение. По обе стороны от регулятора опять же есть конденсаторы, обеспечивающие плавный выход постоянного тока.Вот реальная версия, которая подключена к источнику переменного тока 12 В, и мы видим, что она имеет выходное напряжение около 5 В постоянного тока.

Вы можете научиться создавать собственный стабилизатор напряжения в нашей предыдущей статье ЗДЕСЬ.


Источники питания | Electronics Club

Блоки питания | Клуб электроники

Трансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные расходные материалы

Следующая страница: Преобразователи

См. Также: AC / DC | Диоды | Конденсаторы

Типы источников питания

Есть много типов источников питания.Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет определенную функцию.

Например, регулируемое питание 5 В:

  • Трансформатор — понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
  • Smoothing (Сглаживание) — сглаживает постоянный ток от сильного колебания до небольшого.
  • Регулятор
  • — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.

Блоки питания, изготовленные из этих блоков, описаны ниже со схемой и графиком их выхода:

Только трансформатор

Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. Это , а не , подходящий для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.

См .: Трансформатор


Трансформатор + выпрямитель

Регулируемый выход постоянного тока подходит для ламп, нагревателей и стандартных двигателей.Это , а не , подходящий для электронных схем, если они не содержат сглаживающий конденсатор.

См .: Трансформатор | Выпрямитель


Трансформатор + выпрямитель + сглаживание

На выходе smooth DC наблюдается небольшая пульсация. Он подходит для большинства электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание


Трансформатор + выпрямитель + сглаживающий + регулятор

Регулируемый выход постоянного тока очень плавный, без пульсаций.Подходит для всех электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание | Регулятор



Трансформатор

Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности. Трансформаторы работают только с переменным током, и это одна из причин, по которой в сети используется переменный ток.

Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.

Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна мощности на входе. Обратите внимание, что при понижении напряжения ток увеличивается.

Входная катушка называется первичной , а выходная катушка — вторичной . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле, создаваемое в сердечнике из мягкого железа трансформатора. Две линии в середине символа схемы представляют сердечник.

Rapid Electronics: трансформаторы

Обозначение схемы трансформатора

Передаточное отношение

Отношение числа витков на каждой катушке, называемое соотношением витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке, которая подключена к питающей сети высокого напряжения. и небольшое количество витков на его вторичной (выходной) катушке, чтобы обеспечить низкое выходное напряжение.

Передаточное число = Вп = Np
VS Ns
Выходная мощность = мощность в
В

Vp = первичное (входное) напряжение
Np = количество витков на первичной катушке
Ip = первичный (входной) ток

Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной катушки
Is = вторичный (выходной) ток


Выпрямитель

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель является наиболее важным и производит двухполупериодный переменный постоянный ток. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом, но сейчас этот метод редко используется, потому что диоды стали дешевле. Можно использовать одиночный диод в качестве выпрямителя, но он использует только положительные (+) части волны переменного тока для создания полуволны , изменяющейся постоянного тока .

Мостовой выпрямитель

Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). Чередующиеся пары диодов проводят, это переключает соединения, поэтому переменные направления переменного тока преобразуются в одно направление постоянного тока.

1,4 В используется в мостовом выпрямителе, потому что на каждом диоде 0,7 В при проводящем соединении, и всегда есть два диоды проводящие, как показано на схеме.

Мостовые выпрямители

рассчитаны на максимальный ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдерживать.Их номинальное напряжение должно быть как минимум в три раз больше среднеквадратичного напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для получения более подробной информации, включая фотографии мостовых выпрямителей.

Rapid Electronics: Мостовые выпрямители

Мостовой выпрямитель

Выход: двухполупериодный переменный постоянный ток
(с использованием всей волны переменного тока)

Однодиодный выпрямитель

Одиночный диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока, который имеет промежутки когда переменный ток отрицательный.Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они не требуется очень небольшой ток, поэтому сглаживающий конденсатор существенно не разряжается во время промежутков. Пожалуйста, обратитесь к странице Диоды для некоторых примеров выпрямительных диодов.

Rapid Electronics: Выпрямительные диоды

Однодиодный выпрямитель

Выход: полуволна переменного тока
(с использованием только половины переменного тока)


Сглаживание

Сглаживание выполняется электролитическим конденсатором большой емкости. подключен к источнику постоянного тока, чтобы действовать как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный изменяющийся постоянный ток (пунктирная линия) и сглаженный постоянный ток (сплошная линия). Конденсатор быстро заряжается около пика переменного постоянного тока, а затем разряжается, подавая ток на выход.

Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до пикового значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.

Неидеальное сглаживание из-за небольшого падения напряжения на конденсаторе при его разряде, давая небольшую пульсацию напряжения . Для многих цепей пульсация составляет 10% от напряжения питания. напряжение является удовлетворительным, и приведенное ниже уравнение дает необходимое значение для сглаживающего конденсатора. Конденсатор большего размера даст меньше пульсаций. При сглаживании полуволны постоянного тока емкость конденсатора должна быть увеличена вдвое.

Rapid Electronics: электролитические конденсаторы

Сглаживающий конденсатор, C, для пульсации 10%:

С = 5 × Io
Vs × f

где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (A)
Vs = напряжение питания в вольтах (V), это пиковое значение несглаженного постоянного тока.
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц



Регулятор

ИС регулятора напряжения

доступны с фиксированными (обычно 5, 12 и 15 В) или переменное выходное напряжение.Они также рассчитаны на максимальный ток, который они могут пропускать. Доступны регуляторы отрицательного напряжения, в основном для использования в двойных источниках питания. Большинство регуляторов включают в себя автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрев («тепловая защита»).

Многие ИС фиксированного стабилизатора напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.

Rapid Electronics: регулятор 7805

Фотография регулятора напряжения © Рапид Электроникс

Стабилитрон

Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме.Стабилитроны имеют номинальное напряжение пробоя и Vz . Максимальная мощность Pz (обычно 400 мВт или 1,3 Вт).

Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.

Дополнительную информацию о стабилитронах см. На странице «Диоды».

Rapid Electronics: стабилитроны

стабилитрон
a = анод, k = катод

Выбор стабилитрона и резистора

Это шаги для выбора стабилитрона и резистора:

  1. Напряжение стабилитрона Vz — необходимое выходное напряжение
  2. Входное напряжение Vs должно быть на несколько вольт больше Vz
    (это необходимо для небольших колебаний Vs из-за пульсации)
  3. Максимальный ток Imax — это требуемый выходной ток плюс 10%
  4. У стабилитрона Pz определяется максимальный ток: Pz> Vz × Imax
  5. Сопротивление резистора : R = (Vs — Vz) / Imax
  6. Номинальная мощность резистора : P> (Vs — Vz) × Imax

В этом примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.

Например

Если требуемое выходное напряжение составляет 5 В, а выходной ток составляет 60 мА:

  1. Vz = 4,7 В (ближайшее доступное значение)
  2. Vs = 8V (на несколько вольт больше, чем Vz)
  3. Imax = 66 мА (ток плюс 10%)
  4. Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
  5. R = (8 В — 4,7 В) / 66 мА = 0,05 кОм = 50,
    выбираем R = 47
  6. Номинальная мощность резистора P> (8 В — 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт

Двойные расходные материалы

Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным источником питания», потому что это похоже на два обычных источника питания, соединенных вместе, как показано на схеме.

Двойные источники питания имеют три выхода, например, источник питания ± 9 В имеет выходы + 9 В, 0 В и -9 В.

Rapid Electronics: блоки питания


Следующая страница: Преобразователи | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Создание выпрямителя для гальванических покрытий своими руками


С 1989 года: образование, Алоха и
самое интересное, что вы можете получить в отделке

Проблема? Решение? Звоните прямо!
(один из последних в мире сайтов без регистрации)

——

Обсуждение началось в 2003 г., но продолжаются до 2018 г.

2003 г.

В.Приветствую, я хотел бы начать с благодарности всех вас за ваши немедленные и информативные ответы на все мои вопросы за последние несколько месяцев. Я всегда стараюсь прочитать ранее отправленные письма, прежде чем писать свои собственные, просто потому, что знаю, что становится утомительно отвечать на одни и те же вопросы снова и снова. Я не нашел то, что искал, ни в одном опубликованном письме, так что вот оно.

Я пытаюсь построить выпрямитель постоянного тока для какого-то хобби. Я хотел бы преобразовать обычные бытовые 120 В переменного тока в выпрямитель постоянного тока с регулируемым током, способный выдавать 15 В с выходом не менее 20 ампер.


2004

В. У меня два вопроса:

Есть ли у кого-нибудь схема для создания гальванического выпрямителя, способного гальванизировать детали до прибл. 100 / кв дюйм

Следующий вопрос: можно ли использовать выходной сигнал высококлассной фрезерной машины для сварки TIG постоянным током либо прямо, либо с модификацией для уменьшения пульсации?

Я знаю, что получу ответ: «Почему бы тебе просто не передать это профессионалу?» У меня есть две причины, одна из которых состоит в том, что мне любопытно научиться делать это самому, чего я не могу сделать, если Я отнесу это кому-нибудь другому.И причина, по которой я это делаю, заключается в том, что у меня есть целый механический цех, полный приобретенного мной оборудования, которое сидело и начало ржаветь, я хочу медленно в свободное время разбирать машины, перекрашивать их, полировать и наклеивать ржавые детали, чтобы они не ржавеют легко.


2004

А.Привет, Фрэнк; привет Генри. Этот вопрос здесь задавали несколько раз, и он остается в основном без ответа — вероятно, не столько потому, что кто-то что-то скрывает, сколько потому, что не было рынка для журнала по хобби-электронике, чтобы разработать статью о том, как спроектировать и построить что-то, что Немногие любители электроники проявили бы интерес и не имели бы легкого доступа к приобретению запчастей. Лучшим выбором для схемы может быть продавец бывшего в употреблении оборудования для нанесения покрытий, который, вероятно, накопит коробки с инструкциями по эксплуатации, отсоединенные от выпрямителей, с которыми они идут; они будут включать в себя схематические диаграммы, которые вы ищете.

Другая причина, по которой выпрямители сложнее построить, чем другие электронные проекты, заключается в том, что цепи управления не являются основной проблемой; скорее, большие штучки есть. Создание выпрямителя — это в первую очередь не схема управления, это большие вещи, которые сложно построить самостоятельно и которые нельзя купить в радиорубке — например, большие трансформаторы, дроссели, тяжелые переключатели ответвлений, диоды с большим током и т. Д. если вы можете выдержать его до 20 ампер, возможно, вам поможет буква 12200 . Удачи!

Он работает в обоих направлениях, промышленность во многом обязана любителям — все гальванические выпрямители работали на частоте 60 Гц до недавнего времени, но мы узнали из индустрии персональных компьютеров, созданной любителями, что гораздо меньшие и более легкие блоки питания могут быть построены путем «измельчения». «(тем или иным образом прерывая ток для генерации более 60 Гц).


2004

В. Я, конечно, понимаю, что обычный журнал по электронике не публиковал бы эту схему, однако я определенно верю, что, учитывая количество веб-сайтов, посвященных расходным материалам для домашнего покрытия и тому подобному, есть большое количество мастеров, которые будут заинтересованы, я думаю, я бы сказал на этом этапе, если кто-то проявляет такой интерес и игнорирует ответственность за использование и утилизацию химических отходов должным образом, забудьте об этом. Что касается получения «больших» компонентов, у меня уже есть исходники для них из сети, их легче найти, чем базовую схему выпрямителя.


2005 г.

A. Я читал несколько запросов о домашних любителях, желающих построить выпрямители, и их причины убедительны (в конце концов, гальваника — это весело). Но я должен согласиться с Тедом; Создание полезного выпрямителя было бы большим и сложным делом, не подходящим для большинства домашних любителей. К тому же он вам и не нужен!

Выпрямитель только преобразует переменный ток в постоянный, предпочтительно 12 В постоянного тока. Хорошим источником постоянного тока 12 В являются морские батареи глубокого разряда. Хотя батареи не являются практичным вариантом для гальванических мастерских, они отлично подходят для гальваники деталей в гараже.Теперь, имея рекомендуемые батареи, необходимо знать несколько технических вопросов и вопросов безопасности:

Во-первых: не используйте соединительные кабели, они искры! Морские аккумуляторы идут с винтовыми клеммами, используйте их.

Секунда: Емкость батареи имеет решающее значение, используйте две или три параллельно для более длительного времени гальваники и / или более крупных деталей. Также вам понадобится хорошее автомобильное зарядное устройство [affil. ссылка на информацию / продукт на Amazon], чтобы зарядить батареи между циклами.

Третий: вам нужно будет контролировать ток (посмотрите на пусковую способность вашего автомобильного аккумулятора, он огромен!).


22 марта 2009 г.

A. Привет, Майк Преториус. Просто сравните гальваническое покрытие с электросваркой —
Оба работают по одному и тому же принципу «Низкое напряжение и высокая сила тока». Сила тока — это средство, которое наносит металлический наполнитель на катод (коллектор).
Для создания гальванического блока вам потребуются: —
(a) Понижающий трансформатор высокой мощности 220 В / 12 В
(b) Variac для управления входным напряжением питания
(c) Высокоамперный мостовой выпрямитель для преобразования переменного тока в постоянный диодный выпрямитель

Питание 220 В —> Вариак —> Трансформатор —> Диодный выпрямитель —> Полож. / В —> Анод, отриц. / В —> Катод.



6 февраля 2014

В. Относительно ответа Йохана Лутса:
Может кто-нибудь сказать мне, зачем вам нужен трансформатор?
Как я понял, мостовой выпрямитель преобразует переменный ток в постоянный.
Я тоже не понимаю, зачем вариак ставят перед трансформатором?

Признаюсь, я не очень разбираюсь в выпрямителях, но я смотрю спецификации выпрямителя RS 605, который я вытащил из блока питания компьютера (http://pdf.datasheetcatalog.com/datasheet/RECTRON/RS604.pdf )
Там написано от 50 до 1000 вольт и 6 ампер.


Февраль 2014

А. Привет, Гэри. Я не знаю, как сделать гальванический выпрямитель, но могу попытаться ответить на пару ваших вопросов.

Домашний ток составляет 110 или 220 вольт, тогда как напряжение покрытия больше похоже на 3–12 В, поэтому трансформатор — это то, что снижает напряжение до полезного диапазона, а также увеличивает доступный ток. Если оставить в стороне и исключить неэффективность трансформатора, он преобразует, скажем, 5 А при 220 В в 50 А при 22 В. Хотя фраза «изолирующий трансформатор» была немного разбавлена ​​до того, что это не очень хорошая характеристика, еще один важный момент. действие трансформатора состоит в том, чтобы отделить выход от источника, чтобы уменьшить скачки высокого напряжения.

Мостовой выпрямитель — это просто 4 диода для преобразования переменного напряжения в серию «верблюжьих горбов», а не в плавный постоянный ток. Хотя профессионалы не будут пытаться использовать этот выход, потому что это вызывает определенные проблемы, поэтому они будут использовать индукционный / емкостной «дроссель», чтобы сгладить его, любитель может попробовать без дросселя, но с мостовым выпрямителем, подключенным так, как описывает Йохан. . Подключите проводку, подключив мостовой выпрямитель к розетке, напряжение будет слишком высоким, и не будет никакой изоляции, а вероятность пореза себя током будет очень высока!

Фактически, Variac — это переменный трансформатор.


9 октября 2015

A. Я разработал линейный источник питания постоянного тока с переменным напряжением для питания любительского радиооборудования, который может соответствовать требованиям примерно до 35 ампер, как я построил свой, но с линейными регуляторами, которые я использовал, его можно масштабировать, используя более или менее регуляторы с максимальным током до 9 ампер на микросхему регулятора. Я еще не пробовал использовать его для гальваники, но могу принести его в магазин, когда в следующий раз выйдет из строя наш цинковый выпрямитель.

** Обратите внимание, что в современных источниках питания и выпрямителях предусмотрены определенные меры безопасности, которые не предусмотрены в этой конструкции, поэтому используйте их на свой страх и риск.


29 января 2018

Стив Г. писал: «Я разработал линейный источник питания постоянного тока с переменным напряжением для питания любительского радиооборудования, который может соответствовать счету примерно до 35 ампер, как я построил свой, но с линейными регуляторами, которые я использовал, его можно масштабировать. используя более или менее регуляторы с максимумом до 9 ампер на микросхему регулятора. Я еще не пробовал использовать это для гальваники, но я могу принести его в магазин в следующий раз, когда наш цинковый выпрямитель выйдет из строя ».

Я хотел бы спросить Стива Горзо, есть ли у него возможность опробовать свой линейный источник питания на гальванике, и если да, то он работал? Кроме того, я был бы признателен за помощь в создании своего собственного.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *